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Abstract—Recently, there has been substantial progress in
the formal understanding of how caching resources should be
allocated when multiple caches each deploy the common LRU
policy. Nonetheless, the role played by caching policies beyond
LRU in a networked setting where content may be replicated
across multiple caches and where channels are unreliable is still
poorly understood. In this paper, we investigate this issue by
first analyzing the cache miss rate in a system with two caches
of unit size each, for the LRU, and the LFU caching policies,
and their combination. Our analytical results show that joint use
of the two policies outperforms LRU, while LFU outperforms
all these policies whenever resource pooling is not optimal. We
provide empirical results with larger caches to show that simple
alternative policies, such as LFU, provide superior performance
compared to LRU even if the space allocation is not fine tuned.
We envision that fine tuning the cache space used by such policies
may lead to promising additional gains.

Index Terms—caching, networking, wireless

I. INTRODUCTION

Caching is a fundamental technique for scaling the service
capacity of networked systems. By bringing content closer
to users, caches reduce service latency for end users and
decrease network congestion and load at content servers, also
known as content custodians. Users can access the caches
either through reliable wired channels or through unreliable
wireless channels, and a single user may be able to retrieve
content from one or several caches, depending on the system
topology and design choices.

Owing to to the importance of caching, a number of policies
have been proposed in the past, with its own advantages. For
example, the Least Recently Used (LRU) policy promotes file
recency and optimizes performance under adversarial finite
request sequences [1, Theorem 3.6]. Similarly, the Least Fre-
quently Used (LFU) policy maximizes the hit ratio under the
independent reference model (IRM) by promoting the contents
with the highest request frequency [1, Table 3.1], while Time-
To-Live (TTL) policies are policies that use timers to adjust
the hit probability of each content, as well as being able to
approximate other policies such as LRU and FIFO [2].

Each caching policy naturally allocates space to each of the
flows arriving to the cache. We refer to such an allocation as
intra-cache space partitioning, which may be dynamic, such as
in LRU, LFU and TTL, or static, such as in Segmented LRU
(SLRU) [3]. In a networking context, we refer to the space
allocated to each cache as the inter-cache space partition.
In wireless networks with unreliable channels, in particular,
partitioning space across multiple caches can build robustness

into the system, as the availability of each of the caches may
vary over time [4].

The performance of a caching system relies on a number
of factors, including (a) the policies used by the caches for
content insertion and eviction, (b) the division of cache space
among different contents or flows inside each cache and across
caches, as well as by (c) networking aspects, such as network
congestion and reliability. These factors have been individually
analyzed in previous work, but their interplay is non-trivial
and not yet well understood. In particular, the role of caching
policies and cache partitioning over unreliable channels has
not been previously investigated.

In this paper, we evaluate the role of caching policies
and cache partitioning over unreliable channels, and find
that caching policies and cache partitioning are intrinsically
related, and that their impacts on the performance of caching
systems over unreliable channels must be jointly taken into
account. The study of the LRU cache replacement policy,
which is often used in practice due to its low complexity and
robustness, over unreliable channels, is an important first step
towards understanding the interplay between networking and
caching [4]. Nonetheless, we show that if system designers
have the flexibility to choose the caching policy, other cache
replacement policies may be preferable.

The rest of the paper is organized as follows. Section II
outlines general rules for cache pooling vs. partitioning, dis-
cussing the relationship between partitioning and replacement
policies. Section III introduces assumptions and provides ana-
lytical results for cache partitioning over unreliable channels.
Numerical evaluation is reported in Section IV. Section V
provides a discussion of the design space and related work,
and Section VI concludes the paper.

II. TERMINOLOGY AND BACKGROUND

We consider a caching system which provides caching as a
service to its clients, such as Amazon ElastiCache [5]. Given a
caching budget, measured in bytes, the clients decide how this
budget will be partitioned across caches installed in physically
distinct servers, giving rise to the so called inter-cache space
partitioning. In particular, the caching budget can be pooled
together in a single server or partitioned across multiple
servers. In addition, the space in each physical cache is also
logically partitioned among multiple contending flows. The
intra-cache space is governed by local caching policies. As
for the physical allocation of resources, the logical allocation
must determine logical pooling or partitioning of space.
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TABLE I
INTRA-CACHE SPACE PARTITIONING STRATEGIES

Policy Criterion for segmentation Partitioning
ARC [7] probatory vs protected dynamic
SARC [8] sequential vs random dynamic
SLRU probatory vs protected static
LRU-K [1], [9] meta-data vs data static
memcached [10], [11] object sizes static
LFUDA [12], [13] object sizes dynamic

A. Why cache space partitioning?

We start with briefly outlining general rules of thumb for
deciding between pooling and partitioning of cache resources.
Those rules of thumb are mostly derived from [6], and com-
prise four known characteristics favoring resource partitioning.

Time varying rates of requests for contents: it is better
to partition cache resources if content requests are not time
varying. Otherwise, partitioning may lead to resource underuti-
lization when request flows pass through low demand periods
and are directed to caches exclusively designated for them.

Sizes of objects vary across flows: a miss for a large sized
object may lead to the eviction of many small sized objects.
For that reason, when object sizes are heterogeneous, it may
be beneficial to partition cache space for large size objects so
that they do not cause churn among small sized ones.

Small overlap of content requests across flows: if flows are
roughly independent, the benefits of resource pooling may be
smaller [2, Theorem 2].

Miss rate per flow is a concern: if some flows need to be
protected from others in terms of the experienced miss rate,
resource partitioning is beneficial.

B. Intra-cache vs inter-cache resource partitioning

A number of classic caching policies, such as ARC, SARC
and LFUDA, already partition cache space based on request
characteristics (see Table I). We refer to those policies as intra-
cache space partition policies. Inter-cache space partition, in
contrast, aims at partitioning space across physical distinct
caches [4]. Combining insights from these two areas may lead
to novel joint intra-cache and inter-cache space partitioning,
and could be an interesting subject for future work. In this
paper, we consider the evaluation of lightweight intra-cache
space partition policies together with static inter-cache space
partition policies.

C. Which features to use for partitioning cache space?

An essential aspect to determining how to partition space
across caches is to establish which features to use for the
partitioning. If request flows are already divided into clusters,
with little overlap, a natural choice is to allocate a separate
cache to each of the flows. Alternatively, flows may exhibit
different characteristics, e.g., some flows may correspond to
sequential accesses, and others to random accesses. If flows
are not tagged with information about their characteristics, a
challenge is to detect them in an online fashion. Sub-flows
inside a flow may additionally correspond to requests for

TABLE II
TABLE OF NOTATION

Variable Description
M Number of caches
N Number of contents in catalog
x Total cache space
bi Fraction of space allocated to cache i
p Channel success probability
q Popularity of most popular content (Section III)

objects with different properties, such as content sizes, further
motivating additional partitions.

D. When to adjust partitioning? Static vs dynamic allocation

Space allocation may be adjusted in a static fashion, e.g.,
through parameters that determine the amount of space used
by each cache segment [3]. Alternatively, dynamic space allo-
cation is typically implemented in a non-parametric fashion,
with space being adjusted according to the evolution of request
patterns, e.g., as implemented by SARC or LFUDA. In this
work we focus on static inter-cache space allocation, and leave
dynamic strategies as subject for future work.

III. ANALYTICAL MODEL

In this section, we develop an analytical model of the cache
miss probability for LRU and LFU caching, under three main
assumptions. (A1) Zero download delay (ZDD): the time taken
by users to download a content after a hit, as well as the the
time to retrieve the content from a custodian after a miss, are
both negligible; (A2) Broadcast channel: each request is sent
to all caches through an unreliable broadcast channel. The
probability that a request issued from a user reaches each of
the caches equals p; (A3) Independent reference model (IRM):
at each slot a single request is issued according to the IRM
model [14].

In what follows we consider a simple setting comprising
of two (M = 2) unit size caches, i.e., the total cache size
is B = 2 and a fraction bi = 0.5 of the cache space is
allocated to cache i, i ∈ {1, 2}. There are two (N = 2)
contents in the catalog, A and B. Requests are made for
contents A and B with probabilities q and 1− q, respectively.
Each unreliable link produces a successful transmission with
probability p, independent of the other. Although the setting is
admittedly simple, it allows us to appreciate some of the issues
involved in the choice between policies, and in the choice of
policy whether or ont cache storage resources are pooled or
partitioned (see Figure 1).

Let us first consider pooling, i.e., there is a single cache
storing both contents, and denote by PP

miss the cache miss
probability under cache pooling. Clearly,

PP
miss = 1− p, (1)

user

cache 1

cache 2

Fig. 1. System setup with M = 2 caches and b1 = b2 = 0.5.
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as a miss only occurs if the transmission is not succesful.
Otherwise, since the two contents are always stored in the
cache, the request produces a cache hit.

Next, we consider resource partitioning. Let PLFU,LFU
miss ,

PLRU,LRU
miss and PLRU,LFU

miss be the miss probabilities when the
caches adopt (LFU, LFU), (LRU, LRU) and (LRU, LFU),
respectively. Furthermore, we denote by PD

miss the miss prob-
ability when the two caches choose to maximize diversity, i.e.,
one cache stores content A and the other stores content B.

In addition, we approximate PLRU,LRU
miss by P̃LRU,LRU

miss ,
which is obtained under the assumption that the two caches
are independent. One of our goals with this approximation
is to determine when and if the dependence between caches
may improve system performance, i.e., whether PLRU,LRU

miss <
P̃LRU,LRU
miss could hold. Then, assuming q ≥ 0.5,

PLFU,LFU
miss = 1− q + q(1− p)2 = 1− 2pq + p2q (2)

P̃LRU,LRU
miss = (1− q)((1− p(1− q))2) + q(1− pq)2 (3)

PLRU,LFU
miss = (1− q)(1− p(1− q)) + q(1− pq)(1− p) (4)

The rationale behind the above equations is as follows. Con-
sider an LFU system (eq. (2)). Under LFU, we assume that at
steady state the most popular content will be statically stored
in both caches. In particular, under LFU we assume that a
request for less popular content not in the cache does not
result in an eviction. The relationship between LFU and static
policies is further discussed in [1, Theorem 3.8] and [15].
Then, in steady state a miss occurs if the user requests the
least popular content, which occurs with probability 1− q, or
if the user requests the most popular content but the request
fails to reach both caches. Consider now an LRU system
with two independent caches (eq. (3)). A miss occurs if (i)
a request is issued towards the least (resp., most) popular
content and (ii) it is not the case that the request reaches
a cache wherein the content is stored. Event (ii) occurs with
probability (1 − p(1 − q))2 (resp., (1 − pq)2). The rationale
behind (4) is similar.

For diversity maximizing caches we have

PD
miss = (1− q)(1− p) + q(1− p) = 1− p, (5)

as if each cache stores a different content, with probability
(1− p)2 we are unable to access any of the caches, and with
probabilities (1 − p)pq and (1 − p)p(1 − q) we are able to
access exactly one of the caches but produce a miss. Observe
that we thus obtain the same miss rate as under pooling,

PD
miss = PP

miss. (6)

Next, we account for dependencies between caches, which
is relevant under the (LRU,LRU) setup, as they do not play
a role in the other setups. To that aim, we model the caches
as a Markov chain (MC) with states (A,A), (A,B) and (B,B),
shown in Figure 2, with

p00(r) = r + (1− r)(1− p)2, (7)

p11(r) = (1− r)p2, (8)
p01(r) = (1− r)2p(1− p), (9)

A,A A,B B,B

p00(q)
p01(q)

p11(q) p11(1 � q)

p00(1 � q)
p01(1 � q)

1 � p

pq p(1 � q)

Fig. 2. Markov chain for the LRU/LRU system

obtaining the steady-state probabilities

πAA = (2− p)−1(p+ 2q − 2pq)q (10)

πAB = (2− p)−1(1 + pq − q − p)4q (11)

πBB = (2− p)−1(−p− 4q + 3pq − 2pq2 + 2q2 + 2). (12)

Thus, the cache miss probability in the (LRU,LRU) setup,
accounting for dependencies, is given by

PLRU,LRU
miss = πAA((1− q) + q(1− p)2)+

+ πAB(1− p) + πBB(q + (1− q)(1− p)2) = (13)

=
(4q2 − 4q + 1)p3

p− 2
+

+
(−10q2 + 10q − 4)p2 + (8q2 − 8q + 5)p− 2

p− 2
(14)

Let R denote the number of requests that reach a cache. Then,

P(R > 0) = 1− (1− p)2 (15)

and

PLRU,LRU
miss = 1− P(R > 0)

(
1− PLRU,LRU

miss|R>0

)
(16)

= 1− (1− (1− p)2)

(
1−

(
4p2 − 10p+ 8

)
q(1− q)

(2− p)2

)
(17)

where PLRU,LRU
miss|R>0 is the probability of a miss conditional on

that at least one request reaches a cache. While P(R > 0) is
a strictly increasing function of p, 1 − PLRU,LRU

miss|R>0 is concave
and decreasing with respect to p for p > 2/3, for any q < 1.
The latter occurs because for p > 2/3 a reduction in channel
reliability (p) favors more diversity between contents across
caches [16], hence larger conditional hit probabilities (1 −
PLRU,LRU
miss|R>0 ). Together, the joint effect of p on P(R > 0) and

PLRU,LRU
miss|R>0 may cause the miss probability to increase as p

grows (see Section IV).
The error due to assuming independence is given by

∆miss = PLRU,LRU
miss − P̃LRU,LRU

miss =
p3q(1− q)

2− p . (18)

Proposition 1 (Independence is beneficial). The miss prob-
ability of a system with two LRU caches is greater than the
miss probability of the corresponding system wherein caches
are assumed to be independent, i.e., ∆miss ≥ 0. In addition,
the error in the miss probability estimate due to assuming
independence of two LRU caches is bounded, ∆miss ≤ 0.25.

Proof. It follows from (18) that 0 ≤ ∆miss ≤ 0.25 for
0 ≤ p ≤ 1, and that ∆miss is a monotonically increasing

3



(a) q = 0.5 (b) q = 0.7 (c) q = 0.9

Fig. 3. Simple scenario with two caches of size 1 each. If q = 1 (not shown above), the miss probability equals (1− p)2 under cache partitioning.

Fig. 4. Threshold to switch from partitioning to pooling: if p < p? use
partitioning; otherwise, pooling.

convex function of p, concave decreasing in q, and it attains
its maximum for p = 1 and q = 0.5 (c.f., Figure 3(a)).

Thus, interestingly, the miss rate under the independence
assumption is never larger than when the two caches are
dependent. This surprising result can be explained by that the
probability that two independent LRU caches contain different
contents is 2q(1− q), which is larger than πAB for p > 0.

A. Independent LRU Caching by Design

Motivated by Proposition 1, in what follows we propose
a scheme similar to multi-LRU [17]–[19] to partition LRU
caches in which caches are independent by design. To achieve
independence of the caches, we ensure that at most one of the
caches is updated upon each request, chosen at random. In
the proposed design the sender sends a bit together with the
request, equal to 0 (resp., 1) if the first (resp., second) cache
is to be updated in response to the request. The state of the
cache for which the bit is 0 does not change in response to
the request. The bit is set to 0 or 1 with probability 1/2.

In order to analyze the cache miss rate for the proposed
randomized solution, observe that the state space and the state
transitions of the resulting Markov chain (MC) are as shown
in Figure 2, with transition probabilities

p̃00(r) = r + (1− r)((1− p)2 + p(1− p)), (19)
p̃11(r) = 0, (20)

p̃01(r) = (1− r)(p(1− p) + p2). (21)

This MC has stationary distribution

π̃AA = q2, π̃AB = 2q(1− q), π̃BB = (1− q)2. (22)

We denote by P̂LRU,LRU
miss the cache miss probability. Then,

P̂LRU,LRU
miss = π̃AA((1− q) + q(1− p)2)+

+ π̃BB(q + (1− q)(1− p)2) + π̃AB(1− p), (23)

which equals (3), P̂LRU,LRU
miss = P̃LRU,LRU

miss , in agreement with
the fact that the two LRU caches are independent.

B. When is Pooling Better?

In order to further delve into the benefit of resource pooling
vs. partitioning, we now analyze the optimality of pooling as
a function of channel reliability.

Proposition 2 (Thresholds). For each of the caching poli-
cies (LRU,LRU), (LRU,LFU), (LFU,LFU) and independent
(LRU,LRU) there is a unique threshold p? such that if p > p?

pooling outperforms partitioning. The thresholds for q > 0.5
are

p?LRU =
3− 10q(1− q)−

√
−28q4 + 56q3 − 32q2 + 4q + 1

2(2q − 1)2
,

(24)
p?LFU = p?LRU,LFU = (2q − 1)/q, (25)

p̃?LRU = (2q − 1)2/(3q2 − 3q + 1). (26)

Proof. We first prove the result for (LRU.LRU). The cache
miss rate PLRU,LRU

miss is a convex function of p. In addition,
PLRU,LRU
miss = 1 for p = 0, PLRU,LRU

miss ≥ 0 for p = 1 and for
q > 0.5, we have ∂PLRU,LRU

miss

∂p

∣∣
p=0

= −4q2 + 4q − 2 < −1.
Thus, for q > 0.5 there exists a unique threshold p?LRU > 0
below which partitioning is optimal for LRU, and above which
pooling is optimal. The unique threshold p?LRU is the solution
to PLRU,LRU

miss = 1− p, which is given by (24).
The expressions for the cache miss rates PLFU,LFU

miss ,
PLRU,LFU
miss and P̃LRU,LRU behave similarily, and the thresh-

olds p?LFU , p?LRU,LFU and p̃?LRU are obtained solving the
corresponding equations, which yield (25) and (26). This
concludes the proof.
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Figure 4 shows the pooling thresholds based on the above
equations and shows two interesting properties. First, the
pooling threshold is highest for LFU. Second, the pooling
threshold of the independent (LRU,LRU) is close to that of
(LRU,LRU) when contents are nearly equally popular, but it
approaches that of (LFU,LFU) when content popularity is very
skewed.

C. Comparison of Caching Policies

As shown in Figure 3(a), LFU may be the worst policy over
unreliable channels in the case of resource partitioning. This
is in contrast to classical results for single caches over reliable
channels, for which it is well known that LFU is the stationary
optimal policy [1, Theorem 3.8].

Proposition 3 (LFU may be suboptimal). Under resource
partitioning, two LFU caches can be worse than two LRU
caches.

Proof. See Figure 3(a). We observed that LFU remains the
worst policy given partitioned caches under a number of other
scenarios, e.g., when (p, q) ∈ [0.5, 0.55]× [0.5, 0.55].

Although in the case of resource partitioning LFU may be
the worst option under certain conditions, as we show next,
choosing the better between LFU with pooling and LFU with
resource partitioning minimizes the cache miss probability.

Proposition 4 (LFU and optimal partitioning suffices). The
cache miss probabilities satisfy

min
(
PP
miss,P

LFU/LFU
miss

)
≤

≤ PLRU,LFU
miss ≤ P̃LRU,LRU

miss ≤ PLRU,LRU
miss . (27)

Proof. To show (27), note that for q ≥ 0.5

P̃LRU,LRU
miss −PLRU,LFU

miss = p(p−1)(q−1)(2q−1) ≥ 0. (28)

Combining the above result with (18), it remains to show that

min
(
PP
miss,P

LFU,LFU
miss

)
≤ PLRU,LFU

miss . (29)

The inequality above follows from PLRU,LFU
miss −PLFU,LFU

miss =
p(pq− 2q+ 1)(q− 1), which is strictly positive if and only if
0 < p < p?LFU = p?LRU,LFU .

IV. NUMERICAL RESULTS

In what follows we provide numerical results obtained
through simulation, so as to validate the analytical results
for two caches (Section III), and to investigate whether they
extend to more cache space, more contents, and many caches.
We also aim at providing insight into the sensitivity of LFU
to cache partitioning.1

1Source code available at https://tinyurl.com/unrcache
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Fig. 5. Miss ratio vs. channel reliability p for LFU and LRU caching policies,
with pooling (0,1) and with partitioning (0.5,0.5), x = 50.
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Fig. 6. Miss ratio vs. channel reliability p for LFU, LRU and FIFO and
Random, M = 2, x = 50.

A. Simulation Methodology

Our evaluation considers that there are M caches in the
system, the total cache size x varies from 10 to 8500, and
a fraction bi of the total cache size is allocated to cache
1 ≤ i ≤ M . The content catalog includes 10 million data
items, and the content popularity distribution follows Zipf’s
law with exponent α = 1.8. Each content has unit size.
The request stream is sent to the caches using a broadcast
channel, i.e., each request is sent to all caches. We considered
channel reliability values p ∈ {0.2, 0.4, 0.6, 0.8, 1}, where p
= 1 corresponds to a reliable channel. Initially all caches are
assumed to be empty, noting that such initial condition may
impact system performance [14], [20].

B. The Case of Two Caches

We start with validating the observations made based on the
analytical model for a system with M = 2 caches and equal
partitions bi = 0.5, compared with pooling. Figure 5 shows
the cache miss ratio as a function of the channel reliability
for the LFU and the LRU caching policies, with and without
pooling. The figure confirms all the observations made based
on the analytical model, i.e., there is a threshold p∗ for LRU
and for LFU above which pooling is optimal (Proposition 2),
and LFU or pooling achieve a lower miss ratio than LRU
(Proposition 4).
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Fig. 7. Miss ratio for various cache partitioning schemes for LFU,
LRU, and FIFO and Random caching. M = 1 and M = 2 caches,
channel reliability p = 0.6, various cache sizes.
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Fig. 8. Miss ratio for various cache partitioning schemes for LFU,
LRU, FIFO and Random caching. M = 1 and M = 2 caches, channel
reliability p = 0.97, various cache sizes.

In order to evaluate the potential impact of the cache
partitioning on the results, Figure 6 shows the cache miss
ratio as a function of the channel reliability for various
unequal partitions of the cache space. The figure shows that
LFU outperforms LRU for all considered cache partitioning
schemes. The figure also shows that all four caching policies,
including FIFO and Random, not considered in the analytical
model, consistently perform close to each other. Furthermore,
comparing with the results for pooling shown in Figure 5, we
can conclude that the channel reliability threshold above which
pooling is optimal exists in the case of unequal partitioning as
well.

C. Small Sensitivity of LFU to Cache Partitioning

Before turning to more than M = 2 caches, we further
investigate what happens in the case of unequal cache space
allocation. For this we consider M = 2 caches and investigate
how the optimal way of partitioning the cache space depends
on the algorithm used (LFU, LRU, FIFO, Random). Recall
that, for LRU, partitioning the cache has an impact on the miss
ratio, and there is an optimal partitioning that depends on the
content popularity distribution and the channel reliability [4].
Figure 7 shows the cache miss ratio for various cache partition-
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Fig. 9. Miss ratio vs. channel reliability p for LFU, LRU, TTL, FIFO and
RANDOM caching policies, M = 5, x = 50.
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Fig. 10. Miss ratio vs. cache size x for LFU, LRU, TTL and Random caching,
M = 5, channel reliability p = 0.6.

ing schemes, from (0, 1) (i.e., pooling), to (0.5, 0.5) (i.e., equal
partitions) for a channel reliability of p = 0.6. The subfigures
show results for caches size x ∈ {50, 100, 300, 500}. The
figure allows us to make two important observations. First,
it confirms that LFU always outperforms LRU, independent
of the cache partitioning scheme. Second, it shows that for
the LFU caching policy the cache partitioning has rather little
effect on the cache miss ratio.

Figure 8 shows corresponding results for a channel re-
liability of p = 0.97 for the same cache sizes for cache
partitioning scheme (b1, b2). The figure confirms that both
observations hold in the case of a highly reliable channel, i.e.,
LFU outperforms LRU irrespective of the cache partitioning
scheme, and it is less sensitive to the cache partitioning.

D. Multiple Caches

Figure 9 shows the cache miss ratio as a function of the
channel reliability p for the caching policies LRU, LFU, FIFO
and Random for a cache size of x = 50 and M = 5 caches.
The figure shows that LFU outperforms all other policies
in terms of miss ratio for all channel reliability values. In
addition, it shows that increasing the channel reliability can
increase the miss rate for LRU. Figure 10 shows the cache miss
ratio for various caches sizes, for p = 0.6 for the same caching
policies. The results are consistent, and show no impact of the
cache size on the relative miss rates of the policies.

To further investigate the impact of cache partitioning,
Figure 11(a) shows the cache miss ratio as a function of the
channel reliability p for the LRU, LFU, FIFO and Random
policies, for M ∈ {1, 2, 3, 4} caches with a total size of
x = 12. The figure shows that LFU outperforms the other
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Fig. 11. Miss ratio vs. channel reliability p for a cache size of (a) 12 and (b) 120, for LFU, LRU, and TTL, 1 to 4 caches.

policies irrespective of the number of caches and the channel
reliability, with a significant gain. It is also noteworthy to
observe that the cache miss ratio is a convex function for
all scenarios, similar to the analytical results, and is not
monotonically decreasing in p for M = 3 and M = 4 caches.

Figure 11(b) show corresponding results for a total cache
size of x = 120. The figure allows us to draw similar
conclusions, even though the difference in terms of miss rates
is almost negligible, due to the low aggregate popularity of the
tail of the content popularity distribution. We can conclude that
LFU works significantly better than LRU, FIFO and Random
when cache storage is scarce, regardless of the number of
partitions. In addition, LFU seems to be less sensitive to the
cache partitioning than LRU. We believe that these results
reinforce the adoption of LFU for unreliable channels and
stationary workloads more than LRU, FIFO or Random.

V. RELATED WORK AND DISCUSSION

There is a vast literature on caching systems [1], [21], [22],
accounting for utility maximization [2], caching networks [23],
[24] and cache replication over unreliable channels [4].

The literature on cache partitioning is mostly comprised of
works focusing on its practical aspects [10] and on partitioning
among multiple flows [2], [25]. Recently, there has been sig-
nificant progress on the formal analysis of strategies for cache
partitioning [4], [6], [26]. While the former works indicated
clear advantages of cache partitioning explored by policies
such as TTL, ARC, SLRU and SARC, the latter is focused on
LRU systems. The purpose of this work is to bridge that gap,
showing preliminary empirical results about how inter-cache
partitioning impact performance under policies beyond LRU.

Caching over wireless networks has been considered under
the framework of femtocaching [27], wherein base stations

are equipped with caching capabilities. Alternatively, set-
top boxes equipped with caches close to users can be ac-
cessed through wifi, being managed partially by the network
providers [28]. In both cases, the allocation and partitioning of
cache space among caches strategically placed close to users,
as considered in this paper, are key elements.

A. Cache partitioning

There has been significant effort to formally derive optimal-
ity conditions for pooling and partitioning of cache resources,
under the assumption of LRU caches. Much less work has
been conducted on alternative policies, such as ARC, SLRU
and LRU-K. Nonetheless, all those policies intrinsically ac-
count for caching resource partitioning inside each cache. For
practical purposes, we envision that a better understanding of
the role of pooling and partitioning, as well as of unreliable
channels, accounting for those alternative policies, is key for
effective deployment of caching systems.

Among the open questions related to this rich problem
space, we point out the following: (i) assuming a system
with legacy caches, some of which implementing LRU, to
what extent resource partitioning can compensate for the sub-
optimality of the cache policies? (ii) assuming a fully tunable
system, wherein both caching policies and caching resource
partitioning can be configured, how to configure caching
policies and resource partitioning strategies? (iii) accounting
for the fact that certain policies, such as ARC and SLRU,
intrinsically account for resource partitioning at the intra-cache
level, how to optimally tune the intra-cache space and the inter-
cache space in a joint fashion so as to minimize the overall
system wide cache miss? (iv) how to account for distinct costs
of cache misses for different contents?
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B. Cache networks and redundant caches

Modern cache systems are essentially interconnected cache
networks. Therefore, the problem of caching in its entirety in-
cludes decisions about cache dimensioning, content placement,
content routing, server placement, dimensioning the links and
the ability to serve the cache. Following [4], in this paper
we considered a single user submitting requests to a set of
redundant caches through an unreliable network. We envision
a number of possible extensions, including (i) user interaction:
interaction between users can be considered in a setup wherein
multiple users share a given network to access a set of caches;
(ii) broadcast channel: we consider requests broadcasted
through wireless channels. In practice, channel capacity also
plays a role, requiring adjustments to the network model.

In this work we neglected the service capacity of caches and
channel delays. Nonetheless, issuing multiple parallel requests
to multiple caches is a natural strategy to deal with variable
delays. Optimally determining load balancing strategies is
out of the scope of this paper, but has been thoroughly
investigated in the context of redundant queueing systems [29].
In particular, one of the key challenges involved in the analysis
of such redundant systems involves accounting for the depen-
dencies that naturally exist across multiple servers. Therefore,
the design of redundant caching systems whose caches are
independent by design may be beneficial for the system, as
indicated in Section III-A, and to simplify its analysis.

VI. CONCLUSION

Caching is a simple strategy to significantly improve the
performance of networked systems. At virtually zero cost,
caching solutions can be tuned to reduce delays and the load at
custodians. For those reasons, it is no surprise that a significant
effort has been devoted to better understand how caching
policies and cache allocation impact miss ratios, both under
reliable and unreliable network settings.

In this paper we argued that although there has been
substantial progress in the understanding of how caching
resources should be allocated, there is still a vast space to
explore and room for improvement. In particular, although
most of the previous analytical work on cache allocation has
focused on LRU, alternative policies may outperform LRU
even if the space allocation is not fine tuned. We envision that
fine tuning the cache space used by such policies may lead to
additional gains, but leave the topic as subject for future work.
In addition, we also envision the joint intra and inter-cache
space segmentation as a fruitful direction for future research.
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