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Abstract—Power control in wireless networks is a well-studied
problem. However, recently it has been demonstrated that sig-
nificant throughput gains can be achieved using data-driven
online learning algorithms, supported by a cloud computing
infrastructure. In this paper, we provide theoretical guarantees
for such algorithms. In particular, we consider two variants of the
problem: one which emphasizes long-term throughput and the
other which emphasizes robust short-term throughput. The first
problem reduces to solving a convex optimization problem with
noisy, stochastic measurements while the second one is an online
optimization problem where an adversary chooses the reward
functions. We provide stochastic and online gradient descent
methods customized for the power control problem and establish
their convergence analysis. We show that in both cases, the total
regret over a time horizon T grows sublinearly at rate O(

√
T )

for suitable choices of algorithms and algorithm parameters.
Index Terms—Stochastic Gradient Descent, Online Convex

Optimization, Resource Allocation, Power Control.

I. INTRODUCTION

Power control for utility maximization in wireless networks
and cellular communication systems has been intensively
studied. There is an extensive body of work on this topic,
from the early papers [1] and [2] which tackle the problem
in CDMA cellular networks, to the more recent work such as
[3], [4], [5] and [6] which optimize utility measures jointly
for both the transmission rate and power.

Our motivation comes from a recent paper [7], where the
authors tackle the uplink power control problem in a 5000-cell
LTE system in a live major service provider’s network, using a
learning-based algorithm. Somewhat surprisingly, the authors
show that such an approach yields throughput gains (such as
the doubling of throughput for 80% of the users) that typically
can only be obtained by adding additional antennas. Unlike
much of the prior work, [7] emphasizes the importance of data
in the form of channel state measurements and the fact that the
measurements are noisy samples of an underlying stochastic
process. The main challenge that makes the power control
problem in modern wireless networks such as the LTE systems
unique is that the primary source of interference in such
systems is inter-cell interference. Moreover, the interference
pattern keeps changing every time slot, thereby making it
important to use fast learning algorithms.

In this paper, we aim to solve the problem of maximizing the
cumulative utility of different users in such a wireless network,

using online learning-based power control. We consider the
problem in two different scenarios. First, we consider the prob-
lem of average log Signal-to-Noise-Ratio-based (SINR-based)
utility maximization. Average log SINR is an approximation
to long-term throughput, used for tractability reasons, but real-
life implementations show its efficacy in addressing long-term
throughput (see [7]). In this scenario, we consider a similar
problem formulation as in [7], i.e., we consider a LTE-like
wireless network, with several base stations (each base station
determines a unique cell) and several users within each base
station. We consider the utility of each user in the network to
be a function of the expected value of the logarithmic value
of its SINR. As discussed in [7], this formulation is effective
in optimizing the performance of a wireless network in the
long-term, while having the advantage of being mathematically
tractable.

The second problem that we consider is that of robust short-
term performance, in a similar LTE-like wireless network setup
as in the previous case. In this scenario, at any time instant,
we measure the utility of each user as a function of the user’s
instantaneous throughput. This allows us to model the short-
term performance of the network. We formulate the problem as
an online convex optimization problem, and use regret as the
metric to quantify the short-term performance of the resulting
power control policy. Note that the primary difference between
the two problem scenarios is the following: while the first case
focuses on improving the utility in the long-term by assuming
it to be a function of expected logarithmic SINR, the latter case
focuses on achieving robust performance in the short-term by
assuming utility to be instantaneous.

For both the aforementioned problem scenarios, we further
consider two different cases based on the restrictions imposed
on the power control policy, including the General Power
Control (GPC) policy, i.e., when the power assigned to each
user is allowed to be different, and the Fractional Power
Control (FPC) policy, as used in practical LTE-based systems
(see [8], [9], [10] and [11] for recent work on FPC). In FPC,
the power for a user i in a cell c is given by Qch−αcic , where
Qc is the nominal transmit power for cell c, hic is the channel
gain for user i within cell c, and 0 ≤ αc ≤ 1 is the fractional
path loss compensation factor for cell c.

Our main contributions in this paper are the following:
1) We formulate the average SINR-based optimal power



control problem as a convex optimization problem.
Subsequently, we present a stochastic gradient descent-
based (SGD-based) algorithm to compute the optimal
power control policy, for both General Power Control
and Fractional Power Control (see Sections II and III).

2) We prove that the SGD-based algorithm converges to the
optimal power control policy. We also present guarantees
on its convergence rate. Moreover, we believe that the
proof for the learning-based power control algorithm
presented in [7] has a gap, since they do not show that
the dual variables in their optimization problem lie in a
bounded set. We fix this gap in our proof. Moreover, in
[7], only asymptotic convergence analysis is provided,
whereas we provide explicit finite-time guarantees on the
rate of convergence as well as the regret (see Sections
II-B and III-B).

3) For the robust short-term performance problem, we
present an online gradient descent-based algorithm, for
both General Power Control and Fractional Power Con-
trol. We also provide guarantees on the regret achieved
by the resulting power control policy (see Section IV).

II. SINR-BASED GENERAL POWER CONTROL

A. Problem Formulation

In order to formalize the optimization problem, let us
introduce some notation first. Let there be a total of n users
and m base stations in the network. Let γi denote the expected
logarithmic value of SINR for user i, and let Ui(γi) denote
the utility function for user i. Let ji denote the base station
(or cell) to which user i belongs to, and let hik(t) ≥ 0 denote
the random channel gain for user i’s transmissions to cell k, at
time t. We assume that all channel gains are drawn i.i.d. at each
time slot t, from their respective distributions. Let Xi(t) be
a binary random variable denoting whether user i is active or
not, at any time slot t. Let Xi(t) = 0 if the user is inactive and
Xi(t) = 1 if the user is active. We assume that Xi(t) is drawn
i.i.d. at each time slot t. Since Xi(t) and hik(t) are drawn i.i.d.
at each time slot, we drop their dependence on t and denote
them by Xi and hik respectively. Let P = (P1, P2, ..., Pn) be
the vector of power assignments to various users. Formally,
the optimization problem we aim to solve is:

max
γ,P

∑
i

Ui(γi)

s. t. γi = E
[
log

(
hijiPi∑

k 6=i hkjiXkPk + σ2
ji

)]
,∀i

0 < Pi ≤ eM , ∀i.

(1)

where σ2
ji

is the noise variance in cell ji, eM is the maximum
power that can be assigned to each user, and the expecta-
tion is with respect to the random channel gains and the
“on/off” random variables: Xi,∀i. We assume that ∀i, the
utility function Ui(γi) is a concave and increasing function
of γi, with limγi→−∞ Ui(γi) = −∞. Moreover, we assume
that ∀i, Ui(γi) is well-defined for γi ∈ (−∞,∞) and is
continuously differentiable. Note that these assumptions are

fairly general, and hence allow for several different utility
functions, for instance: Ui(γi) = log(log(1 + eγi)). Under
the above assumptions, it can be shown that the optimization
problem given by (1) is a non-convex optimization problem,
and hence it is not amenable to the large number of efficient
off-the-shelf algorithms available to solve convex optimiza-
tion problems. As in [7] (also see [12]), we will transform
the above optimization problem into a convex optimization
problem, allowing us to exploit the extensive body of work
available for solving convex optimization problems efficiently.

Consider the following standard variable transformation:

Pi = eqi ,∀i,

Since Pi > 0,∀i, the above transformation is bijective. With
the above transformation, we can rewrite (1) as:

max
γ,q

∑
i

Ui(γi)

s. t. γi = E
[
log

(
hijie

qi∑
k 6=i hkjiXkeqk + σ2

ji

)]
,∀i

qi ≤M, ∀i.

(2)

Note that we assumed the objective function above to be
a concave function in γ. Also, the second constraint is an
affine inequality, therefore the feasible set corresponding to it
will be a convex set. Therefore, in order to obtain a convex
optimization problem, all we need to do is to transform the
first constraint (the equality constraint), so that the resulting
constraint has a convex feasible set. To this end, we observe
that if we change the “equal to” operator in the first constraint
to a “less than equal to” operator, the solution to the optimiza-
tion problem will remain the same, as we assumed Ui(γi) to
be an increasing function of γi (the maximum will always be
achieved at the highest value possible). Therefore:

γi ≤ E
[
log

(
hijie

qi∑
k 6=i hkjiXkeqk + σ2

ji

)]
γi ≤ E[log hiji + qi − log(

∑
k 6=i

hkjiXke
qk + σ2

ji)]

⇒ γi −
(
E[log hiji + qi − log(

∑
k 6=i

hkjiXke
qk + σ2

ji)]
)
≤ 0

Since log-sum-of-exponentials is a convex function, the fea-
sible set for the above constraints will be convex, ∀i. Hence,
we get the following convex optimization problem:

min
γ,q
−
∑
i

Ui(γi)

s. t. γi −
(
E[log hiji + qi − log(

∑
k 6=i

hkjiXke
qk + σ2

ji)]
)

≤ 0,∀i
qi ≤M, ∀i.

(3)



For ease of notation, we will assume that σ2
ji

= σ2,∀i, i.e.,
the noise variance in all the cells is the same. Note that this
assumption does not affect the results in this paper in any way.

B. Algorithm and Analysis

In this subsection, we first prove that there exists a solution
to the optimization problem in (3). Subsequently, we prove
certain properties for the primal-dual optimization problem
corresponding to (3), in order to design an algorithm based
on the stochastic gradient descent algorithm (see [13]). We
eventually present a SGD-based algorithm to solve (3), and
also provide theoretical guarantees on its performance. Let us
begin with proving the existence of a solution to (3).

Lemma 1. For the optimization problem in (3), there exists a
non-empty, closed and bounded set of optimal solutions.

Proof. Let us denote the variables γ and q jointly as s =
(γ, q). Note that under the constraints of (3), ||s|| → ∞
implies qi → −∞ or γi → −∞, for at least some i.
Also, note that qi → −∞ ⇒ γi → −∞. Therefore,
||s|| → ∞ implies γi → −∞, for some i. Moreover, we
know that limγi→−∞

∑
j Uj(γj) = −∞,∀i, since we assume

that limγi→−∞ Ui(γi) = −∞,∀i. Let C denote the feasible
set of (3). Therefore, we have:

lim
||s||→∞,s∈C

−
∑
i

Ui(γi) =∞.

Hence, the objective function in (3) is weakly coercive with
respect to the set C. Using Weierstrass’ Theorem (see Theorem
4.7 in [14]), we get the lemma.

The Lagrangian function corresponding to the optimization
problem in (3) is:

L(γ, q, λ, µ)

= −
∑
i

Ui(γi) +
∑
i

λi
(
γi − (E[log hiji + qi

− log(
∑
k 6=i

hkjiXke
qk + σ2

ji)])
)
+
∑
i

µi(qi −M).

(4)

where λ = (λ1, λ2, ..., λn) and µ = (µ1, µ2, ..., µn) are
vectors representing the Lagrange multipliers for the inequality
constraints in (3). We now show that strong duality holds for
the primal and dual optimization problems characterized by
(4).

Lemma 2. For the primal and dual optimization problems
characterized by the Lagrangian function in (4), strong duality
holds, i.e.:

L∗ = min
γ,q

max
λ≥0,µ≥0

L(γ, q, λ, µ)

= max
λ≥0,µ≥0

min
γ,q

L(γ, q, λ, µ).
(5)

where L∗ denotes the (optimal) value of the objective function
in (3).

Proof. Let us consider the point qi = M
2 < M,∀i.

Subsequently, consider γi < E[log hiji + M
2 −

log(
∑
k 6=i hkjiXke

M
2 + σ2)],∀i. Clearly, the above values of

q and λ are feasible for (3). Moreover, for these values, the
inequality constraints hold with strict inequality. Therefore,
using Slater’s conditions, we conclude the lemma.

Let γ∗, q∗, λ∗ and µ∗ be the solution to (5). In order to use
the stochastic gradient descent algorithm from [13], we need
to prove certain properties of the Lagrangian function in (4),
and its optimal solution: γ∗, q∗, λ∗ and µ∗. We start with the
following lemma:

Lemma 3. (γ∗, q∗, λ∗, µ∗) ∈ ξ = ξ(M,h′, σ′, X ′), where
ξ(M,h′, σ′, X ′) is a non-empty bounded closed convex set,
and can be computed from (14), (15), (16), (17) and (18) as
a function of M,h′, σ′, and X ′, where M is the upper bound
on the variable qi,∀i, h′ is the vector comprising upper and
lower bounds on the random channel gains for all the users
in the network, σ′ is the vector comprising upper and lower
bounds on the noise variance in all the cells, and X ′ is the
vector comprising upper and lower bounds on the probability
that a user is “on” at any time slot, i.e., the upper and lower
bounds on E[Xi],∀i.

Proof. Using the KKT stationarity conditions from optimiza-
tion theory, we know that if γ∗, q∗ solve (3), ∃ λ∗ ≥ 0 and
µ∗ ≥ 0 such that:

−U ′i(γ∗i ) + λ∗i = 0,∀i, (6a)

−λ∗i +
∑
k 6=i

λ∗kE[
Xihijke

q∗i∑
l 6=k hljkXleq

∗
l + σ2

] + µ∗i = 0,∀i. (6b)

Adding (6b) for all i, we get:∑
i

λ∗i =
∑
i

µ∗i +
∑
k

λ∗kE[
∑
l 6=k hljkXle

q∗l∑
l 6=k hljkXleq

∗
l + σ2

],

⇒
∑
i

µ∗i =
∑
i

λ∗iE[
σ2∑

l 6=i hljiXleq
∗
l + σ2

].

(7)

Since the channel gains are positive and eq
∗
i ∈ [0, eM ],∀i, we

have:∑
i

λ∗iE[
σ2∑

l 6=i hljiXleM + σ2
] ≤

∑
i

µ∗i ≤
∑
i

λ∗i . (8)

Combining the fact that ∀i, the utility function Ui is an
increasing function with (6a), we observe that λ∗i > 0.
Combining this fact with (8), we get:∑

i

µ∗i > 0. (9)

Since µ∗i ≥ 0,∀i, therefore, ∃ m ∈ {1, 2, ..., n}, such that
µ∗m > 0. Now, by complementary slackness: µ∗m(q∗m −M) =
0. Therefore, q∗m =M . Using q∗m =M in (6b):

λ∗m = µ∗m +
∑
k 6=m

λ∗kE[
Xmhmjke

M∑
l 6=k hljkXleq

∗
l + σ2

]. (10)



Since all the terms in the above expression are non-negative,
therefore:

λ∗kE[
Xmhmjke

M∑
l 6=k hljkXleq

∗
l + σ2

] ≤ λ∗m,∀k 6= m,

⇒ λ∗kE[
Xmhmjke

M∑
l 6=k hljkXleM + σ2

] ≤ λ∗m,∀k 6= m.

(11)

where the last step follows from the fact that eq
∗
i ∈ [0, eM ],∀i.

Now, we observe that the inequality constraints on γi (for all i)
in (3) will hold with equality (at the solution γ∗i ) as the utility
function Ui(γi) is an increasing function of γi. Therefore:

γ∗m = E[log(
hmjme

M∑
k 6=m hkjmXkeq

∗
k + σ2

)]

≥ E[log(
hmjme

M∑
k 6=m hkjmXkeM + σ2

)].

(12)

where the last step follows from the fact that eq
∗
i ∈ [0, eM ],∀i.

Combining (12) with (6a), we get:

λ∗m ≤ U ′m(E[log(
hmjme

M∑
k 6=m hkjmXkeM + σ2

)]). (13)

where the inequality follows from the fact that U ′i(γi) is a
decreasing function of γi, since Ui(γi) is a concave function.
Combining (13) and (11):

0 ≤ λ∗i ≤ C = max
l

{
U ′l
(
E[log(

hljle
M∑

k 6=l hkjlXkeM + σ2
)]
)

×
[
E[

hljiXle
M∑

k 6=i hkjiXkeM + σ2
]
]−1}

.

(14)

Since λ∗, µ∗ ≥ 0, combining (14) with (6b):

0 ≤ µ∗i ≤ C, (15)

where C is the constant defined in (14). Also, since the first
set of inequality constraints in (3) hold with equality at γ∗

and q∗, we have:

γ∗i = E[log(
hijie

q∗i∑
k 6=i hkjiXkeq

∗
k + σ2

)] ≤ E[log
hijie

M

σ2
],∀i.

(16)

where the last step follows from the fact that eq
∗
i ∈ [0, eM ],∀i.

Also, using (6a) and (14) along with the fact that, ∀i, U ′i(γi)
is a decreasing function of γi, we get:

γ∗i ≥ U
′−1
i (C), (17)

where C is the constant defined in (14). Combining (16) and
(17):

E[ log(
hijiXie

q∗i∑
k 6=i hkjiXkeq

∗
k + σ2

)] = γ∗i

⇒ q∗i ≥ γ∗i − E[log(
hijiXi

σ2
)]

⇒ q∗i ≥ U
′−1
i (C)− E[log(

hijiXi

σ2
)],

(18)

where C is the constant defined in (14). Combining (14), (15),
(16), (17) and (18), along with the fact that q∗i ≤ M, ∀i, we
conclude that (γ∗, q∗, λ∗, µ∗) ∈ ξ, where ξ is a non-empty
bounded closed convex set.

Remark 1. Observe that the set ξ can be computed with
loose upper and lower bounds on random channel gains,“on”
probabilities for the users and the noise variance in each cell.
Any reasonable and non-trivial bounds on these quantities
will allow the computation of a non-empty bounded closed
convex set ξ, to which the primal and dual optimal variables
should belong to. Note that we do not need to compute the
smallest such set. This remark is also applicable to the FPC
case discussed in the next section.

Next, we have the following lemma:

Lemma 4. L(γ, q, λ, µ) is Lipschitz continuous on the set ξ.

Proof. Note that L is a continuously differentiable function of
γ, q, λ, µ. Moreover, we proved in Lemma 1 that ξ is a non-
empty bounded closed convex set. The lemma follows directly
by combining the above two statements.

We now present the SGD-based general power control
algorithm SGPC-SINR, as applicable to our problem. For ease
of notation, let z = (γ, q, λ, µ). At each time instant t, we
have X(t) = (X1(t), X2(t), ..., Xn(t)), i.e., i.i.d. samples
of the random variables Xi,∀i (i.e., we know which users
are active or not). We also have the random channel gains
h(t) = {hik(t),∀i, k}. Let us use these values to compute the
random gradient estimate of the Lagrangian:

∇L(z, h(t), X(t)) =

(
− U ′i(γi) + λi

)n
i=1(

− λi +
∑
k 6=i

λkXi(t)hijk (t)e
qi∑

l6=k hljk (t)Xl(t)e
ql+σ2 + µi

)n
i=1(

γi −log hiji(t)− qi +log(
∑
k 6=i

hkji(t)Xk(t)e
qk +σ2)

)n
i=1(

qi −M
)n
i=1


(19)

Since we need to minimize the Lagrangian function with
respect to the primal variables and maximize it with respect to
the dual variables, the corresponding random gradient estimate
to plug in a descent step is:

∇L̃(z, h(t)X(t)) =

(
− U ′i(γi) + λi

)n
i=1(

− λi +
∑
k 6=i

λkXi(t)hijk (t)e
qi∑

l 6=k hljk (t)Xl(t)e
ql+σ2 + µi

)n
i=1

−
(
γi −log hiji(t)− qi +log(

∑
k 6=i

hkji(t)Xk(t)e
qk +σ2)

)n
i=1

−
(
qi −M

)n
i=1


(20)

Note that since L is a continuously differentiable function and
we showed in Lemma 3 that the variable z can be effectively
restricted to the set ξ, we have: E[||∇L(z, h(t), X(t))||22] ≤
G2,∀z ∈ ξ, where G = G(ξ) is a finite constant. Also, let



Dξ =
√
2maxz∈ξ ||z||2. Dξ quantifies the size of the set ξ.

Now, the SGPC-SINR algorithm is presented as Algorithm 1.

Algorithm 1 SGD-based GPC for SINR-based utility maxi-
mization (SGPC-SINR)1

initialize z(0) = (γ(0), q(0), λ(0), µ(0)) ∈ ξ, constant θ > 0.
for t = 1, 2, . . . :

1) Compute ∇L̃(z(t− 1), h(t), X(t)), ηt =
θDξ
G
√
t
.

2) z(t) =
∏
ξ

(
z(t− 1)− ηt∇L̃(z(t− 1), h(t), X(t))

)
.

3) Output z̃(t) =
∑t
i=1 ηiz(i)∑t
i=1 ηi

.

end for

Theorem 1. After T iterations of the SGPC-SINR algorithm,
we have:

E[ε(T )] = O(
max{θ, θ−1}DξG√

T
)

where ε(t) =
[
maxλ,µ L(γ̃(t), q̃(t), λ, µ) − L∗

]
+
[
L∗ −

minγ,q L(γ, q, λ̃(t), µ̃(t))
]
.

Proof. Follows from equation (3.15) in Section 3.1 of [13].

Corollary 1. The SGPC-SINR algorithm solution converges
to the optimal value of (5), i.e.:

lim
T→∞

E[L(z̃(T ))− L∗] = 0.

Proof. Using the definition of ε(T ) from Theorem 1, we have:

⇒ L(z̃(T ))− L∗ ≤ max
λ,µ

L(γ̃(T ), q̃(T ), λ, µ)− L∗,

≤ ε(T ),
⇒ E[L(z̃(T ))− L∗] ≤ E[ε(T )],

⇒ lim
T→∞

E[L(z̃(T ))− L∗] ≤ lim
T→∞

E[ε(T )] = 0.

where the last step follows from the result in Theorem 1.

The following remarks apply to both this section and the
next.

Remark 2. The implementation of the power control algo-
rithm presented in this section requires the knowledge of
various channel gains. Some of these channel gains may
not be directly available; in practice, one may be able to
estimate a distribution of these channel gains and sample from
this distribution when some channel gains are not directly
measured. See [7] for details.

Remark 3. Note that Theorem 1 implies that the total expected
regret up to time t given by

T∑
t=1

(E[L(z̃(t))− L∗]) = O
(√
T
)
.

1∏
ξ denotes the projection operator for set ξ. See the text for the definitions

of remaining quantities. Note that
∏

ξ can be computed efficiently from (14),
(15), (16), (17) and (18). Moreover, it can also be computed in parallel for
different variables, since the bounds on each variable are independent of each
other.

III. SINR-BASED FRACTIONAL POWER CONTROL (FPC)

A. Problem Formulation

As discussed in the introduction section, Fractional Power
Control (FPC) is the method of power control used in LTE
systems. As before, let us consider a user i, belonging to the
cell (or base station) ji. Let the channel gain for the user i for
transmissions to cell k be denoted by hik. In FPC, the power
assigned to user i, Pi is given as follows:

Pi = Qjih
−αji
iji

(21)

where 0 ≤ Qji is the nominal transmit power for cell ji and
0 ≤ αji ≤ 1 is the path loss compensation factor for cell
ji such that Qjih

−αji
iji

≤ eM (eM is the maximum power
allowed).

Note that the major advantage of using FPC over GPC is
that using FPC leads to a huge reduction in the number of
free parameters. In GPC, each user can have its own power
assignment, leading to a large number of parameters to be
optimized. On the other hand, in FPC, each cell has only
two parameters that need to be optimized, thereby drastically
reducing the number of free parameters. For instance, in
a typical LTE network with about 5,000 cells with each
cell having around 50 users, GPC will have 250,000 free
parameters whereas FPC will have only 100. Although FPC
leads to a drastic reduction in the number of free parameters,
note that the performance of GPC will always be better than
FPC as it is more general. Setting πji = logQji , plugging (21)
into (1) and following a similar process as in Section II-A, we
get the following optimization problem for FPC:

min
γ,π,α

−
∑
i

Ui(γi)

s. t. γi − E[(1− αji) log hiji + πji

− log(
∑
k 6=i

hkjiXk(e
πjk−αjk log hkjk ) + σ2)] ≤ 0,∀i,

πji − αji log hiji ≤M, ∀i,
− αji ≤ 0, ∀i,
αji ≤ 1, ∀i,

(22)

where we have assumed σ2
ji

= σ2,∀i, as before. With the
same assumptions on the utility functions as in the GPC
section (see Section II-A for details), we can show that the
above optimization problem is a convex optimization problem.
The proof relies on the fact that the composition of an
increasing log-sum-of-exponentials function with a convex
function results in a convex function. We omit the details here
due to space constraints.

B. Algorithm and Analysis

Similar to the GPC case, in this subsection, we first present
a lemma that proves that there exists a solution to the optimiza-
tion problem in (22). Subsequently, we prove certain properties
for the primal-dual optimization problem corresponding to
(22), in order to design an algorithm based on the stochastic



gradient descent algorithm. We eventually present a SGD-
based algorithm to solve (22), and also provide theoretical
guarantees on its performance. All proofs in this section are
omitted due to space limitations since they are similar to those
in the previous section.

Lemma 5. For the optimization problem in (22), there exists
a non-empty, closed and bounded set of optimal solutions.

Let s = (γ, π, α) denote the vector of primal variables
and r = (λ, µ, β, ζ) denote the vector of Lagrange mul-
tipliers associated with the first, second, third and fourth
set of constraints in 22 respectively. Also, let B denote the
set of all cells/base stations. Then, the Lagrangian function
corresponding to the optimization problem in (22) is:

L(s, r)

= −
∑
i

Ui(γi) +
∑
i

λi
(
γi − E[(1− αji) log hiji + πji

− log(
∑
k 6=i

hkjiXk(e
πjk−αjk log hkjk ) + σ2)]

)
+
∑
i

µi(πji − αji log hiji −M)+∑
ji∈B

βji(−αji) +
∑
ji∈B

ζji(αji − 1).

(23)

We now show that strong duality holds for the primal and dual
optimization problems characterized by (23).

Lemma 6. For the primal and dual optimization problems
characterized by the Lagrangian function in (23), strong
duality holds, i.e.:

L∗ = min
s

max
r≥0

L(s, r)

= max
r≥0

min
s
L(s, r).

(24)

where L∗ denotes the (optimal) value of the objective function
in (22).

Let s∗ and r∗ be the solution to (24). As in the GPC case,
in order to use the stochastic gradient descent algorithm from
[13], we need to prove certain properties of the Lagrangian
function in (23), and its optimal solution: s∗ and r∗.

Lemma 7. (s∗, r∗) ∈ ξ = ξ(M,h′, σ′, X ′), where
ξ(M,h′, σ′, X ′) is a non-empty bounded closed convex set
and as in Lemma 3, is an efficiently computable function of
M,h′, σ′, and X ′, where eM is the maximum power for each
user, h′ is the vector comprising upper and lower bounds on
the random channel gains for all the users in the network, σ′

is the vector comprising upper and lower bounds on the noise
variance in all the cells, and X ′ is the vector comprising upper
and lower bounds on the probability that a user is “on” at
any time slot, i.e., the upper and lower bounds on E[Xi],∀i.

Note that the exact bounds on the set ξ in this case can be
obtained similar to the bounds (14), (15), (16), (17) and (18)

in the proof of Lemma 3. We omit this derivation due to space
constraints.

Lemma 8. L(s, r) is Lipschitz continuous on the set ξ.

We now present the SGD-based general power control
algorithm SFPC-SINR, as applicable to the SINR-based FPC
problem. For ease of notation, let z = (s, r). At each time
instant t, we have X(t) = (X1(t), X2(t), ..., Xn(t)), i.e., i.i.d.
samples of the random variables Xi,∀i (i.e., we know which
users are active or not). As before, we also have the random
channel gains h(t) = {hik(t),∀i, k}. Also, for each cell c ∈ B,
let Fc denote the set of users belonging to that cell. As in the
previous section, let us compute the random gradient estimate
of the Lagrangian to plug into a descent step:

∇L̃(z, h(t), X(t)) =

(
∇γiL(z, h(t), X(t))

)n
i=1(

∇πcL(z, h(t), X(t))
)
c∈B(

∇αcL(z, h(t), X(t))
)
c∈B(

−∇λiL(z, h(t), X(t))
)n
i=1(

−∇µiL(z, h(t), X(t))
)n
i=1(

−∇βcL(z, h(t), X(t))
)
c∈B(

−∇ζcL(z, h(t), X(t))
)
c∈B,


(25)

where the components are given by:

∇γiL(z, h(t), X(t)) = −U ′i(γi) + λi,

∇πcL(z, h(t), X(t))

= −
∑
i∈Fc

λi + µc

+
∑
k

∑
m∈Fc,m 6=k λmXm(t)hmjk(t)e

πc−αc log hmc(t)∑
l 6=k hljk(t)Xl(t)(e

πjl−αjl log hljl (t)) + σ2
,

∇αcL(z, h(t), X(t))

=
∑
i∈Fc

λi log hic(t)− βc + ζc + µc

+
∑
k

∑
m∈Fc
m 6=k

λmXm(t)hmjk(t)e
πc−αc log hmc(t)(− log hmc(t))

∑
l 6=k

hljk(t)Xl(t)(e
πjl−αjl log hljl (t)) + σ2

,

∇λiL(z, h(t), X(t))

= γi −
[
(1− αji) log hiji(t) + πji

− log(
∑
k 6=i

hkji(t)Xk(t)(e
πjk−αjk log hkjk (t)) + σ2)

]
,

∇µiL(z, h(t), X(t)) = πji − αji log hiji(t)− logM,

∇βcL(z, h(t), X(t)) = −αc,∇ζcL(z, h(t), X(t)) = αc − 1.

As in the previous section, note that since L is a continu-
ously differentiable function and we showed in Lemma 7 that
the variable z can be effectively restricted to the set ξ, we have:
E[||∇L(z, h(t), X(t))||22] ≤ G2,∀z ∈ ξ, where G = G(ξ) is
a finite constant. Also, let Dξ =

√
2maxz∈ξ ||z||2. Now, the

SFPC-SINR algorithm is presented as Algorithm 2.



Algorithm 2 SGD-based FPC for SINR-based utility maxi-
mization (SFPC-SINR)
initialize z(0) = (s(0), r(0)) ∈ ξ, constant θ > 0.
for t = 1, 2, . . . :

1) Compute ∇L̃(z(t− 1), h(t), X(t)), ηt =
θDξ
G
√
t
.

2) z(t) =
∏
ξ

(
z(t− 1)− ηt∇L̃(z(t− 1), h(t), X(t))

)
.

3) Output z̃(t) =
∑t
i=1 ηiz(i)∑t
i=1 ηi

.

end for

Theorem 2. After T iterations of the SFPC-SINR algorithm,
we have:

E[ε(T )] = O(
max{θ, θ−1}DξG√

T
)

where ε(t) =
[
maxr L(s̃(t), r)−L∗

]
+
[
L∗−mins L(s, r̃(t))

]
Corollary 2. The SFPC-SINR algorithm solution converges
to the optimal value of (24), i.e.:

lim
T→∞

E[L(z̃(T ))− L∗] = 0.

IV. ROBUST SHORT-TERM PERFORMANCE

A. Problem Formulation

In the average SINR-based utility maximization, the fo-
cus was on achieving good long-term performance. In this
section, we consider the problem of providing good short-
term performance, which is further robust to channel state
statistics. Therefore, we consider a formulation in which the
utilities for the users are functions of their instantaneous
throughputs and we do not make any assumptions on the
statistics of the channel states. In particular, we allow the
channel states to be even chosen by an adversary. As is
standard in the machine learning literature, the quality of an
online algorithm is measured by comparing its performance
with the performance of an algorithm (called the expert) which
knows the future channel states but is only allowed to choose
a time-independent power vector.

As in previous sections, let ji denote the cell/base station
to which user i belongs to. Let hic(t) denote the channel gain
(arbitrary) for user i for transmissions to cell c, at time t.
Also, let Pi(t) be the power assigned to user i at time t and
let P (t) = (P1(t), P2(t), ..., Pn(t)). Moreover, let γi(P (t), t)
denote the instantaneous logarithmic SINR for user i at time
t, i.e.:

γi(P (t), t) = log

(
hiji(t)Pi(t)∑

k 6=i hkji(t)Xk(t)Pk(t) + σ2

)
(26)

where Xj(t) is an arbitrary binary variable denoting whether
user j is “on/off” at time t, and σ2 is the noise variance
(assumed to be the same in all cells). We assume that there
are known lower and upper bounds on the channel gains,
i.e., hmin ≤ hik(t) ≤ hmax,∀i, k, t. Also, we assume that
there is an upper bound Pmax on the power assigned to any
user. Moreover, as in [7], we assume that there is a minimum
decodable SINR δmin such that hminPmax ≥ δmin{(n −

1)hmaxPmax + σ2} holds. This allows the problem to be
feasible and also ensures that the Pi(t) ∈ [Pmin, Pmax], where
Pmin is a function of δmin, hmin and hmax.

The instantaneous throughput τi(t) for user i at time t is
simply: τi(t) = log(1 + eγi(P (t),t)). Using the popular log-
utility function, the cumulative instantaneous utility of all the
users at time t is

∑
i wi log(log(1+e

γi(P (t),t))), where wi > 0
is the weight factor associated with the utility function of
user i. Therefore, to optimize the short-term performance of
the network for T time slots, an expert needs to solve the
following optimization problem to compute the best time-
independent power assignment P ∗ = (P ∗1 , P

∗
2 , ..., P

∗
n) in

hindsight:

min
P

T∑
t=1

∑
i

−wi log(log(1 + eγi(P,t))). (27)

We want to design an algorithm that performs as close to the
above expert as possible by doing online power control. Ob-
serve that − log log(1+eγi(P (t),t)) is a convex and decreasing
function of γi(P (t), t). Therefore, as long as γi(P (t), t) is a
concave function of the power control parameters P (t), the
overall composition of functions will be a convex function and
the resulting problem will be an online convex optimization
problem. Clearly, γi(P (t), t) computed in (26), is not a
concave function. But, as we observed in previous sections,
it is easy to convert γi(P (t), t) to a concave function of the
power control parameters with suitable transformations.

1) General Power Control (GPC): For GPC, let us consider
the same transformation as in Section II, i.e., Pi(t) = eqi(t).
Let z(t) = ({qj(t)}nj=1). Plugging this transformation in (26):

γi(P (t), t) = γ′i(z(t), t)

= log hiji(t) + qi(t)− log(
∑
k 6=i

hkji(t)Xk(t)e
qk(t) + σ2)

Clearly, the above function is a concave function of z(t) as
negative of log-sum-of-exponentials is a concave function.
Also, observe that z(t) ∈ ξ(δmin, hmin, hmax) = ξ, where ξ
is a computable non-empty closed convex bounded set, since
the power for each user has to lie in [Pmin, Pmax].

2) Fractional Power Control (FPC): For FPC, we have
Pi(t) = eπji (t)−αji (t) log hiji (t). Plugging this in (26), it can
be verified that γi(P (t), t) = γ′i(z(t), t) becomes a concave
function of z(t) = ({πc(t)}c∈B, {αc(t)}c∈B). Again, observe
that z(t) ∈ ξ(δmin, hmin, hmax) = ξ, where ξ is a computable
non-empty closed convex bounded set, since the power for
each user has to lie in [Pmin, Pmax].

Using the above transformations, for both FPC and GPC, we
can get an online convex optimization problem with respect to
the power control parameters z(t). Now, in order to measure
the performance of any algorithm (producing z(t)) as com-
pared to the best expert in hindsight, a popular metric is regret



(see [15] for an introduction to online convex optimization).
Regret is defined as:

R(T ) =
T∑
t=1

∑
i

−wi log(log(1 + eγ
′
i(z(t),t)))

−
{
min
z

T∑
t=1

∑
i

−wi log(log(1 + eγ
′
i(z,t)))

}
.

(28)

In the next subsection, we present an online gradient descent-
based algorithm and obtain theoretical bounds on the regret
defined above.

B. Algorithm and Analysis

We use the online gradient descent (Algorithm 6 in [15])
to design an efficient online power control algorithm. Let
ft(z) =

∑
i−wi log(log(1 + eγ

′
i(z,t))). Let Dξ denote the

diameter of the set ξ, i.e., Dξ = maxx,y∈ξ ||x − y||2. Note
that since ft(z) is continuously differentiable on the set ξ,
and the set ξ is closed, bounded and convex, it implies that
ft(z) is a G-Lipschitz function of z, where G = G(ξ) is a
function of the set ξ. Now, we present our algorithm OPC-
RSTP (short for Online Power Control for Robust Short-term
Performance) as Algorithm 3. We now present the main result

Algorithm 3 Online Power Control for Robust Short-term
Performance (OPC-RSTP)
initialize z(0) ∈ ξ.
for t = 1, 2, . . . :

1) Compute ∇ft(z(t− 1)), ηt =
Dξ
G
√
t
.

2) z(t) =
∏
ξ

(
z(t− 1)− ηt∇ft(z(t− 1))

)
.

3) Output z(t).
end for

on the regret achieved by OPC-RSTP.

Theorem 3. For the OPC-RSTP algorithm, for any T ≥ 1,
we have:

R(T ) ≤ 3

2
GDξ

√
T .

Proof. Follows from Theorem 3.1 in [15].

Note that o(T ) regret implies that the average performance
of OPC-RSTP is asymptotically as good as the best expert in
hindsight. Therefore, OPC-RSTP is both online and efficient.

V. CONCLUSION

In this paper, we consider the optimal power control prob-
lem in modern wireless networks. We present learning-based
algorithms SGPC-SINR and SFPC-SINR for the problem of
SINR-based utility maximization, using general power control
and fractional power control respectively. We also provide
theoretical guarantees on the performance of these two algo-
rithms. Moreover, we present OPC-RSTP, an online algorithm
to achieve robust short-term performance for both general
power control and fractional power control. Again, we provide
a theoretical guarantee on OPC-RSTP’s performance.

ACKNOWLEDGEMENT

This work was supported by NSF Grants NeTS 1718203,
ECCS 16-09370, CPS ECCS 1739189, CMMI 1562276,
NSF/USDA Grant AG 2018-67007-28379, Army Grant
W911NF-16-1-0259 and DTRA Grant HDTRA1-15-1-0003.

REFERENCES

[1] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power
control algorithm and its convergence,” IEEE transactions on vehicular
Technology, vol. 42, no. 4, pp. 641–646, 1993.

[2] R. D. Yates, “A framework for uplink power control in cellular radio
systems,” IEEE Journal on selected areas in communications, vol. 13,
no. 7, pp. 1341–1347, 1995.

[3] M. Chiang, “Balancing transport and physical layers in wireless mul-
tihop networks: Jointly optimal congestion control and power control,”
IEEE Journal on Selected areas in Communications, vol. 23, no. 1, pp.
104–116, 2005.

[4] P. Hande, S. Rangan, M. Chiang, and X. Wu, “Distributed uplink power
control for optimal sir assignment in cellular data networks,” IEEE/ACM
Transactions on Networking (TON), vol. 16, no. 6, pp. 1420–1433, 2008.

[5] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Pricing and
power control in a multicell wireless data network,” IEEE Journal on
selected areas in communications, vol. 19, no. 10, pp. 1883–1892, 2001.

[6] M. Xiao, N. B. Shroff, and E. K. Chong, “A utility-based power-
control scheme in wireless cellular systems,” IEEE/ACM Transactions
on Networking (TON), vol. 11, no. 2, pp. 210–221, 2003.

[7] S. Deb and P. Monogioudis, “Learning-based uplink interference man-
agement in 4G LTE cellular systems,” IEEE/ACM Transactions on
Networking (TON), vol. 23, no. 2, pp. 398–411, 2015.

[8] M. Coupechoux and J.-M. Kelif, “How to set the fractional power control
compensation factor in LTE?” in Sarnoff Symposium, 2011 34th IEEE.
IEEE, 2011, pp. 1–5.

[9] C. U. Castellanos, D. L. Villa, C. Rosa, K. I. Pedersen, F. D. Calabrese,
P.-H. Michaelsen, and J. Michel, “Performance of uplink fractional
power control in UTRAN LTE,” in Vehicular Technology Conference,
2008. VTC Spring 2008. IEEE. IEEE, 2008, pp. 2517–2521.

[10] M. Boussif, N. Quintero, F. D. Calabrese, C. Rosa, and J. Wigard,
“Interference based power control performance in LTE uplink,” in
Wireless Communication Systems. 2008. ISWCS’08. IEEE International
Symposium on. IEEE, 2008, pp. 698–702.

[11] M. Amirijoo, L. Jorguseski, R. Litjens, and R. Nascimento, “Effec-
tiveness of cell outage compensation in LTE networks,” in Consumer
Communications and Networking Conference (CCNC), 2011 IEEE.
IEEE, 2011, pp. 642–647.

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[13] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on
optimization, vol. 19, no. 4, pp. 1574–1609, 2009.
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