
A timing game approach for the roll-out of new
mobile technologies
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Abstract—When adopting a novel mobile technology, a mobile
network operator faces the dilemma of determining which is the
best time to start the installation of next generation equipment
onto the existing infrastructure. In a strategic context, the best
possible time for deployment is also the best response to com-
petitors’ actions, subject to normative and material constraints
and to the customer’s adoption curve. We formulate in this paper
a finite discrete-time game which captures the main features of
the problem for a two-player game played over a prescribed
finite horizon. Our numerical results provide insights on the
possible optimal tradeoffs for an operator between fixed costs
and installation strategies.

Index Terms—technology adoption, timing games, two-player
extensive form games.

I. INTRODUCTION

In the telecommunication industry, the roll-out of a new
mobile communication technology is a core challenge faced
periodically by mobile operators, requiring to upgrade their
infrastructure to keep up with ever-increasing traffic demand
and key technology upgrades. Indeed, while standardization
efforts are already taking off for next generation 6G mobile
networks, it is only very recently that 5G technology was
introduced into the mobile communication market [1]. Most
telecommunication operators are forced to install the 5G
technology on their sites in order to face the current ever-
increasing traffic demand which has rendered the previous
generation of 4G mobile networks inadequate.

A key success element for an operator, in this context, is
the timing of the upgrades of their infrastructure and the most
efficient timing available to them is defined by a competitive
setting. Indeed, operators may want to defer the deployment
costs for an economic advantage. But an untimely delay with
respect to their competitors may represent a risk of future loss,
mainly because this might induce their customers to switch to
other operators’ network. Furthermore, different types of sites
have different return on investment and a different customer
base, depending on factors such as operators’ positioning on
the mobile communication market and geographical specifics.

Motivated by the recurring pattern of innovation in the
mobile telecommunication industry, in this paper we propose a
strategic framework to model the introduction of new wireless
technologies and the main tradeoffs therein. Solution concepts
from game theory let us identify optimal technology deploy-
ment plans. We focus on the case of two competing operators
performing their technology upgrades on a given set of sites.

⋆Orange Innovation, Chatillon, France; †LIA, Avignon Université, Avignon,
France.

The problem is formulated in the form of a discrete-time
timing game [2], where actions sets available to each player
are defined by logistic and normative constraints. For instance,
all operators who joined the auction for the allocation of
the 5G band spectrum have to follow certain deployment
constraints set by the regulator [1]. In turn, the operators’
utility is a function of the customers’ technology adoption and
their distribution over the operator sites, of costs incurred for
the technology upgrades and how effective it is the promotion
and marketing for the launch of the new technology. Quality
of service offered by operators is assumed a piece of public
information, as it is constantly monitored by independent
authorities (see [3] for France). A player, i.e., an operator,
is hence able to track the evolution of the competitors’ 5G
deployment. On the other hand, upon choosing a 5G service
provider, customers are assumed to bind to this operator until
the end of the time horizon. To this aim, as a new technology is
introduced, the operators use financial subsidies to accelerate
its adoption e.g. using discounted offers or advertisement.
We assume that such subsidies are budgeted strategically for
the whole time horizon and simultaneously adopted by the
operators at the beginning the deployment phase.

State of the art. In the literature, several papers studied the
investment optimization problem faced by operators aiming
to mitigate installation costs of the 5G technology and yet
satisfy increasing traffic demand. One approach considers the
behaviour of the operator’s customers [4], [5]; such models
do not take into account the competition among operators.
Another approach is to set a cooperative game to determine
how investments should be allocated among the operators
[6]–[8]. Some models do account for the fact that operators
are in competition to serve potential customers [9]–[11], but
they neglect the temporal dimension. In the economic theory,
the introduction of a new technology belongs to a specific
class of models, called innovation timing games. This category
of games concerns two players selecting the time at which
they act [12]–[14]. This standard scenario is concerned, for
instance, with the dynamics of an incumbent which defends
from a possible entrant in a market [15]. Results for more
than two players are derived in [16], [17] under special
assumptions. In game theory, games where players pick a time
when they act are called timing games and can be either in
continuous [18] or discrete [2] time. In the literature, discrete
timing games have been used for marketing decisions [19].
In this work we focus on a two-player discrete timing game,
in which two operators decide when to start the roll-out. Our
model also belongs to the class of sequential games [20], in
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which players act in turns one after another. In the literature,
results are only given for specific categories of timing games:
stochastic games with one choice [21], Stackelberg games with
random-ordered players [22] and games with small discrete
time intervals [23].

Main contribution. To the best of our knowledge, this is the
first work that introduces a timing game model for the roll-out
of mobile technologies. The model can factor in the customers’
adoption dynamics, the operators’ installation strategies on
multiple classes of sites, and constraints related to logistics
and regulation. The system model relies on an extensive form
game solved with a tailored-made formulation based on a
classic resolution method [24]. Numerical simulations provide
interesting insight into the strategic approach of the operators
and the resulting market shares.

The paper is structured as follows. In Section II we intro-
duce the model and in Section III we provide an example
of application. In Section IV we introduce the methods used
for model simulations. In Section V we report for numerical
results and we interpret them in light of the possible strategies
for the operators. Section VI ends the paper.

II. SYSTEM MODEL

Modern telecommunication markets have a few mobile
operators in strong competition with one another. A significant
fraction of their annual turnover is spent on the maintenance
and the upgrade of their network. Thus, the main objective
of our model is to study strategies to optimize the allocation
of operators’ resources. Strategies such as prioritising the
time of installation on more profitable sites or performing
offers and marketing investments have to be optimized in
light of competitors’ choices, expected returns and regulation
constraints. We restrict to the case of two telecommunication
operators both acting as rational players. Each player seeks the
optimal strategy to maximize their own return. At the moment
of introducing a new mobile technology on the market, both
operators first invest a promotion and marketing budget, P&M
budget hereafter, to boost the customer base, i.e., launching
marketing campaigns and releasing a fixed number of promo-
tion subscription offers. In our model each operator i ∈ N
chooses independently their P&M budget from a discrete set
si ∈ Si. Second, they launch the field deployment campaign
for the new technology, i.e., they schedule when and where to
deploy investments on their own sites. A site is an area where
both operators can install the new technology. Since operators
often build sites close to the competitors’, we consider perfect
overlap of the sites. We assume that there exist few classes
of sites, depending on their profitability: metropolitan sites,
urban sites, and rural sites. Each of such classes has a different
profitability depending, e.g., on the number of subscribers.
Operators act on a discrete time horizon T = {1, ..., T}. We
thus introduce the following parameters:
• N = {1, 2}, set of players;
• Si, the P&M budget options for player i ∈ N (chosen at
time t = 0);
• T = {1, ..., T}, set of time-intervals over which operators

act to install the new technology;
• A , site classes.

The possible actions of a player are defined by the variables:
• si ∈ Si, the P&M budget chosen by player i at time 0;
• Ait ∈P(A ), a subset of classes of sites (possibly empty)
on which operator i ∈ N installs the new technology at time
t ∈ T . After the installation, no other intervention is made.
We thus denote by tia ∈ T the time at which operator i
installs the technology on class a ∈ A (in vectorial form
ti ∈ T |A |).

Each operator’s schedule is bounded by some constraints:
• Logistic constraints: the operator i can invest on a limited
number Zi of classes of sites at each time t ≥ 1. Thus for
every player it holds |Ait| ≤ Zi;
• Regulator constraints: operators must cover a sufficient
number of sites within the deadlines fixed by the regulator;
before every time t at least Rt classes of sites have to support
the new technology. Thus for all players and for all t ≥ 1 it
holds

∑
τ≤t |Aiτ | ≥ Rt.

The strategy (si, ti) ∈ Si × T |A | is a choice made by
player i ∈ N on the budget si ∈ S and on the roll-out scheme
ti ∈ T |A |. This choice is subject to the maximisation of the
player’s objective, which is modeled by her utility function
ui : S1 × S2 × (T |A |)2 → R. The utility functions depend
on multiple parameters, which involve costs, characteristics of
the market and adoption dynamics. We defer such analysis to
Section III, in which we provide an example of its model.

Strategic framework. Players have conflicting interests,
seeking to gain the largest market share, while keeping costs
under control. As such, an operator cannot compute their
own solution independently from their competitors. We thus
identify an equilibrium of the game, i.e., a couple of strategies
such that players are satisfied with them if they are both
played. We add a further assumption: a player can observe,
at time t, the history of actions taken by the other player for
t′ < t, and react accordingly. The choice of the opponent’s
P&M budget is observable by both players after time t = 0.

A convenient model to encode the above assumptions is
that of a game in extensive form [25], whose mathematical
model is based on a game tree. In a game tree, arcs outgoing
from a node represent the possible choices available to a
player. The sequence of nodes and arcs represent the sequence
of choices taken by the players and the moments at which
players act. A leaf or terminal node h reached after both
players have performed T actions has no outgoing arcs and
represents an outcome of the game. We denote with H the set
of terminal nodes h ∈ H; occasionally we will use the same
notation to identify the unique path that leads to a terminal
node. Every outcome h ∈ H is assigned a pair of values
(u1(h), u2(h)) ∈ R2 which correspond to the values assigned
by each player to such outcome. The higher the value of ui(h),
the higher the value a player assigns to the combination of
actions that leads to the final node h. Every combination of
strategies (s1, s2, t1, t2) ∈ S1×S2×(T |A |)2 leads to a unique
outcome h ∈ H . For our system the game tree is defined as
the Service providers (SP) game (cf. Definition 1).
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Fig. 1. The P&M budgets are picked first. Both players choose a low budget,
i.e. (s1, s2) = (low, low), leading thus to game F = Γ(low, low). In Figure
some Γ(s1, s2) are highlighted as example.

Definition 1 (Service providers (SP) game): The service
providers game ⟨N,S1, S2,A , T, u⟩ is an extensive form
game with two players N = {1, 2} competing over set of
classes of sites A in which:
• at the root vertex both players choose at the same time t = 0
and independently the P&M budgets s1 ∈ S1 and s2 ∈ S2;
• the players act in sequence at every round t ⩾ 1, starting
from player 1. At every step they can decide on which subset
of classes of sites A1t ∈P(A ) and A2t ∈P(A ) install the
new technology, given the logistic and regulator constraints;
• after T rounds the game ends; the actions chosen at each
round are evaluated by utility functions ui hereafter defined;
• players’ utility function u = (u1, u2), where ui : S1×S2×
(T |A |)2 → R.

Example. Figures 1 and 2 show a representation of a game
with the following properties:
• A = {A,B}, two classes of sites.
• T = {1, 2}, horizon of two time-intervals.
• S1 = {no, low, high} and S2 = {no, low,mid, high} sets of
possible P&M budgets.

Overall, we can distinguish two phases of the game. In the
first phase both players choose their P&M budget for the
launch of the technology (cf. Section II-A). In the second
phase players act in sequence one after another and choose
on which sites install the new technology (cf. Section II-B).

A. First phase: P&M budget choice

Both players pick independently their P&M budget si ∈ Si,
i = 1, 2 (cf. Figure 1). Once budgets (s1, s2) are revealed, the
players proceed in choosing the timing of their investments.
We denote this second part of the game Γ(s1, s2), which is
represented in Figure 2 for our example. In Section II-B we
discuss in detail how to compute the timing of investments
as a solution (t1, t2) ∈ (T |A |)2 of game Γ(s1, s2). The
outcome (s1, s2, t1, t2) ∈ S1 × S2 × (T |A |)2 is evaluated
by the utility function u(s1, s2, t1, t2) ∈ R2. We define map
M : S1 × S2 ∈ R2 which evaluates for every pair (s1, s2) the

no low mid high
no M(no, no) M(no, low) M(no,mid) M(no, high)
low M(low, no) M(low, low) M(low,mid) M(low, high)
high M(high, no) M(high, low) M(high,mid) M(high, high)

TABLE I
MATRIX REPRESENTATION OF THE FIRST PHASE.

Fig. 2. After the P&M budgets, players choose sequentially to add or not the
technology to sites of class A and B at each round t ∈ T = {1, 2, . . . , T}.

solution of the game Γ(s1, s2): M(s1, s2) := u(s1, s2, t1, t2),
where (t1, t2) ∈ (T |A |)2 solves Γ(s1, s2). Let us suppose
now to have already computed the solutions of the second
phase M(s1, s2) for every (s1, s2) ∈ S1×S2 with the method
given in Section II-B. Table I shows such computation for the
game of Figure 1. We would like to find a solution of the
game, i.e., a Nash Equilibrium for the corresponding matrix
game: a pair of strategies such that an operator, known the
strategy of the other one, does not deviate unilaterally.

Definition 2 (SP game, solution first phase): Given a
SP game ⟨N,S1, S2,A , T, u⟩ and its correspondent matrix
M = (M1,M2) : (s1, s2) 7→ u(s1, s2, σ(s1, s2)), with
(s1, s2) chosen at time t = 0 and σ(s1, s2) ∈ (T |A |)2 the
optimal installation times chosen at times t ≥ 1, we say
(s1, s2) ∈ S1 × S2 is an equilibrium if for all s1 ∈ S1 and
s2 ∈ S2 we have:

M1(s1, s2) ≥M1(s1, s2) and M2(s1, s2) ≥M2(s1, s2).

B. Second phase: timing of network investments

Let both operators have chosen their P&M budgets
(s1, s2) ∈ S1 × S2. The second phase of the game is
represented by the subtree Γ(s1, s2) of Figure 2. At the root
the first player chooses a subset of sites where to invest at
time t = 1. The choices are represented by the outgoing arcs.
At the following node the second player chooses their own
site class for time t = 1. Their actions lead to a node at which
the first player chooses the installations to be made at time
t = 2, and so on until the planning for each time interval is
assigned. The two operators know which choice of the P&M
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budget is made by the other operator and then act in sequence
one after another. At every time t ∈ T each operator i ∈ N
chooses a subset of classes of sites where to invest. Formally,
the subtree Γ(s1, s2) is an extensive form game, identified by
the tuple Γ(s1, s2) = ⟨N,H, u⟩ from now on, where H is the
set of terminal nodes of the game tree. With some notations’
abuse h ∈ H identifies either a terminal node or the path that
leads to it from the root. Note that along a path a player can
pick a site class only once (installation can be done only once).

In the example of Figure 2 path h = {{B}, {A}, {A}, {B}}
is highlighted: at time t = 1 the first operator installs the new
technology on class B, the second operator installs it on class
A, while at time t = 2 the two operators do the opposite.

Definition 3 (SP game, second phase): Given a SP game
⟨N,S1, S2,A , T, u⟩ and a couple of P&M budget choices
(s1, s2) ∈ S1 × S2 we consider the extensive form game
Γ(s1, s2) = ⟨N,H, u⟩, whose paths h = (hit)i∈N,t∈T ∈ H
have the following properties:

• for all (i, t) ∈ N ×T we have hit ∈P(A );
• for all i ∈ N and for all t, t′ ∈ T with t ̸= t′ we have

hit ∩ hit′ = ∅.
Later in the section we introduce the solution of a game, which
is a specific terminal node h ∈ H . We represent such node
with a vector (tia)i∈N,a∈A , which indicates the time tia ∈ T
at which operator i installs the new technology on class a.

In the tree representing the game (see Figure 2) a step is
represented by a node and the actions that follows by the
outgoing arcs. A subgame describes the part of the game that
follows a given step: it corresponds to the part of the tree
that follows a node. Formally, we identify the node with the
vector of actions that leads to it. Such vector is a prefix h of
the vector that corresponds to a path h ∈ H . A subgame is
the collection of the paths that share the same prefix. Given
path h ∈ H , we write h = h + h′ to show that h is a prefix
and h′ is the rest of the path.

Definition 4 (subgame): Given a game Γ(s1, s2) =
⟨N,H, u⟩ and a prefix h, a subgame is a game Γ = ⟨N,H, u⟩
such that:
• H is the set of paths in H sharing prefix h: H = {h′ :
∃h ∈ H,h = h+ h′};
• The utility function in Γ corresponds to the ones in Γ, i.e.
for all h′ ∈ H we have that: u(h′) = u(h+ h′).
As defined before, we would like to identify a solution of
the game under the assumption that every operator at time
t can observe the actions taken by the other player at time
t′ < t. This corresponds to require the solution to be an
equilibrium for every subgame, i.e., to be a subgame perfect
equilibrium (SPE) [20]. Operators can forecast future actions,
starting from the bottom of the tree, since they both know that
they choose the actions that maximise their utility, proceeding
thus by backward induction [20]. If an operator is on a
subgame corresponding to a leaf of the game tree, they pick an
action that maximises their utility. In recursive manner, in any
parent subgame an operator can identify the actions played
subsequently and also identify the action that leads to the best
outcome for them. The solution identified by this algorithm

corresponds to a SPE. A generic finite extensive form game
with perfect information has a unique SPE equilibrium [20]
and it is generated by the backward induction algorithm [25].

The choice of the order of the operators can be arbitrary.
However, while in reality they act simultaneously, when both
players can quickly adjust their strategy accordingly, the
outcome of the game undergoes a small perturbation, as we
see in simulations.

III. SUBSCRIBER DYNAMICS AND OPERATOR UTILITY

So far we have not discussed the operators’ utility function
ui : S1 × S2 × (T |A |)2 → R. As described next, it highly
depends on the adoption dynamics, i.e., how many customers
switch to the new mobile technology at each time unit. To
characterize the utility function we fix some assumptions: 1)
following [4], every customer decides to switch to the new
technology at a given time t and sticks to the choice till the
end of the time horizon; 2) the quantity of customers switching
at every time depends on a given dynamics, which is known
a priori by both operators; 3) every customer has a preference
over the two operators; if their preferred operator does not
offer the new technology at time t they subscribe to the other
operator if it offers it, otherwise they wait for one of them to
offer it; 4) an operator can acquire only a limited amount of
new customers per time interval; 5) once a customer subscribes
for an operator, it sticks to it. Operators choose a pair of P&M
budgets (s1, s2) ∈ S1×S2; such choices influence the potential
market of customers willing to switch to the new technology.

We consider first the scenario where all sites belong to the
same class, and we then extend the analysis to the case where
sites belong to different ones.

A. Single-class model

For every t ∈ T , the percentage of customers adopting the
new mobile technology is identified by {yt}t∈T , subject to the
condition that

∑
t∈T yt = 1 because all customers eventually

switch to the new technology. Hence, {yt} can be seen as
the time-step increment yt := yadopt(t + 1) − yadopt(t) of
the adoption curve yadopt(t), which is assumed to be non-
decreasing concave and yadopt(∞) = 1. A model often used in
the literature [27] for adoption curves is yadopt(t) = 1−e−λt,
where the parameter λ > 0 determines the adoption speed.

Preferences over the offers proposed by operators 1 and 2
are a function of the P&M budgets. They are distributed with
same proportion p1(s1, s2) and p2(s1, s2) = 1−p1(s1, s2) for
all t ∈ T . We fix p1(s1, s2) =

p01+k·s1
1+k·(s1+s2)

and p2(s1, s2) =
p02+k·s2

1+k·(s1+s2)
, where p01, p02 ∈ [0, 1] with p01 + p02 = 1, the

preference of a customer for operator 1 or 2, respectively, if
s1 = s2 = 0. Here, k is a parameter that weights the influence
of the P&M budget on the customers. We recall that yt is the
potential market at time t. In order to capture these customers
the operators have to install the new technology; once their
sites are equipped with the new technology, we assume that
mobile operators can acquire at most τ > 0 share of new
customers per time slot. This constraint models the fact that
potential customers resolve for the technology little by little
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and not all at once. Let αi(t) := αi(t; s1, s2, t1, t2) the rev-
enue for player i which can be ascribed to customers acquired
up to time t ∈ T , respectively, under a given multistrategy
(s1, s2, t1, t2) (in case of a single site (s1, s2, t1, t2)). Once
acquired, they are retained until the end of the horizon: the
revenue generated by the final market share is αi(T ).

On the other hand, operators face the costs related to the
installation of the new technology and the subsidies. P&M
budgets si ∈ Si are constant fixed costs. Conversely, ci(t) > 0
is the installation cost at time t ∈ T : it is discounted to
account for the depreciation since installation time t and lower
maintenance costs over the period. Player i installing at time
t = 1 incurs in cost ci(1) = c0 > 0, whereas we assume
c(T ) = 0. A linear discounted cost model sets ci(t) = c0· T−t

T−1 .
Finally, the utility for player i writes

ui(s1, s2, t1, t2) = αi(T )− ci(ti)− si.

Summing up, the game is determined by parameters:
• λ > 0: adoption speed;
• τ > 0: maximal share of customers that can be acquired in
a time interval;
• S1, S2 ⊂ [0,+∞) with |S1| < ∞ and |S2| < ∞: discrete
sets of choices for the P&M budget;
• p0i ∈ [0, 1], i = 1, 2: fraction of customers preferring
operator i when no P&M budget is deployed s1 = s2 = 0;
• k > 0, weight of the P&M budget;
• c0 > 0, the installation cost at time t = 1.
We now describe how the functions α1(t) and α2(t) depend on
the strategies chosen by the players among the states t ∈ T .
The system state at time t is also described by the following
variables: 1) yt, the percentage of customers who decide to
switch to the new technology at time slot t; 2) ti, time at
which operator i installs the technology; 3) dt, the demand of
customers who want to switch to the new technology at time
t and who are not served before time t; 4) dit, the fraction of
dt who prefer the operator i (with di0 = 0); 5) rit, customers
that operator i can accept at time t. In particular, if an operator
i has installed the technology at time ti, they can accept up
to τ customers per interval of time: rit = τ · 1{t ≥ ti}.

The demand at time t is updated with the new costumers.
All the customers that are added to the demand at time t are
yt. Given pi := pi(s1, s2) the fraction of customers who prefer
operator i, we have that the number of customers who prefer
i at time t are pi · yt, i.e. ∀i ∈ N : dit ← di,t−1 + pi · yt.

Up on their demand and on their supply, the operators
add their customers. The operator i can absorb the unful-
filled demand of its competitor j. The dynamics of cus-
tomers acquired by operator i is thus governed by equation
αi(t+ 1)=αi(t)+min(dit, rit) + [min(djt − rjt, rit − dit)]

+

where i ̸= j. Finally, the demand at time t + 1 is set at
di,t+1 ← [dit − rit − [rjt − djt]

+]+ since costumers acquired
at time t are removed from their demand at time t+ 1.

B. Multi-class model

Let us consider a model for more than one class of sites
|A | > 1. We assume further that every customer is served on

sites belonging to same class, and thus introduce the parameter
ωa ∈ (0, 1), the percentage of users that are served on sites
of class a ∈ A . Accordingly, we assign to every parameter
an index referring to the relative class. The potential market
ya,t for class a ∈ A is subject to the condition

∑
t∈T ya,t =

ωa · yt. The utility function for the multi-class case differs
from the single-class by the fact that it sums the customers
acquired on every class of sites and the costs of the respective
installations. For every player i ∈ N the utility writes

ui(s1, s2, t1, t2) =
∑
a∈A

αi,a(T )−
∑
a∈A

ci(ti,a)− si

where the first summation is the revenue calculated across all
sites, and αi,a and ci(ti,a) are respectively the utility and the
cost for player i for sites of class a ∈ A .

IV. UPPER BOUNDS

As described in Section II, the SPE determined by backward
induction requires the explicit construction of the game tree,
whose size is polynomial in the time horizon but exponential
in the number of site classes. An efficient method for the
solution of the game is the one introduced by Von Stengel
[24], solving the equilibrium of extensive-form games via a
bilevel optimization problem. Compared to the SPE proposed
before, the solution found provides an upper bound to any
Nash equilibrium of the timing game, and so to the SPE as
well. The method is defined around the concept of sequence.
A sequence is a vector of consecutive actions played by
the same player. Let us consider a game with T = 2
and a path h = (h11, h21, h12, h22) ∈ H , as for instance
h = {{B}, {A}, {A}, {B}} of Figure 2. The actions h11

and h12 are played by the first player, while h21 and h22

are played by the second player. Sequences of the first player
are seq1 = (h11) and seq1 = (h11, h12) while sequences of
the second player are seq2 = (h21) and seq2 = (h21, h22).
Formally, for every player i ∈ N we consider the set of their
sequences Σi = {seqi = (hiτ ), τ ≤ t, t ∈ T , h ∈ H}. Let
x ∈ {0, 1}|Σ1| and y ∈ {0, 1}|Σ2| the vectors which define the
probability for a sequence to be played. We confine to pure
strategies, i.e., either xseq1 = 1 if sequence seq1 is played
or xseq1 = 0 if sequence seq1 is not played. Every path
h that leads to a leaf and the two corresponding sequences
(seqh1 , seq

h
2 ) ∈ Σ1 × Σ2 are evaluated by the utility function

u(h). We define thus the matrices U1, U2 : Σ1 × Σ2 → R
that map couples of sequences to their utilities: ∀h ∈ H
U1
seqh1 ,seq

h
2

= u1(h) and U2
seqh1 ,seq

h
2

= u2(h), otherwise
U1
seq1,seq2 = U2

seq1,seq2 = 0. The utilities of the players can
be thus written in the form xTU1y and xTU2y. Note that the
players’ sequences are constrained according to the SP game.
Indeed, let us suppose that after the path h = ({B}, {A}) the
first player has already played seq1 = ({B}) and thus can
choose among the actions {∅, {A}}. We can write the corre-
sponding sequences seq′1 = ({B}, ∅) and seq′′1 = ({B}, {A}).
If any of these sequences is chosen, then the sequence seq1
must also be chosen. We thus write seq1 = seq′1 + seq′′1 .
All such causal constraints Ex = e and Fy = f can be
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built according to the same principle. Finally, we consider the
solution of the following bilevel problem (VS) [24].

uV S
1 = max

x
xTU1y (VS)

s.t. Ex = e

x ∈ {0, 1}|Σ1|

y = max
y

xTU2y

s.t. Fy = f

y ∈ {0, 1}|Σ2|

This bilevel optimization problem is linear in the size of the
game [24]. The following result ensures that Problem (VS)
provides an upper bound to the utility of any Nash equilibrium.

Theorem 1: Given an extensive-form game ⟨N,H, u⟩, the
optimal value uVS

1 ∈ R of the corresponding optimization
problem (VS) and the outcome of a Nash equilibrium hNE ∈ H ,
we have:

uVS
1 ≥ u1(hNE).

Proof. Every feasible pair (x, y) of VS corresponds to a strat-
egy profile σ such that u(σ) = (xTU1y, xTU2y). Also, let σ
correspond to (x, y): then u2(σ) ≥ u2(σ) for all y ∈ {0, 1}|Σ2|

[24]. If σNE is a Nash equilibrium, be hNE ∈ H the outcome cor-
responding to the pair (xNE, yNE), then it holds u2(σ

NE
1 , σNE

2 ) ≥
u2(σ

NE
1 , σ2) for all σ2 and thus xNETU2yNE ≥ xNETU2y for all

y ∈ {0, 1}|Σ2|. This proves that the pair (xNE, yNE) is a feasible
solution of VS. Given (xVS, yVS) solution of VS, the thesis
follows since uVS

1 = xVSTU1yVS ≥ xNET U1yNE = u1(hNE).
In Section V we apply Theorem 1 to get an upper bound of

the utility of the first player in a subgame perfect equilibrium.
Indeed, since the subgame perfect equilibrium is a Nash
equilibrium, we have that (VS) provides such upper bound.

V. NUMERICAL RESULTS

In this section we characterize a scenario for two operators
N = {1, 2} and three classes of sites A = {A,B,C}, which
correspond to metropolitan (A), urban (B) and rural sites (C).
The roll-out occurs over a period of twelve time intervals T =
{1, . . . , 12}, corresponding to twelve quarters, i.e., three years.
Due to logistics constraints, operators can install only on a
single class of sites per interval of time, i.e., for all i ∈ N and
all t ∈ T , |Ait| ≤ 1. Moreover, each of them is forced by the
regulator to install the new technology on at least one class of
sites before the end of the first year (t ≤ 4), i.e. R4 = 1, and to
deploy it everywhere before the end of the game (t ≤ 12), i.e.
R12 = 3. The first class has a larger customer base than the
other two, which are instead of comparable size: ωA = 0.5,
ωB = 0.3, and ωC = 0.2. Also, we set λ = 0.1 and τ = 1

6 . We
use baseline preferences (p01, p02) = (0.6, 0.4) with k = 3,
that is operator 1 is the incumbent and operator 2 is the entrant.
The initial investment cost c0 = 0.5.

To identify the Nash equilibria of the game, we should
compute M(s1, s2) for every value of the P&M budget s1 ≥ 0
and s2 ≥ 0. We recall that M(s1, s2) is the utility of the
unique SPE of the game in extensive form Γ(s1, s2). Since

we can perform such computation only for a finite number
of games, we make a suitable discrete selection of the values
s1 ∈ S1 and s2 ∈ S2. The choice of S1 = {0, 0.1, 0.2} and
S2 = {0, 0.1, 0.2, 0.3} is justified hereafter. We refer to them
also as respectively {no, low,mid} and {no, low,mid, high}
budget for clarity.

We suppose that large values of s1 and s2 are not chosen by
the operators. Indeed, if the operators invest too much in the
P&M budget, they cannot pay off their investment. We would
like thus to exclude those strategies that are not played by the
operators. Formally, a strategy for the first player s1 is said to
be dominated if there exists another strategy s′1 that provides
better utility, no matter what the second player chooses as their
strategy.

We first explore the best responses for different budget
choices and under different customers’ baseline preferences
over the two operators. Figure 3a) shows the best response of
the entrant operator, where s2 ∈ [0, 0.3], when the incumbent
operator does not spend any P&M budget for the launch of the
new technology, i.e., s1 = 0. The utilities of the two players
evolve, given different choices of the budget of the second
operator. The best response for the entrant operator is to play
s2 = 0.03 because it maximises the utility of the second player
M2(s1, s2) = 0.25. We can observe that the utility of the
incumbent M1(s1, s2) is generically decreasing in the P&M
budget of the entrant s2.

We will now prove that some strategies are dominated,
so that they can be excluded to compute Nash equilibria.
Figure 3b) shows how the utility of the first player evolves
when they choose s1 = 0 and the second player chooses
s2 ≥ 0. Strategies dominated by s1 = 0 can be compu-
tationally expensive to calculate for many values s1 > 0.
However, we can provide an upper bound uV S

1 (s1, s2; s1)
of function u1(s1, s2; s1) by using the method introduced in
Section IV. The solution of (VS) provides an upper bound
to the utility of the first player at the SPE. We compute it
for different values of s1 ≥ 0. Figure 3b) shows the graphs
of uV S

1 (s1, s2; s1) for s1 = {0.1, 0.2, 0.3, 0.4, 0.5}. We find
that the upper bound of the utility of the first player given
s1 ≥ 0.3 is always lower than the utility given by s1 = 0, i.e.
uV S
1 (s1, s2; s1 ≥ 0.3) < u1(s1, s2; s1 = 0) for all s2 ∈ S2.

Since uV S
1 (s1, s2; s1 ≥ 0.3) ≥ u1(s1, s2; s1 ≥ 0.3), we

conclude that any strategy s1 ≥ 0.3 does not provide a better
utility to the first player than s1 = 0.0, no matter what the
second player chooses. We thus exclude any value of s1 ≥ 0.3
for the first player. By performing a similar analysis on the
second player we can thus limit the choice of the discrete sets
to S1 = {0, 0.1, 0.2} and S2 = {0, 0.1, 0.2, 0.3}.

The choice of the P&M budget changes the customers’
baseline preference for operators. Figure 4 shows how the
market shares are distributed over the classes of sites as a
function of the resulting customers’ preference. As we observe
there, in some cases the investment can become profitable
only if an operator obtains the monopoly over a class of
sites. We recall that the regulator’s constraint forces both
operators to install early on at least one class of sites. Where
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a) b)

Fig. 3. a) Evolution of M(s1, s2) with s1 = 0.0 and s2 ∈ [0.0, 0.3]. b) Utility of the first player M1(s1, s2) for s1 = 0.0 and s2 ∈ [0.0, 0.3], and its
upper bound uV S

1 (s1, s2) with s1 = {0.1, 0.2, 0.3, 0.4, 0.5} and s2 ≥ 0.0. The strategies s1 ∈ {0.3, 0.4, 0.5} are dominated by the strategy s1 = 0.0.

Fig. 4. Different share distribution for different values of p1 ∈
{0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5}. The three columns rep-
resent the three classes of sites {A,B,C}, respectively with hatch ’/’,’·’,’x’
for the first operator.

to invest early determines the possibility to create a monopoly
on a certain class of sites and/or prevent the opponent to get
one. For instance, if the incumbent has almost the monopoly,
i.e., p1 ≥ 0.9, they find it profitable to install early on
all the classes. If the incumbent is strongly dominant, i.e.
0.7 ≤ p1 < 0.9, they do not find it profitable to invest on class
C, which is left as a monopoly to Operator 2. If Operator 1 is
weakly dominant, i.e. 0.5 ≤ p1 < 0.7, they get the monopoly
on class B, but they are also forced to share the customer
base on class A and even leave the monopoly on class C to
Operator 2. The variability of the solutions on this case with
3 classes suggests that their classification is not trivial. The
analysis of such classification and how parameters influence
it is left to future works.

The solutions of the game are reported in Figure 5. More
precisely Figure 5a) reports on the solutions of the timing
game for each P&M budget pair, whereas Table 5b) reports
on the corresponding attained utility. From Figure 5a) we
observe how different P&M budgets – by influencing the
preferences of customers – lead to different investment plans.
Also, they induce different shares of the customer base over
different classes of sites as observed by comparing the possible
scenarios of Figure 4.

For instance, if both operators do not invest any P&M bud-
get for the launch of the new technology, namely (s1, s2) =
(no, no), they both deploy from the start (t = 1) in rural

areas (class C). Afterwards, the first operator (the incumbent)
installs in urban areas (B) and finally both operators install
in metropolitan areas (A). Operators roughly split evenly
customers in metropolitan areas (A) and in rural areas (C),
while the incumbent obtains the monopoly in urban areas (B),
i.e., where they install first.

We consider now the case when the incumbent increases the
P&M budget: (s1, s2) = (low, no). In this case the incumbent
installs immediately in metropolitan areas (A), i.e., at time
t = 1. They thus obtain a monopoly over this class of sites.
The entrant reacts by installing in rural areas (C) at time t = 2
and takes over those sites by getting a monopoly there. At time
t = 3 the incumbent operator installs in urban areas (B) and
gets all the market share for those sites. Finally, in such case
metropolitan (A) and urban areas (B) are almost completely
assigned to the first player, while rural areas (C) are monopoly
of the second player.

While the existence of a Nash equilibrium in mixed strate-
gies is guaranteed by theory [26], Figure 5b) indicates that
there is only one pure Nash equilibrium (low,mid). We notice
that strategy s2 = mid is the best response of the entrant
operator to any strategy of the incumbent. Since the incumbent
operator is a rational player, they know that the entrant
operator plays s2 = mid and thus chooses s1 = low because
they increase users’ preference to them which maximises
their utility. The equilibrium (low,mid) is not Pareto optimal:
indeed, both operators attain larger utility by playing (no, low).
However, outcome (no, low) is not an equilibrium: if the
incumbent does not invest any P&M budget, the entrant gets
larger utility by further increasing it. The incumbent thus
invests a small P&M budget to avoid the entrant to get an
excessive share of the market.

VI. CONCLUSION

Inspired by the ongoing roll-out of 5G mobile networks we
introduced the Service providers (SP) game, a timing-game
model to determine the optimal strategy for the installation
of new mobile technologies. We consider a scenario where
two operators have to perform investments over classes of
sites with different profitability profiles. The model permits
to analyse the dynamics of the roll-out strategies used by the
operators accounting for promotion and marketing investments
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no low mid high
no (9, 5, 1) 0.60 (10, 4, 11) 0.46 (12, 9, 4) 0.37 (12, 11, 3) 0.32

(8, 12, 1) 0.40 (10, 4, 9) 0.54 (2, 9, 12) 0.63 (2, 8, 12) 0.68
low (1, 3, 12) 0.69 (3, 2, 1) 0.56 (10, 4, 11) 0.47 (9, 12, 4) 0.41

(11, 12, 2) 0.31 (2, 11, 12) 0.44 (10, 4, 9) 0.53 (8, 3, 12) 0.59
mid (2, 4, 12) 0.75 (1, 3, 12) 0.63 (9, 3, 8) 0.55 (10, 4, 11) 0.48

(11, 12, 3) 0.25 (2, 12, 1) 0.37 (1, 12, 11) 0.45 (10, 4, 9) 0.52

no low mid high
no (0.30, 0.12) (0.26, 0.22) (0.15, 0.24) (0.11, 0.18)
low (0.36, 0.02) (0.16,−0.01) (0.16, 0.12) (0.11, 0.07)
mid (0.30, 0.03) (0.11,−0.07) (0.05, 0.08) (0.07, 0.02)

a) b)

Fig. 5. a) Optimal timing: displayed on two lines as (t1A, t1B , t1C) p1 and (t2A, t2B , t2C) p2. The baseline preferences (p1, p2) influence the strategy
for investment timings. For instance, if operators choose (s1, s2) = (no, no) the baseline preferences are (p1, p2) = (0.6, 0.4). As we can see from column
p1 = 0.6 of Figure 4, the operators split the market in classes A and C, while in class B operator 1 has the monopoly. b) Results of the simulation: utility,
displayed in the following order (u1, u2). Nash equilibrium is given by (low,mid).

and regulatory constraints. We have provided a solution con-
cept in the form of an equilibrium for the game and a method
to compute it. Numerical results show that different strategic
patterns depend on the balance between the baseline market
share of incumbent and entrant operator. P&M investments
may change the share presence of the operators, but higher
investments may even result in lesser profits for both.

Discussion and future works. Preliminary results show that
the timing of the investments may vary significantly depending
on the customers’ preferences. A P&M budget able to steer
the customers’ preferences represents thus a key component
of operators’ strategic behavior (cf. Figure 4). To this respect
the range of the P&M budget can be bounded by exclusion
of dominated strategies. This provides a computational advan-
tage, because comparing the utility appearing in the matrix
game M is expensive, since it requires to compute the SPE
of multiple timing games. We have showed that the technique
introduced in Section IV provide an effective bound to the
utility that a player attains at the SPE and by computing
the upper bound of multiple timing games we could exclude
several dominated strategies.

The same model proposed in this paper can be extended
to describe roll-out strategies for individual sites. Indeed, an
improved granularity of the model would allow a better under-
standing of the impact of logistic and regulatory constraints at
the local level. However, the complexity of the computation
of the equilibrium of the game grows exponentially with the
number of sites. In future works we intend to explore efficient
methods to both reduce the space search and to categorize the
optimal investment strategies.
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