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Abstract—The surge of mobile data traffic forces network op-
erators to cope with capacity shortage. The deployment of small
cells in 5G networks shall increase radio access capacity. Mobile
edge computing technologies can be used to manage dedicated
cache memory at the edge of mobile networks. As a result,
data traffic can be confined within the radio access network
thus reducing latency, round-trip time and backhaul congestion.
Such technique can be used to offer content providers premium
connectivity services to enhance the quality of experience of their
customers on the move.

In this context, cache memory in the mobile edge network
becomes a shared resource. We study a competitive caching
scheme where contents are stored at a given price set by the
mobile network operator.

We first formulate a resource allocation problem for a tagged
content provider seeking to minimize the expected missed cache
rate. The optimal caching policy is derived accounting for
popularity of contents, spatial distribution of small cells, and
caching strategies of competing content providers.

Next, we study a game among content providers in the form of
a generalized non-smooth Kelly mechanism with bounded strat-
egy sets and heterogeneous players. Existence and uniqueness
of the Nash equilibrium are proved. Finally, numerical results
validate and characterize the performance of the system.

Index Terms—Mobile Edge Computing, Caching, Convex Op-
timization, Kelly Mechanism, Nash Equilibrium

I. INTRODUCTION

The recent boom of mobile data traffic is causing unprece-
dented stress over mobile networks. In fact, the global figures
for such traffic reached 3.7 exabytes per month at the end
of 2015. They are mostly ascribed to content providers (CP),
e.g., video providers such as Vimeo, YouTube and NetFlix.
Forecasts predict that the world’s mobile data traffic will reach
30.6 monthly exabytes by 2020 [1].

As a consequence, capacity shortage has become a real
threat for mobile network operators (MNOs), at the risk of
reduced service quality. Solutions involving the deployment
of small cell (SC) base stations [2] have been receiving large
consensus from industry and academia for next LTE-based
5G systems. SCs are low power secondary base stations with
limited coverage, to which user equipments (UEs) in radio
range can connect, hence increasing spatial reuse and network
capacity.

However, SCs are connected to a mobile operator’s core
network via backhaul technologies such as, e.g., DSL, Ethernet
or flexible millimeter-wave links.
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Mobile edge caching diverts traffic connections from remote
servers using local proxies within the Radio Access Network
(RAN). It can thus overcome limited backhaul connection of
SCs [3]. Moreover, this strategy performs content localization,
i.e., it brings the content close to content consumers: by in-
creasing proximity to mobile users, it is possible to drastically
reduce the round trip time, perform adaptation to radio access
conditions and thus improve users’ experience [4]. Finally,
it confines content access within the MNO infrastructure.
Insulation from public Internet network conditions, in turn,
permits the MNO to exploit effectively the QoS mechanisms
built into LTE standards to guarantee premium-grade mobile
connectivity.

From the network management standpoint, in order to
handle a large number of SCs and associated memory caches,
MNOs will rely on the emerging mobile edge computing
(MEC) [5] 5G technology. MEC platforms are designed to
enable services to run inside the mobile RAN.

Ultimately, CPs will be able to leverage the MEC caching
service offered by 5G MNOs. Contents such as, e.g., videos,
music files, or online gaming data, can be directly replicated
on lightweight server facilities embedded in the radio access
network. In this context, the design of effective mobile edge
caching policies requires to factor in popularity, number of
contents, cache memory size as well as spatial density of small
cells to which UEs may associate to. Indeed, due to storage
limitations, allocation of contents on mobile edge caches has
become an important optimization problem [6], [7], [8], [9],
[10], [11], [12].

We consider a scheme in which CPs can reserve mobile
edge cache memory from a MNO. The MNO can provide
a multi-tenant environment where contents can be stored at
given price and will assign the available caching resources to
different content providers. In turn, this engenders competition
of CPs for cache utilization.

First, we study the single CP optimization problem: under
a given spatial distribution of SCs, the CP decides the optimal
cache memory share to be reserved to different classes of
contents, thus minimizing missed cache rate as a function of
the purchased memory.

Finally, the competition among CPs is formulated using a
new generalized Kelly mechanism with bounded strategy set.
CPs trade off the cost for caching contents in the radio access
network versus the expected missed cache rate. The game is
showed to have a unique Nash equilibrium. Further properties
of the game, including convergence and the optimal revenue
of the MNO, are investigated numerically.
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II. RELATED WORKS AND MAIN CONTRIBUTION

The authors of [6] consider a device-to-device (D2D) net-
work and derive throughput scaling laws under cache coding
and spatial reuse. Content delay is optimized in [13] by per-
forming joint routing and caching, whereas in [7] a distributed
matching scheme based on the deferred acceptance algorithm
provides association of users to SC base stations based on
latency figures. In [8] contents to be cached minimize a cost
which depends on the expected number of missed cache hits.
In [9] a model for caching contents for D2D networks is
proposed. A convex optimization problem is obtained and
solved using a dual optimization algorithm.

In [10] a coded caching strategy is developed to optimize
contents’ placement based on SC association patterns. In
[14] a Stackelberg game is investigated to study a caching
system consisting of a content provider and multiple network
providers: CPs lease their videos to the network providers to
gain profit and network providers aim to save the backhaul
costs by caching popular videos. Finally, [12] proposes proac-
tive caching in order to take advantage of contents’ popularity.
The scheme we develop in this work can also be applied to
proactive caching. Recent results [15] show that by online
estimation of the contents’ popularity it is possible to minimize
the missed cache rate. We leave the online estimation of the
contents’ demand rates as part of future works.
Main results. The main contributions of this work are the
following: 1) we introduce a model accounting for contents’
popularity, spatial distribution of small cells, the price for
cache memory reservation and the effect of competing content
providers under multi-tenancy; 2) the optimal caching policy
is found to possess a waterfilling-type of structure 3) a
competitive game is formulated where the price for cache
memory reservation is fixed by the network provider; it results
in a Kelly mechanism with bounded strategy set which admits
a unique Nash equilibrium.

Our uniqueness results for the Nash equilibrium are new.
Existing results, e.g., [16], [17], require the cost function
to be twice continuously differentiable. Even in the smooth
case, uniqueness for bounded strategy sets proved in a recent
work [18] only applies to linear costs. Our result applies as
well to non linear yet convex cost functions. The complete
technical discussion is reported in [19] for space’s sake.

III. SYSTEM MODEL

We consider a MNO serving a set C of content providers,
where |C| = C. Each CP c serves his customers leveraging
the MNO network.

Each content provider is assumed to host up to M different
content classes, e.g., videos, music files, online gaming data,
etc. The i-th content class features N i

c

contents. For the sake
of analysis, we assume that files within each class are equally
popular and contents of class i generate g̃i

c

requests per day. A
class of contents will hence generate N i

c

g̃i
c

requests per day.
We assume that each SC is attached to a local edge

caching server, briefly cache. Multiple caches are aggregated
by connecting them through the MNO backhaul and managed

TABLE I
MAIN NOTATION USED THROUGHOUT THE PAPER

Symbol Meaning
M number of content classes
⇤ intensity, i.e., spatial density of small-cells
C set of content providers, |C| = C

r covering radius of UEs
N storage capacity of a local edge cache unit (number of

caching slots)
N0 total storage capacity of the deployment
N

i
c number of contents of class i for content provider c

g̃

i
c demand rate for contents of class i of content provider c

g

i
c g

i
c := w

i
c N

i
c g̃

i
c

⇤

i
c ⇤

i
c := ⇤⇡r

2
w

i
c g̃

i
c

bc caching rate of content provider c, bc 2 [0, Bc]

b total caching rate b =

X

c2C
bc

b�c =

X

v 6=c

bv total caching rate of competing content providers;

� mobile network provider’s own caching rate
uc caching policy for content provider c, uc =

(u

1
c, . . . , u

M
c ),

P
u

i
c = 1

xc share of cache memory occupied by content provider c
x

i
c share of cache memory for i-th class contents of content

provider c
Bc maximum caching rate for content provider c
�c price per caching slot for content provider c

using a local MEC orchestrator, thus forming a seamless local
edge cache unit as in Fig. 1. N caching slots represent the
available memory on such local edge cache unit; the total
cache space across the whole deployment is hence N

0

= K ·N
where K is the number of local edge cache units. For the
sake of simplicity, each content is assumed to occupy one
caching slot; since we assume N

0

, N � 1, we rely on fluid
approximations to describe the dynamics of cache occupation.

Fetching a non cached content from the remote CP server
beyond the backhaul comes at unitary cost; such cost may
represent the content’s access delay or the throughput to fetch
the content from the remote server. Conversely, such cost is
negligible if the user associates to a small cell storing a cached
copy of the content. However, such cache should be reached
by connecting to a SC within the UE radio range r > 0. SCs
are distributed according to a spatial Poisson point process
with intensity ⇤.

The following assumptions characterize the caching process:
i. each CP c can purchase edge-caching service from the MNO
and issue b

c

caching slot requests per day; we call b
c

the
caching rate, where 0  b

c

 B
c

;
ii. MNO reserves � > 0 caching slots per day for her own
purposes;
iii. reserved slots expire at rate ⌘ > 0, i.e., after 1/⌘ days;
iv. in order to attain b

c

caching slots per day, CP c bids ˜b
c

2
[0, 1], and the MNO grants b

c

= b
0

˜b
c

caching slots per day,
where b

0

is such that
P

b
c

+ �  N
0

. In our analysis we
assume b

0

= 1 for the sake of simplicity1.
v. CPs are charged based on the caching rate b

c

;
vi. demand rates gi

c

per content class are uniform across the
MNO’s network.

The MNO accommodates X
c

memory slots for CP c ac-
cording to

˙X
c

= b
c

� ⌘X
c

, (1)

1We refer to [20] for a connection between linear bids, efficiency and fair
share of resources of the type studied in this paper.
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so that the whole cache memory occupation is ruled by

˙X = b� ⌘X, (2)

where b :=
P

c

b
c

+ � is the total caching rate. Let X(0) = 0:
the corresponding dynamics for the reserved cache memory
writes

X(t) = min

⇢
N

0

,
b

⌘

�
1� e�⌘t

��

The MNO will ensure full memory utilization (X(1) = N
0

)
by choosing ⌘ such that b/⌘ � N

0

. It follows from a simple
calculation that, in steady state, the fraction of the caching
space for CP c is

x
c

(t) =
b
c

b
c

+ b�c

+ �
(3)

Because contents’ requests are uniform across the MNO’s
network, the same fraction of cache space is occupied by CP
c in each local edge cache unit.

In particular, CP c will split his reserved memory among
content classes according to a proportional share alloca-
tion with weighting coefficients ui

c

, i = 1, . . . ,M , whereP
M

i=1

ui

c

= 1. Vector u
c

:= (u1

c

, . . . , uM

c

) defines the caching
policy of CP c.

Then, the fraction of local edge cache memory occupied by
contents of class i from CP c is

xi

c

=

b
cP

v2C bv + �
ui

c

(4)

Finally, a tagged content of class i of CP c is found in
the memory of a local edge cache with probability P i

c

=

min{ N

N

i
c
xi

c

, 1}. In the rest of the paper, we will assume
N < N i

c

for the sake of simplicity.
Now, we want to quantify the probability for a given

requested content not to be found in the local edge cache
memory, i.e., the missed cache probability.

Under the Poisson assumption, the probability for a tagged
UE not to find any SC within distance r is e�⇡r

2
⇤. Applying

a thinning argument, the probability not to find a content of
class i of CP c within distance r is e�⇡r

2
⇤P

i
c .

The cost function of CP c is the weighted sum of the missed
cache probabilities, namely the weighted missed cache rate
(WMCR)

U
c

(b
c

, b�c

,u
c

) =

X

i

gi
c

e
�⇡r

2
⇤

N
Ni

c

bc
bc+b�c+�u

i
c (5)

where we have defined gi
c

:= wi

c

N i

c

g̃i
c

, and wi

c

weights the
relative importance of class i at CP c. The cost function
depends on caching rate b

c

and on caching policy u

c

. Also,
b�c

:=

P
v 6=c

b
v

accounts for the fact that other CPs share the
same cache space.

Next, we shall describe the optimal caching policy u

⇤
c

attained when CP c aims at minimizing (5), for a fixed value
b
c

of the caching rate.

Fig. 1. Local edge cache unit providing N memory slots.

IV. OPTIMAL CACHING POLICY

In order to analyze the model introduced before, we need
to characterize the CPs’ response to competitors’ actions, i.e.,
b�c

. Hence, we assume that each CP aims at minimizing his
own WMCR, and that the network provider guarantees full
information to CPs, i.e., storage capacity, spatial density of
SCs and total caching rate. We defer the study of the system
under partial information at the CP’s side to later works. We
hence consider the following resources allocation problem for
the single CP:

Definition 1 (Optimal Caching Policy). Given opponents’
strategy profile b�c

= (b
1

, . . . , b
c�1

, b
c+1

, . . . , b
C

) the opti-
mal caching policy of c 2 C is the solution of

u

⇤
c

:= arg min

u

1
c,...,u

M
c

U
c

(b
c

, b�c

,u
c

) (6)

subject to the following constraints:

ui

c

� 0,
X

i

ui

c

= 1 (7)

It is immediate to observe that U
c

(b
c

, b�c

,u
c

) is a strictly
convex function in the single CP control u

c

, so that a unique
solution exists [21]. In order to solve the constrained mini-
mization problem in equations (6) and (7) we can write the
Lagrangian for player c 2 C as follows

L
c

(u

c

, µ, ⌫) =
X

i

gi
c

e�⇤

i
c

bc
b+�u

i
c �
X

i

µ
i

ui

c

+⌫

 
X

i

ui

c

� 1

!

For notation’s sake, we have defined ⇤

i

c

= ⇡r2 ⇤ N

N

c
i

. Further-
more, since constraints are affine, the Karush Kuhn Tucker
(KKT) conditions solve the problem [21]:

r
u

L
c

(u

c

, µ, ⌫) = 0X

i

ui

c

� 1 = 0

ui

c

� 0, µ
i

� 0, ⌫ � 0, µ
i

ui

c

= 0

Using a standard argument [21], by complementary slack-
ness, ui

c

> 0 implies µ
i

= 0; let us define index set
I := {i 2 {1, 2, . . . ,M} |ui

c

> 0}.
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A. Waterfilling solution

The solution to the KKT conditions can be formulated
as a waterfilling-like solution [21]. In fact, from stationarity
conditions, µ

r

writes as

@L
c

@ui

c

= �⇤

i

c

b
c

b+ �
gi
c

e�⇤

i
c

bc
b+�u

i
c � µ

i

+ ⌫ = 0

µ
i

= ⌫ � ⇤

i

c

b
c

b+ �
gi
c

e�⇤

i
c

bc
b+�u

i
c

which can be specialized into the following two cases.
Case i: ⌫ > ⇤

i

c

gi
c

bc
b+�

. In this case µ
i

> 0 for any ui

c

� 0.
Hence, by complementary slackness, ui

c

= 0.
Case ii: ⌫  ⇤

i

c

gi
c

bc
b+�

. It is always possible to find ui

c

> 0

satisfying the stationarity condition and a µ
i

that satisfies the
complementary slackness condition: just set µ

i

= 0 and

ui

c

=

b+ �

⇤

i

c

b
c

log

✓
⇤

i

c

gi
c

⌫

b
c

b+ �

◆

Finally, let ↵
i

:=

b+�

⇤

i
cg

i
cbc

. For notation’s sake, the solution
writes

u⇤
c

i

=

(
b+�

⇤

i
cbc

(log(1/⌫)� log(↵
i

)) if 1/⌫ > ↵
i

0 if 1/⌫  ↵
i

(8)

subject to:
X

i

u⇤
c

i

= 1

It is immediate to recognize a waterfilling solution in log-
arithmic scale. Let ↵ = min

i

↵
i

. Indeed
P

i

u⇤
c

i is strictly
increasing in 1/⌫, 1/⌫ > ↵. Also,

P
i

u⇤
c

i

(1/⌫) = 0 for
1/⌫  ↵, and lim

1/⌫!1
P

i

u⇤
c

i

(1/⌫) = 1. Thus, there exists
a unique positive ⌫ satisfying our problem.

Actually, the solution is determined in polynomial time
O(M). Now, we can sort class indexes in increasing order of
the ↵

i

s. For every choice ↵
i

 1/⌫  ↵
i+1

, we can determine
a value of ⌫

log(1/⌫) =

bc
bc+b�c+�

+

P
k

r=1

log↵r

⇤

r
cP

k

r=1

1

⇤

r
c

for k = 1, . . . ,M . Then, consider the only 1/⌫, compatible
with (8). We observe that ↵

i

 ↵
i+1

is equivalent to state

wi

c

g̃i
c

� wi+1

c

g̃i+1

c

(9)

and if ui

c

= 0, indeed ui+1

c

= 0, so that we can derive the
following
Corollary 1 (Threshold structure). There exists 1  r

0

 M
such that u⇤

c

s > 0 for s  r
0

and u⇤
c

s

= 0 otherwise.

Closed form. The stationarity conditions can be used to
determine the structure of the optimal solution in closed form.
Let 0  i  r

0

, then µ
i

= µ
r0 = 0, so that

⇤

r0
c

gr0
c

e�⇤

r0
c

bc
b+�u

⇤r0
c

= ⇤

i

c

gi
c

e�⇤

i
c

bc
b+�u

⇤i
c

and
u⇤i

c

=

⇤

r0
c

⇤

i

c

u⇤r0
c

� b+ �

⇤

i

c

b
c

log

⇣gr0
c

⇤

r0
c

gi
c

⇤

i

c

⌘

Finally, due to the constraint saturation

u⇤r0
c

=

1 +

b+�

bc

P
r0

i=0

1

⇤

i
c
log

⇣
g

r0
c ⇤

r0
c

g

i
c ⇤

i
c

⌘

P
r0

i=0

⇤

r0
c
⇤

i
c

(10)

From Cor. 1, the optimal solution corresponds to the maximal
r
0

such that u⇤r0
c

solving (10) lies in [0, 1]
Threshold structures in waterfilling-type solutions are ex-

pected: here, from (9), by increasing the cache space, classes
in the cache will appear according to increasing ↵

i

s, i.e.,
decreasing values of wi

c

g̃i
c

. From now on, we assume content
classes sorted according to Cor. 1. The weights w

i

s let CPs
control such order, whereas, when wi

c

= wj

c

for all i, j, the
optimal caching policy depends on contents’ demand rate only,
as expected.

V. OPTIMAL COST FUNCTION

CPs who optimize contents to be cached, for a given value
of b

c

, minimize the expected WMCR U
c

(b
c

, b�c

,u
c

) in the
caching policy u

c

. In the game model presented in the next
section we shall leverage the convexity properties of the
optimal cost function U

c

: R2

+

! R, defined as

U(b
c

, b�c

) := min

uc2⇧

(
X

i

gi
c

e
�⇤

i
c

bc
bc+b�c+�u

i
c

)
(11)

where ⇧ = {u 2 RM |u
c

� 0,
P

ui

c

= 1}. As already proved,
the minimum in (11) is unique, hence U

c

(b
c

, b�c

) is well
defined. Hereafter we demonstrate its convexity in b

c

.
Actually, convexity can be derived for a class of functions

wider than the posynomial expression appearing in (11). We
need the following fact, whose proof is found in [19].

Lemma 1. Let f be non increasing, with domain R
+

. Let
H(x) = x f(x) be convex. Then f is convex on R

+

.

We can now derive the general conditions for the convexity
of the optimal missed cache rate

Theorem 1. Let h : RM ! R, convex and decreasing in each
variable x

i

for i = 1, . . . ,M , then

U
c

(b
c

, b�c

) := min

uc2⇧

h
⇣ u1

c

b
c

b
c

+ b�c

+ �
, . . . ,

uM

c

b
c

b
c

+ b�c

+ �

⌘

is convex and decreasing in b
c

.

The case in (11) satisfies the assumptions by letting h(x) =P
i

gi
c

e�⇤

i
c xi .

For presentation’s sake, in Sec. VI we shall identify
U(b

c

, b�c

,u⇤
c

) := U(b
c

, b�c

). There, we also need the fol-
lowing result, whose proof is found in [19].

Lemma 2 (Limit solution for b
c

! 0). There exists " > 0

such that, for any b
c

< ", u⇤
c

= (1, 0, . . . , 0) and the optimal
WMCR is

U
c

(b
c

, b�c

,u⇤
c

) = g1
c

e
�⇤

1
c

bc
bc+b�c+�

+

X

i>1

gi
c

(12)
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A. The case M = 2

For two classes of contents, M = 2, the expression for
U
c

(b
c

, b�c

) is derived in closed form. This sample case retains
the main properties of the optimal policy and provides insight
into the structure of the optimal WMCR. The optimal WMCR
writes

U
c

(b
c

, b�c

) = min

0u

1
cbc

g1
c

e
�⇤

1
c

bc u1
c

bc+b�c+�
+ g2

c

e
�⇤

2
c

bc(1�u1
c)

bc+b�c+�

For notation’s sake, we denote � :=

w

2
c g̃

2
c

w

1
c g̃

1
c

. The (unconstrained)
minimum of the right hand term is attained at

u⇤1
c

=

⇤

2

c

⇤

1

c

+ ⇤

2

c

� (b
c

+ b�c

+ �)

b
c

(⇤

1

c

+ ⇤

2

c

)

log(�) (13)

When u⇤1
c

2 (0, 1), the utility function of c 2 C is

U
c

(b
c

, b�c

) = K
c

e
� ⇤1

c⇤2
c

⇤1
c+⇤2

c

bc
bc+b�c+�

where the constant appearing on the first term is

K
c

= g1
c

· �
⇤1
c

⇤1
c+⇤2

c
+ g2

c

· �� ⇤2
c

⇤1
c+⇤2

c (14)

Incidentally, the convexity of U
c

(·, b�c

) for M = 2 can be
verified directly from the convexity of exp(1/x) and by com-
position with an affine function, which preserves convexity.

We are interested in precisely characterizing the behavior of
the expected WMCR as a function of b

c

and of other system
parameters.

Now, we can obtain the following result

Proposition 1. i. Assume � < 1. Let ⇤

1

c

> log(1/�), and
define the threshold for content 2

b?
c

= (b�c

+ �)
log(1/�)

⇤

1

c

� log(1/�)
(15)

then it holds

U
c

(b
c

, b�c

) =

8
<

:
g1
c

e
�⇤

1
c

bc
bc+b�c+�

+ g2
c

if 0  b
c

< b?
c

K
c

e
� ⇤1

c⇤2
c

⇤1
c+⇤2

c

bc
bc+b�c+� if b

c

� b?
c

(16)
where the corresponding optimal caching policy is (1, 0) in
the first case, (u⇤1

c

, 1� u⇤1
c

) in the second case; constant K
c

is defined in (14)
ii. Let ⇤1

c

 log(1/�), then (1, 0) case holds for any b
c

> 0

with associated expected WMCR defined as in case i.
iii. If � > 1, both i. and ii. hold with role of content 1 and 2

reversed.

The proof follows by inspection of (13) considering u⇤1
c

as
an unconstrained minimizer. First, we observe that if � < 1,
then u⇤1

c

> 0, i.e., the first content class is always cached. The
other conditions follow by imposing u⇤1

c

� 1.
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Fig. 2. Case M = 2: (a) Increasing value of b?c as a function of �, for
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c = 1 and u�c = � = 1 (b) Region of switch on of

content 2.
Discussion

Hereafter we draw insight from Prop. 1. First, as seen there,
the optimal caching rate u⇤1

c

depends solely on a few system
parameters, namely gi

c

and ⇤

i

c

for i = 1, 2. Actually, when
� < 1 then u1

c

⇤
= 1� u2

c

⇤
> 0: contents of type 1 are always

cached because w2

c

g̃2
c

< w1

c

g̃1
c

. The fact that contents of type
2 are cached depends on the sign of ⇤1

c

� log(1/�), which in
turn determines the actual structure of the waterfilling solution.

From Prop. 1, ⇤

1

c

determines whether contents of type 1

will be cached or not. In practice, when ⇤

1

c

> log(1/�),
there exists a critical value of the CP caching rate b

c

, i.e.,
the threshold (15). Above such value, contents of type 2

are cached, below that they are not cached. For the sake of
consistency, in the case when ⇤

1

c

 log(1/�), b? = +1 while
for � > 1, b? = 0.

Furthermore, b?
c

increases linearly with both the MNO
caching rate � and the competitors’ aggregate caching rate b�c

:
competition tends to prevent caching of contents with smaller
gi
c

⇤

i

c

. Actually, under higher competition figures, optimal
caching policies are of the type u1

c

⇤
= 1, and u⇤2

c

= 0. We
observe that, as detailed in case ii., not always there exists a
caching rate b

c

such that it is worth caching the least profitable
content class.

We have provided a pictorial representation of the results
of this section in Fig. 2 for the case M = 2. In Fig. 2(a)
the value of ⇤

1

c

has been fixed at different values and the
corresponding behavior of the threshold value b?

c

has been
reported as a function of �. For exp(⇤

1

c

)  1/�, it holds
b?
c

= 1 since there is no switch-on value of b
c

for class
2. Fig. 2(b) represents the region where the switch-on of the
less popular content is possible as it can be derived from the
expression (15) as a function of 1/� and ⇤

1

c

.

VI. GAME MODEL FOR CONTENT PROVIDERS

So far the caching rate b
c

has been input for the CPs in order
to decide how to optimize the caching policy u

c

. Let MNO
propose to CPs costs �

c

per caching slot. The strategy of CP c
in turn is the number b

c

of caching slots he reserves per day,
with convex and compact strategy set [0, B

c

]. The best re-
sponse b⇤

c

of CP c depends on his contents and his opponents’
strategies. It minimizes cost function U

c

(b
c

, b�c

,u
c

) + �
c

· b
c

by solving:

min

bc

U
c

(b
c

, b�c

,u
c

) + �
c

· b
c

(17)

0  b
c

 B
c
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Note: all the following results can be generalized for the case
of a general continuously differentiable convex cost �

c

(b
c

).
Here b�c

=

P
v 6=c

b�v

and opponents’ strategy profile
writes b�c

= (b
1

, . . . , b
c�1

, b
c+1

, . . . , b
C

).
The u

c

appearing in (17) is a general caching policy and
we shall consider two cases.
Caching Rate Optimizers. In this case, the best response of
CPs is decided for a fixed caching policy u

c

. I.e., each CP de-
cides beforehand the caching policy u

c

for any given caching
rate b

c

. Let V
c

(x
c

) =

P
i

g
c

e�⇤

i
cxc : it is strictly convex and

decreasing and U
c

(b
c

, b�c

,u
c

) = V
c

(b
c

/(
P

b
c

+ �)). Hence,
if all players are caching rate optimizers, the game is a variant
of the Kelly mechanism [22]. The basic Kelly mechanism
allocates a divisible resource among players proportionally
to the players’ bids, in our case the equivalent required
caching rates. Here, compared to the standard formulations
in literature [17], [23], [22], [16] our formulation combines
three specific features which render it non standard:
• bounded compact and convex strategy set;
• � > 0 is a bidding reservation, as described in [16];
• prices may differ from player to player, i.e., the game is a
generalized Kelly mechanism [22]

The game outlined above is a generalized Kelly mechanism
with reservation and bounded strategy set.
Simultaneous Optimizers. In this case u

c

= u

⇤
c

(see Sec. V).
The structure of the game still resembles the Kelly mechanism
[23]. For M = 1, the game corresponds to the case of caching
rate optimizers. For M � 2, the fact that the game is actually
a Kelly mechanism follows from [19]

Lemma 3 (Kelly form for Simultaneous Optimizers). If play-
ers are simultaneous optimizers, the game (17) is a generalized
Kelly mechanism with reservation and bounded strategy set.

Hence, even in the case of a simultaneous optimizer CP
c, the optimal WMCR can be expressed as U

c

(b
c

, b�c

) =

U
c

(b
c

, b�c

,u⇤
c

) = V
c

(b
c

/(
P

b
c

+ �)) where V
c

(x
c

) is convex
and continuously differentiable in x

c

=

bcP
bc+�

.

A. Existence and uniqueness of the Nash Equilibrium

In the general case, both CPs who are caching rate opti-
mizers and who are simultaneous optimizers may be present.
From the above discussion, the game is still a generalized
Kelly mechanism with reservation and bounded strategy set.

In order to characterize the possible equilibria, we describe
first the best response b⇤

c

of each player:

Lemma 4. Given the opponents’ strategy profile b�c

:
i. It holds b⇤

c

= 0 if and only if ˙U(0, b�c

) > ��
c

where

˙U(0, b�c

) =

8
<

:
�

P
i g

i
c⇤

i
cu

i
c

b�c+�

caching rate optimizers

� g

1
c⇤

1
c

b�c+�

simultaneous optimizers

ii. Let b⇤
c

> 0, then b⇤
c

= min{b
c

, B
c

}, where ˙U
c

(b
c

, b�c

) =

��
c

.

The above statement follows from the fact that the objective
function in (17) is convex and thus has a unique minimum in

[0, B
c

]. The expression of ˙U(0, b�c

) in the case of simultane-
ous optimizers is derived from the expression (12) reported in
Lemma 1.

The zero b

⇤
= 0 and the saturated b

⇤
= B Nash equilibria

are easily characterized in the following

Proposition 1. i. b⇤
= 0 is the unique Nash equilibrium if

and only if g1
c

⇤

1

c

< �
c

� if c is a simultaneous optimizer andP
gi
c

⇤

i

c

< �
c

� if c is a caching rate optimizer.
ii. b⇤

= B is the unique Nash equilibrium if and only if it
holds ˙U

c

(B
c

,
P

B
c

+ �) > ��
c

for all c 2 C.

We observe that in the original Kelly mechanism, the
strategy vector 0 is never a Nash equilibrium [17], [23].

In our case, it may be the Nash equilibrium because the
MNO’s usage of the cache (� > 0). In fact, the physical
interpretation is provided by condition i. in Prop. 1. No CP
has incentive to start caching when the marginal utility is
below �

c

�. This is the value of the cache share reserved to the
MNO operations. Conversely, at low prices a saturated Nash
equilibrium b

⇤
= B is expected.

In the general case, the presence of a bounded strategy
set requires a specific proof for the uniqueness of the Nash
equilibrium, as seen in the following.

Theorem 2. A unique Nash equilibrium exists for the game.

Here, we describe a brief outline of the full proof, which is
found in [19]. In order to prove the existence of Nash equilibria
of the game, it is sufficient to observe that:
• the multistrategy set is a convex compact subset of RC ;
• U

c

(b
c

, b�c

,u
c

) is convex conditionally to the opponents’
strategy, both for simultaneous and caching rate optimizers.

Hence, the existence of Nash equilibria is a direct conse-
quence of the result of Rosen [24] for n–persons concave
games. From Prop. 1, Nash equilibria of the type b

⇤
= 0

or b

⇤
= B are always unique. In the other cases, uniqueness

can be derived by extending an argument [16] to the case of a
bounded strategy set. However, the original argument requires
cost functions to be twice continuously differentiable in b

c

.
For simultaneous optimizers, this just holds piecewise and a
continuity argument needs to be derived. Finally, uniqueness
applies also when part of the players are simultaneous opti-
mizers and the others are caching-rate optimizers.

From the proof of Thm. 2 a simple bisection algorithm
calculates the unique solution of the game. In the numerical
section we shall further characterize the game by describing
the pricing operated by the MNO and the convergence to the
Nash equilibrium when CPs are myopic cost minimizers.

VII. NUMERICAL RESULTS

In this section we first validate the models’ assumptions
against a real world scenario. Then, we focus on the single
player’s actions, having fixed the remaining players’ strategies.
Finally we provide numerical characterization of the game
introduced in the previous section 2.

2Both the Python scripts and the dataset can be downloaded at https://www.
dropbox.com/s/mm1hja2dbp4tw0x/caching scripts.tar.gz?dl=0
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Fig. 3. (a) Milan downtown base stations deployment, detail of the area considered; (b) CP optimal cost: theoretical prediction (c) CP optimal cost: outcome
of the simulation (d) CP optimal caching policy for varying bc and fixed value of r = 210 m. Settings are: M = 3, gic = 0.589, 0.294, 0.118, � = 2,
bc = 70, b�c = 300, N = 10000, N i
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Fig. 4. (a) Cost function for simultaneous optimizer CP as bc varies, all parameters are the same as in Fig 3(d); (b) Dynamic of the cost function for a 3-
simultaneous optimizers game. Settings are: g1 = [0.18, 0.27, 0.55], g2 = [0.3, 0.6, 0.1], g3 = [0.6, 0.1, 0.3], ⇤1

1 = ⇤2
1 = ⇤3

1 = 0.3, ⇤1
2 = ⇤2

2 = ⇤3
2 = 0.1,

⇤1
3 = ⇤2

3 = ⇤3
3 = 0.2 (c) detail of the corresponding restpoint; (d) revenue of the MNO for increasing uniform price. Parameters are: g1 = [0.3, 0.2, 0.5],

g2 = [0.3, 0.5, 0.2], g3 = [0.29, 0.36, 0.35], N = 70, N i
1 = 600, N i

2 = 700, N i
3 = 500, � = 2, r = 73m.

Point Process. Our model assumes that SCs are distributed
according to a spatial Poisson process of given intensity ⇤.
Hence, we have tested the performance of the optimal caching
policy when the SCs spatial deployment does not adhere
to the Poisson point distribution assumption. In order to do
so, the theoretical results are compared with the outcome
of a simulation performed over a real dataset. The dataset
(source http://opencellid.org/) is the sample distribution of
the cell towers deployed in downtown Milan over a 2 ⇥ 3

Kms area, as depicted in Fig. 3(a). It includes the location of
4717 cell towers corresponding to ⇤ = 786.2 base stations
per square Km. The distribution of base stations in a very
densely populated urban area has been used as a reasonable
approximation for a SC deployment.

The sample spatial density ⇤ has been used in the model
in order to evaluate, under the same spatial density of SCs,
the theoretical CP’s cost function for increasing values of the
covering radius 0  r  400m in the following cases (see
Fig. 3(b)): a) the CP performs a uniformly random caching
policy ui

c

= 1/3, i = 1, 2, 3 for constant caching rate b
c

b)
the CP performs a popularity-based caching policy, i.e., ui

c

:=

gi
c

/
P

gi
c

, for constant b
c

c) the CP is a caching rate optimizer
adopting a popularity based caching policy d) the CP is a
simultaneous optimizer.

The results in Fig. 3(c) refer to a simulation encompassing
the same strategies under the sample point distribution of
Fig. 3(a). The simulation has been performed by repeatedly
selecting a random UE position in the playground, and mea-

suring the sampling frequency of missed cache events upon
requesting contents from SCs within the UE’s radio range.

By comparing the results in Fig. 3(b) and Fig. 3(c), we
observe that the Poisson distribution – as expected due to
the non-uniform spatial density of the sample real-world
deployment – tends to slightly underestimate the cost incurred
by CPs. However, the theoretical and the simulated results are
very close and the relative performance of the caching policies
match the prediction of the theoretical model. This result
confirms that the proposed model performs well even in real
world scenarios: under a non-Poisson point process for the SC
spatial distribution a rational optimizing player would choose
the proposed optimal strategy over other possible strategies.
Cost function. In the next experiment we describe the optimal
caching policy (Fig. 3(d)) and the cost function (Fig. 4(a))
in the case M = 3. In particular, Fig. 3(d) reports on the
characteristic waterfilling structure of the optimal caching as
the parameter b

c

increases. As predicted by the model, the
water-filling solution has a threshold structure. The value of
b
c

determines the content classes that are active: for large b
c

all content classes are cached, whereas for small values only a
few do. In Fig. 4(a) we have reported the typical convex shape
of the cost function for increasing values of b�c

. It is worth
noting how the actions of opponents, reflected in the value of
b�c

, affect the shape of c’s cost function.
Convergence to the Nash equilibrium. In Fig. 4(b) and Fig. 4(c)
we have simulated a game of 3 CPs who are simultaneous
optimizers. They are myopic players: each one of them, chosen
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at random, optimizes his own cost function based on the
opponents’ profile. Numerical simulations show that, after a
small number of iterations, the game stabilizes quickly at the
same restpoint irrespective of initial strategies. As depicted in
Fig. 4(c) the restpoint is indeed a minimum for each CP’s cost
function, i.e., it is the Nash equilibrium of the game. From this
behavior, the game appears to have the finite improvement
property [25], even though we cannot identify analytically
a potential for the game. If true, the system would indeed
converge to the Nash equilibrium when each player optimizes
independently his own cost function against the opponents.

Finally, Fig 4(d) depict the daily revenue of the MNO at
the Nash equilibrium b

⇤ as a function of the caching price �,
uniform for all CPs. Because the MNO’s total revenue

P
c

� ·
b⇤
c

depends on the Nash equilibrium, she could optimize her
revenue by leveraging the CPs’ cost structure. We observe
numerically that the total revenue appears to have a unique
maximum at a certain maximizer price �⇤. This suggests the
existence of a unique Stackelberg equilibrium for the proposed
scheme, which permits to compute the global restpoint of the
system when both CPs and MNO behave strategically.

VIII. CONCLUSIONS

Mobile edge caching will enhance the delivery of contents
such as, e.g., videos, music files, online games, by reducing
latency and round-trip-time. It will empower premium connec-
tivity services while avoiding backhaul congestion. We model
the competition of CPs for the caching service made available
by a MNO. Our model captures several features, including
popularity of contents, spatial distribution of small cells,
competition for cache memory and price effects. CPs optimize
the allocation of contents in order to reduce customers’ missed
cache rate. Best response of single CPs are of waterfilling type
according to demand rates and class priority. The validity of
the caching policy optimization has been tested on real-world
traces. Finally, competition for the shared caching memory
is formulated as a convex n–persons game: CPs trade off
the expected missed cache rate for the memory price. It is
a non-smooth Kelly mechanism with reservation and bounded
strategy set – for which new existence and uniqueness of Nash
equilibrium are provided. When CPs are myopic optimizers,
convergence to the Nash equilibrium is showed numerically.

Furthermore, the game appears to have a unique Stackelberg
equilibrium, a relevant feature for the MNO in order to
maximize her revenue. Online learning of the optimal price
over time will be part of future works.
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