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Abstract—As network architecture becomes complex and the
user requirement gets diverse, the role of efficient network re-
source management becomes more important. However, existing
network scheduling algorithms such as the max-weight algorithm
suffer from poor delay performance. In this paper, we present
a reinforcement learning-based network scheduling algorithm
that achieves both optimal throughput and low delay. To this
end, we first formulate the network optimization problem as
an MDP problem. Then we introduce a new state-action value
function called W-function and develop a reinforcement learning
algorithm called W-learning that guarantees little performance
loss during a learning process. Finally, via simulation, we verify
that our algorithm shows delay reduction of up to 40.8%
compared to the max-weight algorithm over various scenarios.

I. INTRODUCTION

Recently, wireless network has been supporting unprece-
dented wireless traffic due to the dramatic growth of mobile
devices such as smartphones, the development of various
applications and implementation of internet or things. Thus,
wireless network architecture comes to be more intricate and
user’s requirement becomes various and complex. Hence, the
role of network resource management has come to be crucial.

The resource scheduling problem of communication net-
works has been extensively studied in various contexts and
formulations, where most of them consider throughput and de-
lay as main objectives. The max-weight algorithm is one of the
most widely used scheduling algorithms achieving throughput
optimality by stabilizing the network when the arrival rate
is inside the network capacity region [1], [2]. These studies
employed the Lyapunov technique that greedily minimizes the
Lyapunov drift at every time, given the instantaneous network
state without any prior knowledge on its distribution1. For a
more general case, where the arrival rate may be either inside
or outside of the capacity region, the Lyapunov optimization
technique for optimizing functions of time average called
min-drift-plus-penalty [3] can be used to solve the network
utility maximization problem. It aims to allocate the restricted
resources to users fairly by maximizing the sum of network
utilities under a network stability constraint2.

1Lyapunov drift is defined as the difference in the Lyapunov function, which
represents a network congestion level, from one time slot to the next.

2The utility of a user is typically defined as an increasing function of the
user’s throughput.

Recently, learning algorithms have been actively applied to
the resource management problem of wireless networks [4].
Chen et al. [5] addressed the resource allocation problem in
virtual reality wireless networks by formulating the problem
as a noncooperative game and solving it through a learning al-
gorithm based on the framework of echo state networks(ESN).
Challita et al. [6] proposed an interference-aware path planning
scheme for a network of cellular-connected unmanned aerial
vehicles(UAVs) leveraging deep reinforcement learning based
on ESN. Xu et al. [7] proposed a deep reinforcement learning
based framework for power-efficient resource allocation in
cloud RANs, and [8] suggested an experience-driven approach
using deep reinforcement learning for enabling model-free
control framework for traffic engineering(TE). He et al. [9]
addressed the problem of finding an optimal user selection pol-
icy in cache-enabled opportunistic interference alignment(IA)
wireless networks with the time-varying channel.

However, a wide range of user QoS requirements such as
high throughput, low latency, and low energy consumption
makes the existing resource management algorithm based
on constrained optimization framework unavailing. Indeed,
although the max-weight algorithm achieves the throughput
optimality, it is known to suffer from high network delay
because of the long queue length. Although a learning-based
approach has been actively applied recently to tackle the
issue, general learning-based algorithms suffer from poor
performance during the learning process, since the parameters
to be learned are usually initialized with random values before
learning starts. Therefore, it is still not viable to apply learning-
based algorithms in practice, whose performance is poor
during the learning period.

In this paper, we propose a novel learning-based resource
management algorithm for the downlink scheduling scenario
which achieves optimal throughput while addressing the large
queue backlog problem of the existing algorithms by using
statistics of environments. We first transform the network
optimization problem into a Markov Decision Process (MDP)
problem so that dynamic programming can be applied to. With
the transformed MDP problem, however, it is impossible to
solve it directly through dynamic programming in the real
world, due to the curse of dimensionality and uncertainty
(i.e., a large action-state space and unknown model of the
environment). Hence, reinforcement learning is applied to



learn the model by interacting with the environment without
any prior knowledge.

To address the problem of poor performance during the
learning period, we design a learning algorithm that adopts
existing resource management algorithms such as max-weight
algorithm as a baseline policy during the learning period
and then gradually converges to an optimal policy. For this
purpose, we introduce a new action-value function called W-
function, which is a variant of Q-function (i.e., action-value
function) and enables us to initialize the policy to a baseline
policy. Then, we propose W-learning, which is similar to
Q-learning, but uses W-function instead of Q-function. The
contribution of this paper is summarized as follows.
• We transform the network optimization problem into an

MDP problem so that dynamic programming can be
applied to. We show that the designed MDP problem
achieves throughput optimality while minimizing the av-
erage delay.

• We design a novel reinforcement algorithm called W-
learning to solve the transformed MDP problem, which
guarantees the minimal performance loss during the
learning period by introducing a new action-value func-
tion, called W-function. We show that the W-learning
algorithm converges to an optimal policy of the MDP
problem.

• Via simulation, we show that W-learning can reduce
delay up to 40% compared to the max-weight schedul-
ing algorithm while achieving the throughput optimality.
Furthermore, we show that W-learning can guarantee
the performance as good as the max-weight scheduling
algorithm during the learning period.

The rest of the paper is organized as follows. In Section II,
we present our system model and notations. In Section III,
we formulate the network optimization problem into an MDP
problem. In Section IV, we introduce our learning algorithm to
solve the problem formulated in Section III. In Section V, we
give a theoretical analysis of our algorithm and in Section VI,
we show the performance evaluation of our algorithm with
simulations. Finally, in Section VII, we conclude our work.

II. SYSTEM MODEL

We consider a general downlink scheduling scenario with
a single base station and multiple users as depicted in Fig-
ure 1. We assume that the system operates in discrete time
t ∈ {0, 1, · · ·}. Let N = {0, 1, · · · , N} denote the set of
N users that are associated to the base station. We denote
c(t) = {c1(t), · · · , cN (t)} as the channel states, where cn(t)
represents the amount of data (bits) that can be transmitted
over channel n at time slot t when user n is scheduled,
and θ(t) = {θ1(t), · · · , θN (t)} as the control variables for
user scheduling at time slot t. We assume that the channel
state of each user is independent and identically distributed
(i.i.d.) over time and takes one of C = {C1, · · · , Cm} at
every t ∈ {0, 1, · · ·} and that the base station can serve one
user at every t ∈ {0, 1, · · ·}, i.e., θn(t) ∈ {0, 1},∀n ∈ N
and

∑
n∈N θn(t) = 1. Let i(t) = {i1(t), · · · , iN (t)} be
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Figure 1: System model

the amount of data (bits) arriving to each user at the end
of each time slot t. We assume that the arrival process is
also i.i.d. over time with the average value λn = E[in(t)]
and the maximum value of the arrival processes at each t is
Imax i.e., in(t) ≤ Imax,∀n ∈ N . We denote the admitted
data that is injected to the queue for each user n at t as
xn(t) ∈ [0, in(t)] and long-term time average of xn(t) as
xn = limt→∞

1
T

∑T−1
τ=0 E[xn(τ)],∀n ∈ N . At each time slot

t, the base station selects a user to be served with control
variable θn(t),∀n ∈ N . Let q(t) = {q1(t), · · · , qN (t)} be
the backlog of network queue for each user. The queueing
dynamics of q(t) can be written as below.

qn(t+ 1) = max (qn(t)− cn(t)θn(t), 0) + xn(t),∀n ∈ N .
(1)

In Section III, we will introduce the virtual queue,
z(t) = {z1(t), · · · , zN (t)} with admitted data y(t) =
{y1(t), · · · , yN (t)}, where zn(t) and yn(t) is defined as the
backlog of the virtual queue for user n and admitted data
arriving to the queue at time slot t. We also denote the utility
function of user n, which is non-decreasing and concave, as
Un(xn).

Under the aforementioned assumptions, we can model our
system as an MDP problem with the finite set of states, S and
the finite set of possible actions, A. We represent the state
of the system at time t as st = (q(t), z(t), c(t), i(t)), st ∈ S
and the action as at = (θ(t), x(t), y(t)), at ∈ A. At each
time step t, the agent observes the current state st from the
environment, decides an action at based on a deterministic
policy π : S → A, and receives reward rt = r(st, at) where
r : (S,A)→ R. In the rest of this paper, we sometimes omit
the time index t and use s = st and a = at when we consider
an arbitrary time slot, for brevity. Given a policy π, we also
define the expected sum of discounted rewards of taking action
a at state s and following π in next states as

Qπ(s, a) = r(s, a) + α
∑
s′

P ass′Qπ(s′, π(s′)) (2)

where P ass′ denotes the transition probability from state s to
the successive state s′ when action a is taken, and α ∈ [0, 1)
denotes the discount factor. The Bellman equation of the Q-
function of the optimal policy π∗, Q∗(s, a) would be written



as

Q∗(s, a) = r(s, a) + α
∑
s′

P ass′ max
a′

Q∗(s′, a′). (3)

III. PROBLEM FORMULATION

In this section, we define an optimization problem for
stabilizing a network, which is equivalent to stabilizing all
queues in the network, while jointly optimizing throughput
and average delay. Then we transform it into an MDP prob-
lem to apply dynamic programming. For a general scenario,
where the arrival rate may be either inside or outside of the
capacity region, the goal of maximizing throughput becomes
achieving optimal fairness among users measured by a utility
function of throughput, Un(xn), which is non-decreasing
and concave [10]. Here, the average delay is proportional
to the average queue length [11]. Hence, we formulate an
optimization problem with the objective of minimizing average
queue length with constraints of achieving optimal utility and
mean rate stability [3], as below:

P0: max
π

lim
T→∞

1

T

T−1∑
t=0

∑
n∈N
−Eπ [qn(t+ 1)] (4)

s.t.
∑
n∈N

Un(xn) = Uopt (5)

xn ≤ lim
T→∞

1

T

T−1∑
t=0

E[cn(t)θn(t)],∀n ∈ N (6)

θn(t) ∈ {0, 1},
∑
n∈N

θn(t) = 1,∀n ∈ N , (7)

where Uopt denotes an optimal utility, an optimal solution of
the utility maximization problem [12]. Constraint (6) repre-
sents the mean rate stability constraint, which is equivalent
to

lim
t→∞

E[qn(t)]

t
= 0,

from [3]. We first consider a case where the arrival rate is
within the capacity region. We will consider a more general
case that the traffic arrival rate may be outside the capacity
region later in this section. Since the arrival rate is within the
capacity region, we do not need to consider a flow control
and the only thing that has to be decided at every time
step is at = θ(t)3. For this inner capacity region scenario,
the throughput is simply equal to the arrival rate for work-
conserving policies that transmit as much data as possible un-
der network stability condition and the throughput maximiza-
tion problem simply reduces to the network stability problem
[12]. However, by minimizing average queue length, we can
simultaneously stabilize all queues in the network, which is
shown in Proposition III.1. Therefore, the constraints (5) and
(6) are satisfied simultaneously if (4) is achieved. Therefore,
we define an MDP problem P1 for the inner capacity region
of which an optimal solution is also an optimal solution of
P0. In addition to the average queue length term, we added

3We abuse this definition for simplicity.

the negative Lyapunov drift term −ν1(qn(t + 1)2 − qn(t)2))
to the objective for a technical reason which will be described
in Section IV in detail. Although the objective is transformed,
we can still get an optimal solution which stabilizes all queues
in network while minimizing the average queue length. We
will show this in the following proposition. Intuitively, since
the Lyapunov drift term represents the increment of queue
backlog from one slot t to the next slot t + 1, minimizing it
pushes queues toward a low congestion state, which maintains
network stability [3]. Furthermore, if all queues are stable, they
do not diverge, which means that the drift term converges to
0 as t goes to infinity, leaving the average queue length term
only.

P1: max
π

lim
T→∞

1

T

T−1∑
t=0

∑
n∈N

Eπ[− qn(t+ 1)

−ν1(qn(t+ 1)2−qn(t)2)] (8)
s.t. ν1 > 0 (9)

(7).

Proposition III.1. An optimal policy of P1
1) makes all queues in the network mean rate stable for

the inner capacity region.
2) minimizes the average queue length.

Proof. Please refer to the technical report [13].

By Proposition III.1, we show that by solving P1, we can
achieve throughput optimality as well as minimal average
queue length. Therefore, an optimal solution of P1 is also
an optimal solution of P0.

The MDP problem of which the objective is defined by
an expected average reward can be solved using average
reinforcement learning such as R-learning [14]. However, its
performance is often sensitive to the initial parameter and it
may not converge to an optimal policy [15]. Therefore, we
transform P1 to a discounted dynamic programming problem
with discount factor α. It is shown that by taking α close to 1,
an optimal policy of discounted problem can be approximated
to an optimal policy of average problem [16]–[20]. The
transformed discounted dynamic programming problem can
be written as below.

P1′: max
π

lim
T→∞

T−1∑
t=0

αtEπ[− qn(t+ 1)

−ν1(qn(t+ 1)2−qn(t)2)]

s.t. (7), (9).

We now consider the more general case when traffic may
lie in both inside and outside of the capacity region. Since
multiple users share limited resources, we have to solve
the network utility maximization problem to fairly allocate
network resources while stabilizing the network. For outer
capacity region, throughput is no longer equal to the arrival
traffic. Instead, we denote the throughput of user n as xn(t)



and let xn(t) ∈ [0, in(t)]. We first transform P0 into the
following form using the Lagrangian approach [21].

P0′: max
π

lim
T→∞

1

T

T−1∑
t=0

∑
n∈N
−Eπ [qn(t+ 1)] + ν

∑
n∈N

Un(xn)

(10)
s.t. ν > 0 (11)

(6), (7).

However, the above P0′ does not comply with the structure of
dynamic programming, since the objective includes nonlinear
function of average of variable xn(t) for infinite time. There-
fore, the P0′ is transformed into P2 with an auxiliary variable
as below [12]. We can show that an optimal solution of P2 is
also an optimal solution of P0′, which is similar to the proof
shown in [10].

P2:max
a(t)

lim
T→∞

1

T

T−1∑
t=0

∑
n∈N

(−Eπ [qn(t+ 1)]+νEπ [Un(yn(t))])

(12)

s.t. lim
T→∞

1

T

T−1∑
t=0

Eπ [yn(t)] ≤ xn (13)

(6), (7), (11).

Proposition III.2. An optimal solution of P2 is an optimal
solution of P0′.

Proof. Please refer to the technical report [13].
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Figure 2: auxiliary variable and virtual queue

To solve P2, we introduce virtual queues z(t) = (zn(t))n∈N
as [3] for auxiliary variable yn(t) as Figure 2 to ensure that
(13) is satisfied [3]. We assume that zn(0) = 0,∀n ∈ N and
y(t) is finite for all t. Then the queuing dynamics of zn(t) is
written as below.

zn(t+ 1) = max[zn(t)− xn(t), 0] + yn(t),∀n ∈ N . (14)

The virtual queue zn(t) can be viewed as a queue with data
admitted yn(t) and served xn(t) and by making z(t) mean rate
stable, (13) is satisfied [3]. With P2, we formulate the original
problem P0′ as below. Again, the mean rate stability of q(t)
and z(t) can be achieved by counting negative Lyapunov drift
term to the objective. This is shown in Proposition III.3. Note
that the mean rate stability of q(t) still holds without the drift
term, which is added for the similar reason as P1, since the

average length of q(t) is included in the objective.

P3: max
π

lim
T→∞

1

T

T−1∑
t=0

Eπ[
∑
n∈N
−qn(t+ 1) + ν2Un(yn(t))

−ν3(qn(t+ 1)2−qn(t)2)−ν4(zn(t+ 1)2−zn(t)2)]
(15)

s.t. ν2, ν3, ν4 > 0 (16)
(7).

Proposition III.3. An optimal policy of P3
1) makes all queues in network mean rate stable.
2) is Pareto-optimal with respect to the average queue

length and utility.

Proof. Please refer to the technical report [13].

By Proposition III.3, we can show that an optimal solution of
P3 is also an optimal solution of P0′. Note that by increasing
weight ν, we can find a policy with the minimum delay among
policies with utility differs from the optimal utility by the same
amount of value as minimum drift-plus-penalty algorithm [3].
Similar to the inner capacity case, we can transform the P3
defined by average reward into dynamic programming problem
with discounted reward as below.

P3′: max
π

lim
T→∞

T−1∑
t=0

αt−1Eπ[
∑
n∈N
−qn(t+ 1) + ν2Un(yn(t))

−ν3(qn(t+ 1)2−qn(t)2)− ν4(zn(t+ 1)2−zn(t)2)]

s.t. (7), (16).

IV. ALGORITHM DESIGN

A. W-function

In this section, we introduce a novel reinforcement learning
algorithm to solve the MDP problem presented in Section III
based on a new action-value function called W-function.
Before that, we define the reward function r(st, at) as

r(st, at) =
∑
n∈N
−qn(t+ 1)−ν1(qn(t+ 1)2−qn(t)2) (17)

for P2 and

r(st, at) =
∑
n∈N
−qn(t+ 1) + ν2 log (yn(t))

−ν3(qn(t+ 1)2−qn(t)2)− ν4(zn(t+ 1)2−zn(t)2) (18)

for P3.
One of long-standing challenges of learning-based algo-

rithms is that they generally present poor performance during
learning period. This is because at the beginning of learning,
the action-value function is initialized with random values.
Hence, before observing the reward and following state by
taking a certain action at certain state, the action-value function
for that state and action remains at random values. Our goal
is to solve the problem of poor performance during learning



process by utilizing a baseline algorithm (e.g., max-weight
algorithm) as a base policy and changing to a learning-based
policy after a sufficient learning period. To this end, we
present a new action-value function that is a variant of Q-
function, which can be written in (2). Our motivation is that
the immediate reward from a given state and action is a value
that can be calculated immediately, which does not have to
be learned. Instead, we define a new action-value function
Wπ(s, a) which is an expected sum of discounted future
rewards except for an immediate reward following policy π
given that the current state is s and action a is taken.

Definition IV.1. Given a policy π, the W-function W : S ×
A 7→ R is defined as

Wπ(s, a) =
∑
s′

P ass′Qπ(s′, π(s′)) (19)

From the definition, we can derive the Bellman equation for
Wπ(s, a) as

Wπ(s, a) =
∑
s′

P ass′ [r(s
′, π(s′)) + αWπ(s′, π(s′))] (20)

Furthermore, we can represent the optimal W-function
W ∗(s, a) as

W ∗(s, a) =
∑
s′

P ass′ max
a′

Q∗(s′, a′)

=
∑
s′

P ass′ max
a′

[r(s′, a′) + αW ∗(s′, a′)].

Intuitively, although learning with the Q-function and W-
function may converge to the same point, we can expect that
during the learning process, learning with W-function surpass
the performance of the Q-function, since the W-function
excludes the immediate reward, minimizing the uncertainty
to be learned. In Section IV-B, we will introduce a learning
algorithm using the W-function called W-learning, which is a
variant of the Q-learning and in Section V we will show that
under the W-learning, we can use other baseline algorithms
as a base policy during the learning process. That is, for
the unvisited states, which have never been experienced, the
control action is determined based on the baseline algorithm.

B. W-learning

With the new action-value function defined in the previous
section, we now propose a learning algorithm called W-
learning to find the optimal W-function, which is similar to
the Q-learning algorithm. Then we propose a practical version
of W-learning called W-learning-approx where W-function is
approximated with parameter ω, i.e., W (s, a) ≈ W (s, a;ω).
Algorithm 1 elaborates on the W-learning algorithm. While
Q-learning initializes the Q-function with random value, W-
function is initialized with 0, to utilize a baseline algorithm
as an initial policy, which will be addressed in detail in
Section V. The rest of the algorithm is similar to the Q-
learning algorithm. Note that the W-function is updated using

Algorithm 1: W-learning

1 Initialize W (s, a) = 0,∀s ∈ S, a ∈ A.
2 Initialize s
3 while for each step of episode do
4 Given state s
5 With probability ε choose random action a
6 otherwise Select a = maxa[r(s, a) + αW (s, a)]
7 Execute action a and observe next state s′

8 W (s, a)←W (s, a)+β[ max
a′

[r(s′, a′)+αW (s, a′)]−W (s, a)]

9 s← s’
10 end

the temporal difference (TD) method.

W (s, a)←W (s, a)+β[ max
a′

[r(s′, a′)+αW (s, a′)]−W (s, a)]

(21)

However, since the state and action space in the real
world is huge, it is almost impossible to represent the actual
W (s, a) value with a tabular method. Therefore, the action-
value function is often estimated with a function approximator.
which may be either linear or nonlinear such as deep neural
network [22]. Therefore, we propose an approximated version
of W-learning similar to deep-Q-learning [22] to implement
it in practice. W-learning algorithm learns W-function instead
of Q-function. W-function is approximated with parameter ω.
The full algorithm is presented in Algorithm 2.

Algorithm 2: W-learning-approx

1 Initialize target network update period K
2 Initialize replay memory D to capacity |D|
3 Initialize W (s, a;φ) = 0,W (s, a;ω) = 0, ∀s ∈ S, a ∈ A
4 for episode i = 1, · · · , I do
5 Given state si
6 With probability ε choose random action ai
7 otherwise select ai = maxa[r(si, a) + αW (si, a;φ)]
8 Execute action ai and observe next state si+1

9 Store transition (si, ai, si+1) in D
10 if more than |M | samples are collected then
11 Sample random mini-batch M of transition

(s, a, s′) from D
12 Set for (s, a, s′) ∈M
13 calculate target value
14 y(s,a,s′) = maxa[r(s′, a) + αW (s′, a;φ)]
15 Perform gradient descent on∑

(s,a,s′,y)∈M (y −W (s, a;ω))2.
16 if mod (i,K) = 0 then
17 φ = ω.
18 end
19 end
20 end

Note that we assume a general function approximator
parametrized by ω which may be either linear or non-linear



function. For each time slot, a control action is taken according
to the Q-function (line 6). As [23], the technique called
experience replay is used to efficiently utilize the collected
samples and eliminate correlations between samples. After
taking an action, the agent observes the next state si+1 and
store samples (si, ai+1, si+1) to the replay buffer (line 8). Note
that unlike [23], W-learning does not have to store reward,
since the immediate reward can be calculated with a given
state. After more than |M | samples are collected, W-function is
updated in a way similar to Q-learning with a mini batch with
size |M | (lines 10-14). We also used the fixed target technique
as [22] that hold the target W-function parameterized with φ
and updates the target every K steps (lines 15-17).

V. THEORETICAL ANALYSIS

In this section, we first show that the W-learning algorithm
converges to an optimal solution of P1′ and P3′. After that,
we elaborate on the property of W-learning that guarantees the
performance as good as baseline algorithms (minimum-drift
algorithm for the inner capacity region and the minimum-drift-
plus-penalty algorithm for the outer capacity region) during the
learning period introduced in Section IV.

To show the convergence of W-learning, we follow the
steps of [24] showing the convergence property of Q-learning,
starting from defining an operator for value iteration as below:

Definition V.1. An operator Ψ:R|S×A| 7→ R|S×A| is defined
as

ΨW (s, a) =
∑
s′

P ass′ max
a′

[r(s′, a′) + αW (s′, a′)] (22)

With the new operator Ψ, the update rule (21) can be written
as

W (s, a)←W (s, a) + β[ΨW (s, a)−W (s, a)].

Similar to [25], the convergence property of W-learning can
be shown using the contraction mapping property of the value
iteration operator Ψ, which is given by Theorem V.2.

Theorem V.2. W-learning algorithm converges to an optimal
solution of P1′ and P3′.

Proof. Please refer to the technical report [13].

Now we consider the control policy of W-learning for the
unvisited states, which determines the performance during the
learning period.

Proposition V.3. Under W-learning, for the unvisited states
s ∈ S, we have

π(s) = max
a

r(s, a)

Proof. Please refer to the technical report [13].

User type 1 User type 2

Figure 3: Simulation setup : Cellular downlink scenario

Therefore, with reward (17) and (18), if we let ν1, ν2, ν3, ν4 �
1, we have

π(s) ≈ max
a

∑
n∈N
−ν1(qn(t+ 1)2 − qn(t)2),

which follows the minimum-drift algorithm(max-weight algo-
rithm) [3] and

π(s) ≈ max
a

∑
n∈N

[−ν2Un(yn(t)−ν3(qn(t+ 1)2−qn(t)2)

− ν4(zn(t+ 1)2 − zn(t)2)],

which follows the minimum-drift-plus-penalty [3] for the
unvisited states s ∈ S, respectively. Note that Q-learning
takes a random action for the unvisited states since Q(s, a) is
initialized with a random value. In order to utilize a baseline
policy as an initial policy, one requires the value of Q-function
for a policy (e.g., the max-weight algorithm), which is much
more complex and takes a much longer time than our W-
learning algorithm.

VI. SIMULATION

In this section, we present simulation results of our W-
learning algorithm. We first describe our simulation setting
and show the detailed performance of the simulation.

A. Simulation Setup
We consider a cellular downlink scenario as Figure 3 with

10 users n ∈ {1, 2, · · · , 10} associated to a single base station.
We assume that there are two types of users, each with five
users with homogeneous channel distribution and arrival rate.
For each type, the channel state is i.i.d. and follows the
following Bernoulli-type distributions, respectively:

c1(t) =

{
0, with probability 0.8

1, with probability 0.2
(23)

for user type 1, and

c2(t) =

{
1, with probability 0.4

2, with probability 0.6
(24)

for user type 2.
We assume that the size of arrival data follows Weibull

distribution since the data arrival occurs in batches in practice.
Figure 4 shows the data arrival of We used k = 0.4 as [26], and
adjusted λ according to the mean arrival rate of each user type.
At each time slot t, the base station observes current state and
chooses one user to serve. For W-learning-approx algorithm,
W-function is estimated with a linear function approximator,
which is linear combination of hand-crafted features.
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B. Performance Analysis
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Figure 5: Delay performance the inner capacity region
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Figure 6: Delay performance for general case

In this section, we present the simulation scenario then
analyze the detailed performance of the simulations. First, we
evaluate the delay performance of W-learning algorithm by
changing ρ, which represents a measure of distance between
the arrival rate and capacity region boundary [3]. Figure 5
compares the delay performance of the W-learning algo-
rithm(denoted as Reinforcement learning) with reward (17)
and max-weight algorithm for the inner capacity region. In
a similar way, Figure 6 compares the delay performance of
the W-learning algorithm(denoted as Reinforcement learning)
with reward (18) and min-drift-plus-penalty [3] algorithm for
both the inner and outer capacity region. We adjusted the value
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Figure 8: Delay performance of W-learning and Q-learning

of ν2 in (18) so that the sum of utility for both algorithms are
equivalent. As shown in Figure 5, the delay of both algorithms
do not diverge to infinity when ρ = 1, which means that both
achieve maximal throughput since they guarantee network
stability. However, the delay of max-weight algorithm starts
to increase abruptly as the arrival rate approaches capacity
region boundary, while our algorithm shows up to 40.8% delay
reduction compared to the max-weight algorithm. Figure 6 also
shows up to 37.9% delay reduction compared to the min-drift-
plus-penalty algorithm.

Figure 7 also shows the delay performance of max-weight
and W-learning algorithm measured with arrival rate at both
inner and outer capacity region. However, in this case, we
assume that we use the W-learning or max-weight algorithm
for scheduling and a existing flow controller such that limits
the arrival based on current queue length [27]. The flow
controller is adopted to handle arrival data outside of the
capacity region. However, since the actual capacity region
is unknown, the flow controller can only observe the current
queue backlog. As a result, it can be activated when the queue
backlog becomes large due to the burst arrival traffic. As it is
shown in Figure 7, the flow controller starts to operate for ρ
smaller than 1 for both max-weight and W-learning algorithm,



but much smaller ρ for the max-weight algorithm. In the long
term, both algorithms can serve all arrival traffic inside the
capacity region without the flow controller. Therefore, the
activation of the flow controller for ρ smaller than 1 results
in throughput loss, and the loss would be much larger for the
max-weight algorithm.

Finally, we compared the delay performance during the
learning period for Q-learning and W-learning. As Figure 8
shows, the delay performance of W-learning does not exceed
that of the max-weight algorithm. However, since Q-function
is initialized with a random parameter for Q-learning, the delay
performance during the learning period is even worse than the
max-weight algorithm.

VII. CONCLUSION

In this paper, we reformulated the network optimization
problem into an MDP problem to solve it through dynamic
programming. Thereby, the problem of high average delay
of the existing network resource management algorithms can
be addressed by exploiting the future information. To solve
the curse of dimensionality and uncertainty of dynamic pro-
gramming, we presented a new action-value function and a
reinforcement learning algorithm that ensures the minimal
performance loss during the learning process. Finally, via
simulation we showed that our algorithm showed delay reduc-
tion after learning compared to max-weight algorithm while
maintaining performance as good as max-weight algorithm
during the learning process.
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