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Abstract—The Eschenauer–Gligor (EG) random key predistri-
bution scheme has been widely recognized as a typical approach
to secure communications in wireless sensor networks (WSNs).
However, there is a lack of precise probability analysis on the
reliable connectivity of WSNs under the EG scheme. To address
this, we rigorously derive the asymptotically exact probability of
k-connectivity in WSNs employing the EG scheme with unreliable
links represented by independent on/off channels, where k-
connectivity ensures that the network remains connected despite
the failure of any (k− 1) sensors or links. Our analytical results
are confirmed via numerical experiments, and they provide precise
guidelines for the design of secure WSNs that exhibit a desired
level of reliability against node and link failures.

Index Terms—Connectivity, key predistribution, minimum de-
gree, random graphs, security, wireless sensor networks.

I. INTRODUCTION

The Eschenauer–Gligor (EG) random key predistribution

scheme [4] has been widely regarded as a typical solution to

secure communications in wireless sensor networks (WSNs)

[5], [6], [7], [8], [9], [10], [12], [15]. The scheme operates as

follows. In a WSN with n sensors, before deployment, each

sensor is independently assigned Kn distinct keys which are

selected uniformly at random from a pool of Pn keys, where

Kn and Pn are both functions of n. After deployment, any two

sensors can securely communicate over an existing wireless link

if and only if they share at least one key.

Wireless links between nodes may become unavailable due

to the presence of physical barriers between nodes or because

of harsh environmental conditions severely impairing trans-

mission. We model unreliable links as independent channels,

each being on with probability pn or being off with probability

(1−pn), where pn is a function of n for generality. Such on/off

channel model has been used in the context of secure WSNs

[9], [15], [12], and is shown to well approximate the disk model

[5], [6], [9], [15], [12], where any two nodes need to be within

a certain distance to establish a wireless link in between.

Given the randomness involved in the EG key predistribution

scheme, and the unreliability of wireless links, there arises

a basic question as to how one can adjust the EG scheme

parameters Kn and Pn, and the link parameter pn, so that the

resulting network is securely and reliably connected. Reliability

against the failure of sensors or links is particularly important

in WSN applications where sensors are deployed in hostile

environments (e.g., battlefield surveillance), or, are unattended

for long periods of time (e.g., environmental monitoring), or,

are used in life-critical applications (e.g., patient monitoring).

To answer the question above, this paper presents the asymptot-

ically exact probability of k-connectivity in secure WSNs under

the EG scheme with unreliable links. A network (or a graph)

is said to be k-connected if it remains connected despite the

deletion of any (k−1) nodes or links. An equivalent definition

is that each node can find at least k internally node-disjoint

paths to any other node. With k = 1, k-connectivity simply

means connectivity.

Our result on the asymptotically exact probability of k-

connectivity complements a zero-one law established in our

prior work [15], [12], and is significant to obtain a precise

understanding of the connectivity behavior of secure WSNs.

First, with the zero-one law, one is only provided with design

choices which lead to networks that are k-connected with

high probability or to that are not k-connected with high

probability, where an event happens “with high probability”

if its probability asymptotically converges to 1. Given the

trade-offs involved between connectivity, security and memory

load [4], [9], it would be more useful to have a complete

picture by obtaining the asymptotically exact probability of k-

connectivity. In addition, there may be situations where the

network designer is interested in having a guaranteed level of

k-connectivity (one-laws would provide conditions for that) but

may also be interested in having some level of k-connectivity

without such guarantees (one-laws would fall short in providing

this). Our result fills this gap. Finally, it is not possible to

determine the width of the phase transition from zero-one laws;

the width of the phase transition is often calculated by the

difference in parameters that it takes to increase the probability

of k-connectivity from ǫ to (1 − ǫ), for some ǫ < 0.5. In

other words, it is not clear from zero-one laws how sensitive

the probability of k-connectivity is to the variations in the

EG scheme parameters Kn and Pn, and the link parameter

pn. By providing the asymptotically exact probability of k-

connectivity, our findings provide a clear picture of these

intricate relationships.

The rest of the paper is organized as follows. We describe the

system model in Section II. Section III presents the main results

as Theorem 1, which is established in Section IV. In Section VI,

we present numerical experiments that confirm our analytical

findings. Afterwards, Section VII surveys related work, and

Section VIII concludes the paper. The Appendix presents a few

useful lemmas and their proofs.

II. SYSTEM MODEL

We now explain the system model. Consider a WSN with

n sensors operating under the EG scheme and with wireless
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links modeled by independent on/off channels. Let a node set

V = {v1, v2, . . . , vn} represent the n sensors. According to the

EG scheme, each node vi ∈ V is independently assigned a set

(denoted by Si) of Kn distinct cryptographic keys, which are

selected uniformly at random from a key pool of Pn keys. Any

pair of nodes can then secure an existing communication link

as long as they have at least one key in common.

The EG scheme results in a random key graph [1], [7], [10],

also known as a uniform random intersection graph. This graph

denoted by G(n,Kn, Pn) is defined on the node set V such that

any two distinct nodes vi and vj have an edge in between, an

event denoted by Γij , if and only if they share at least one key.

Thus, the event Γij means
(
Si ∩ Sj 6= ∅

)
.

Under the on/off channel model for unreliable links, each

wireless link is independently being on with probability pn or

being off with probability (1− pn). Defining Cij as the event

that the channel between vi and vj is on, we have P [Cij ] = pn,

with P[A] throughout the paper meaning the probability that

event A happens. The on/off channel model induces an Erdős-

Rényi graph G(n, pn) [2] defined on the node set V such that

vi and vj have an edge in between if Cij takes place.

Finally, we denote by G(n,Kn, Pn, pn) the underlying graph

of the n-node WSN under the EG scheme with unreliable links.

We often write G rather than G(n,Kn, Pn, pn) for brevity.

Graph G is defined on the node set V such that there exists

an edge between nodes vi and vj if events Γij and Cij happen

at the same time. We set event Eij := Γij ∩ Cij and also

write Eij as Evivj
when necessary. It is clear that G is the

intersection of G(n,Kn, Pn) and G(n, pn); i.e.,

G = G(n,Kn, Pn) ∩G(n, pn). (1)

We define sn as the probability that two distinct nodes share

at least one key and qn as the probability that two distinct nodes

have an edge in between in graph G. Clearly, sn and qn both

depend on Kn and Pn, while qn depends also on pn. As shown

in previous work [1], [7], [10], sn is determined through

sn = P[Γij ] =

{

1−
(
Pn−Kn

Kn

)/(
Pn

Kn

)
, if Pn > 2Kn,

1, if Pn ≤ 2Kn.

Then by the independence of Cij and Γij , we have

qn = P[Eij ] = P[Cij ] · P[Γij ] = pn · sn (2)

=

{

pn ·
[
1−

(
Pn−Kn

Kn

)/(
Pn

Kn

)]
, if Pn > 2Kn,

pn, if Pn ≤ 2Kn.
(3)

III. THE MAIN RESULTS

We present the main results below. Throughout the paper,

k is a positive integer and does not scale with n, and e is

the base of the natural logarithm function, ln. We use the

standard asymptotic notation o(·), O(·), ω(·),Ω(·),Θ(·) and ∼;

in particular, for two positive sequences an and bn, the relation

an ∼ bn means limn→∞ an/bn = 1.

Theorem 1. For graph G(n,Kn, Pn, pn) under Pn = Ω(n)
and Kn

Pn
= o(1), with qn denoting the edge probability and a

sequence αn defined through

qn =
lnn+ (k − 1) ln lnn+ αn

n
, (4)

if limn→∞ αn = α∗ ∈ (−∞,∞), then as n → ∞,

P [ Graph G(n,Kn, Pn, pn) is k-connected. ] → e−
e−α∗

(k−1)! .

Theorem 1 provides the asymptotically exact probability

of k-connectivity in graph G. Its proof is given in the next

section. From (3), for all n sufficiently large, under Pn > 2Kn

which is clearly implied by the condition Kn

Pn
= o(1), the

edge probability qn in graph G is given by the expression

pn ·
[
1−

(
Pn−Kn

Kn

)/(
Pn

Kn

)]
. With a much simpler approximation

pn · Kn
2

Pn
for qn, we present below a corollary of Theorem 1.

Corollary 1. For graph G(n,Kn, Pn, pn) under Pn = Ω(n)

and Kn
2

Pn
= o

(
1

lnn

)
, with a sequence βn defined through

pn · Kn
2

Pn
=

lnn+ (k − 1) ln lnn+ βn

n
, (5)

if limn→∞ βn = β∗ ∈ (−∞,∞), then as n → ∞,

P [ Graph G(n,Kn, Pn, pn) is k-connected. ] → e−
e−β∗

(k−1)! .

Setting pn = 1 in Theorem 1 and Corollary 1, we obtain the

corresponding results for random key graph G(n,Kn, Pn) in

view of (1). Furthermore, we can use monotonicity arguments

[15] to derive the zero-one laws for k-connectivity in graph

G. Specifically, under the conditions of Theorem 1 (resp.,

Corollary 1), graph G is k-connected with high probability

if limn→∞αn = ∞ (resp., limn→∞βn = ∞), and is not k-

connected with high probability if limn→∞αn = −∞ (resp.,

limn→∞βn = −∞). The arguments are straightforward from

our work [15] and are omitted here due to space limitation.

Before establishing Corollary 1 using Theorem 1, we explain

the practicality of the conditions in Theorem 1 and Corollary 1:

Pn = Ω(n), Kn

Pn
= o(1) and Kn

2

Pn
= o

(
1

lnn

)
. First, the condition

Pn = Ω(n) indicates that the key pool size Pn should grow

at least linearly with n, which holds in practice [4], [10], [9].

Second, the condtions Kn

Pn
= o(1) and Kn

2

Pn
= o

(
1

lnn

)
(note

that the latter implies the former) are also practical in secure

sensor network applications since Pn is expected to be several

orders of magnitude larger than Kn [4], [10], [9].

We now prove Corollary 1 using Theorem 1. We have the

conditions of Corollary 1: Pn = Ω(n), Kn
2

Pn
= o

(
1

lnn

)
, and

(5) with limn→∞ βn = β∗ ∈ (−∞,∞). First, it is clear that

βn = β∗ ± o(1). Under Kn
2

Pn
= o

(
1

lnn

)
= o(1), from [15,

Lemma 8], it holds that sn = Kn
2

Pn
·
[
1±O

(
Kn

2

Pn

)]
. In view of

the above, we obtain from (2) and (5) that

qn = pn · sn = pn · Kn
2

Pn
·
[
1±O

(
Kn

2

Pn

)]

= lnn+(k−1) ln lnn+βn

n ·
[
1± o

(
1

lnn

)]

= lnn+(k−1) ln lnn+β∗±o(1)
n . (6)

With αn defined by (4), we use (6) to derive αn = β∗ ± o(1),
which yields that α∗ denoting limn→∞ αn equals β∗. Then in

view of α∗ = β∗ and that the conditions of Theorem 1 all hold

given the conditions of Corollary 1 (note that Kn
2

Pn
= o

(
1

lnn

)

implies Kn

Pn
= o(1)), Corollary 1 follows from Theorem 1.

IV. ESTABLISHING THEOREM 1

For any graph, k-connectivity implies that its minimum

degree is at least k, while the other way does not hold

since a graph may have isolated components, each of which

is k-connected within itself. However, for random graph

G(n,Kn, Pn, pn), as given by Lemma 1 below, we have shown

it is unlikely under certain conditions that G(n,Kn, Pn, pn) is

not k-connected but has a minimum degree at least k.
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Lemma 1 ([15, Section IX]). For graph G(n,Kn, Pn, pn)
under Pn = Ω(n), Kn

Pn
= o(1) and qn = o(1), it holds that

P

[
Graph G is not k-connected,

but has a minimum degree at least k.

]

= o(1).

We show that the conditions in Lemma 1 all hold given the

conditions of Theorem 1: Pn = Ω(n), Kn

Pn
= o(1) and qn =

lnn+(k−1) ln lnn+αn

n with limn→∞ αn = α∗ ∈ (−∞,∞). To

see this, we only need to prove qn = o(1) needed in Lemma

1 follows from the conditions of Theorem 1. Clearly, it holds

that |αn| = O(1) from limn→∞ αn = α∗ ∈ (−∞,∞). Then

in view of |αn| = O(1) and the fact that k does not scale with

n, we obtain from (4) that

qn ∼ lnn

n
, (7)

which clearly implies qn = o(1).

From Lemma 1 and

P [ Graph G is k-connected. ]

= P [ Graph G has a minimum degree at least k. ]

− P

[
Graph G is not k-connected,

but has a minimum degree at least k.

]

,

Theorem 1 on k-connectivity of G will be proved once we

demonstrate Lemma 2 below on the minimum degree of G.

Lemma 2. Under the conditions of Theorem 1, it holds that

limn→∞ P[G has a minimum degree at least k.] = e−
e−α∗

(k−1)! .

To prove Lemma 2, we first show that the number of nodes

in G with a certain degree converges in distribution to a Poisson

random variable. With φh denoting the number of nodes with

degree h in G, h = 0, 1, . . ., we use the method of moments

to prove that φh asymptotically follows a Poisson distribution

with mean λh. Specifically, from [11, Theorem 7], it follows

for any integers h ≥ 0 and ℓ ≥ 0 that

P[φh = ℓ] ∼ (ℓ!)−1λh
ℓe−λh , (8)

since P[Nodes v1, v2, . . . , vm all have degree h] ∼ λh
m/nm,

which is shown by Lemma 3 below with

λh = n(h!)−1(nqn)
he−nqn . (9)

Lemma 3. For graph G under the conditions of Theorem 1,

P[v1,v2,. . . ,vm all have degree h] ∼ (h!)−m(nqn)
hme−mnqn

holds for any integers m ≥ 1 and h ≥ 0.

As explained above, Lemma 3 shows (8) with λh given by

(9). Then the proof of Lemma 2 will be completed once we

establish Lemma 3 and the result that (8) implies Lemma 2.

Below we will demonstrate that (8) implies Lemma 2, and then

detail the proof of Lemma 3.

A. Proving that (8) implies Lemma 2

Recall that φh denotes the number of nodes with degree h in

graph G. With δ defined as the minimum degree of graph G,

then the event (δ ≥ k) is the same as
⋂k−1

h=0(φh = 0) (i.e., the

event that no node has a degree falling in {0, 1, . . . , k − 1}).

Hence, we obtain

P[δ ≥ k] = P

[ k−1⋂

h=0

(φh = 0)

]

≤ P[φk−1 = 0]; (10)

and by the union bound, it holds that

P[δ ≥ k] = P

[

(φk−1 = 0)∩
( k−2⋃

h=0

(φh 6= 0)

) ]

≥ P[φk−1 = 0]−
k−2∑

h=0

P[φh 6= 0]. (11)

To use (10) and (11), we compute P[φh 6= 0] given (8) and thus

evaluate λh specified in (9). Applying (4) and (7) to (9), and

considering limn→∞ αn = α∗ with |α⋆| < ∞, we establish

λh = n(h!)−1(nqn)
he−nqn

∼ n(h!)−1(lnn)h · e− lnn−(k−1) ln lnn−αn

= (h!)−1(lnn)h+1−ke−αn

→







0, for h = 0, 1, . . . , k − 2,
e−α∗

(k−1)! , for h = k − 1,

∞, for h = k, k + 1, . . .

(12)

By (8) and (12), we derive that as n → ∞,

P[φh = 0] →







1, for h = 0, 1, . . . , k − 2,

e−
e−α∗

(k−1)! , for h = k − 1,

0, for h = k, k + 1, . . .

(13)

Using (13) in (10) and (11), we obtain P[δ ≥ k] → e−
e−α∗

(k−1)! ;

i.e., Lemma 2 is proved.

B. Proving Lemma 3

We use Vm to denote the node set {v1, v2, . . . , vm}. Lemma

3 evaluates the probability that each of Vm has degree h. To

compute such probability, we look at whether at least two of

Vm have an edge in between, and whether at least two of Vm

have at least one common neighbor. To this end, we define P1

as the probability of event

(each of Vm has degree h)
∩
[
(at least two of Vm have an edge in between)

∪ (at least two of Vm have at least one common neighbor)
]
,

and define P2 as the probability of event

(each of Vm has degree h)
∩ (no two of Vm have any edge in between)
∩ (no two of Vm have any common neighbor).

Then P[each of Vm has degree h] = P1+P2. Thus, Lemma 3

will hold once we establish the following two propositions.

Proposition 1. Under the conditions of Theorem 1, it holds

that P1 = o
(
(h!)−m(nqn)

hme−mnqn
)
.

Proposition 2. Under the conditions of Theorem 1, it holds

that P2 ∼ (h!)−m(nqn)
hme−mnqn .

To prove Propositions 1 and 2, we analyze below how nodes

in graph G have edges. We first look at how edges exist

between v1, v2, . . . , vm. Recalling Cij as the event that the

communication channel between distinct nodes vi and vj is

on, we set 1[Cij ] as the indicator variable of event Cij by

1[Cij ]:=

{

1, if the channel between vi and vj is on,

0, if the channel between vi and vj is off .

We denote by Cm a
(
m
2

)
-tuple consisting of all possible 1[Cij ]

with 1 ≤ i < j ≤ m as follows:
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Cm := (1[C12], , . . . ,1[C1m], 1[C23], , . . . ,1[C2m],

1[C34], . . . ,1[C3m], . . . , 1[C(m−1),m]).

Recalling Si as the key set on node vi, we define a m-tuple

Tm through Tm := (S1, S2, . . . , Sm). Then we define Lm

as Lm := (Cm, Tm). With Lm, we have the on/off states of

all channels between nodes v1, v2, . . . , vm and the key sets

S1, S2, . . . , Sm on these m nodes, so all edges between these

m nodes in graph G are determined. Let Cm,Tm and Lm be

the sets of all possible Cm, Tm and Lm, respectively.

Now we further introduce some notation to characterize how

nodes v1, v2, . . . , vm have edges with nodes of Vm, where Vm

denotes {vm+1, vm+2, . . . , vn}. Let Ni be the neighborhood set

of node vi, i.e., the set of nodes that have edges with vi. We

also define set Ni as the set {vm+1, vm+2, . . . , vn} \Ni. Then

we are ready to define sets Mj1j2...jm for all j1, j2, . . . , jm ∈
{0, 1} which characterize the relationships between sets Ni for

i = 1, 2, . . . ,m. We define

Mj1j2...jm :=

(
⋂

i∈{1,2,...,m}:ji=1

Ni

)

∩
(

⋂

i∈{1,2,...,m}:ji=0

Ni

)

.

(14)

In other words, for i = 1, 2, . . . ,m, if Ni is not empty, each

node in Ni belongs to Mj1j2...jm if ji = 1 and does not belong

to Mj1j2...jm if ji = 0. Also, if j1 = j2 = . . . = jm = 0, then

Mj1j2...jm =
⋂m

i=1 Ni. The sets Mj1j2...jm for j1, j2, . . . , jm ∈
{0, 1} are mutually disjoint, and constitute a partition of the set

Vm (a partition is allowed to contain empty sets here). By the

definition of Mj1j2...jm for j1, j2, . . . , jm ∈ {0, 1}, we have
∑

j1,j2,...,jm∈{0,1}
|M∗

j1j2...jm | = |Vm| = n−m, (15)

and
∑

j1,j2,...,jm∈{0,1}:∑m
i=1 ji≥1.

|Mj1j2...jm | =
∣
∣
∣
∣

( m⋃

i=1

Ni

)

∩ Vm

∣
∣
∣
∣
. (16)

We further define 2m-tuple Mm through1

Mm =
(
|Mj1j2...jm |

∣
∣ j1, j2, . . . , jm ∈ {0, 1}

)

=
(
|M0m |, |M0m−1,1|, |M0m−21,0|, |M0m−21,1|, . . .

)
,

where |Mj1j2...jm | means the cardinality of Mj1j2...jm .

Under event E2, the set Mm is determined and we denote

its value by M(0)
m , which satisfies







|M0i−1,1,0m−i | = h, for i = 1, 2, . . . ,m;
|Mj1j2...jm | = 0, for

∑m
i=1 ji > 1;

|M0m | = n−m− hm.

(17)

To analyze event E2, we define L
(0)
m such that

(
Lm ∈ L

(0)
m

)
is

the event that no two of nodes v1, v2, . . . , vm have any common

neighbor. In view of events
(
Lm ∈ L

(0)
m

)
,
(
Mm = M(0)

m

)
and

E2, then E2 is the same as
(
Lm ∈ L

(0)
m

)
∩
(
Mm = M(0)

m

)
; i.e.,

E2 =
[(
Lm ∈ L

(0)
m

)∩ (
Mm = M(0)

m

)]
. (18)

We define Mm(Lm) for Lm ∈ Lm as the set of Mm under

which each of Vm has degree h. Thus, the event that each of

Vm has degree h is
(
Lm ∈ Lm

)
∩
(
Mm ∈ Mm(Lm)

)
, which

together with (18) yields

1For a non-negative integer x, the term 0x is short for 00 . . . 0
︸ ︷︷ ︸

“x” number of “0”

. Also,

for clarity, we add commas in the subscript of M0m−21,0 etc.

E1=
⋃

L∗
m∈Lm, M∗

m∈Mm(L∗
m):

(L∗
m /∈L

(0)
m ) or (M∗

m 6=M(0)
m )

P
[(
Lm =L∗

m

)∩(
Mm =M∗

m

)]
.

(19)

Now we prove Propositions 1 and 2 based on (18) and (19).

The inequality below following from (7) will be applied often:

qn ≤ 2 lnn

n
for all n sufficiently large. (20)

1) The Proof of Proposition 1

In view of (19) and considering the disjointness of events
(
Lm = L∗

m

)
∩
(
Mm = M∗

m

)
for L∗

m ∈ Lm and M∗
m ∈

Mm(L∗
m), we express P[E1] as

∑

L∗
m∈Lm, M∗

m∈Mm(L∗
m):

(L∗
m /∈L

(0)
m ) or (M∗

m 6=M(0)
m )

P
[(
Lm=L∗

m

)∩(
Mm=M∗

m

)]
(21)

We evaluate (21) by computing

P
[(
Mm = M∗

m

)
| Lm = L∗

m

]
. (22)

With C∗
m and T ∗

m defined such that L∗
m = (C∗

m, T ∗
m), event

(Lm =L∗
m) is the union of events (Cm = C∗

m) and (Tm = T ∗
m).

Since (Cm=C∗
m) and (Mm=M∗

m) are independent, we get

(22) = P
[(
Mm = M∗

m

)
|
(
Tm = T ∗

m

)]
.

For each j1, j2, . . . , jm ∈ {0, 1}, for any distinct nodes

w1, w2 ∈ Vm, events (w1 ∈ Mj1j2...jm) and (w2 ∈
Mj1j2...jm) are conditionally independent given (Tm =
T ∗
m) , where T ∗

m specifies the key sets S1, S2, . . . , Sm

as S∗
1 , S

∗
2 , . . . , S

∗
m, respectively). Thus, with M∗

m being
(
|M∗

0m |, |M∗
0m−1,1|, |M∗

0m−21,0|, |M∗
0m−21,1|, . . .

)
, we obtain

(22) = f(n−m,M∗
m)P[w ∈ M0m |Tm = T ∗

m]|M
∗
0m |×

∏

j1,j2,...,jm∈{0,1}:∑m
i=1 ji≥1.

P[w ∈ Mj1j2...jm |Tm = T ∗
m]|M

∗
j1j2...jm

|,

(23)

where f(n − m,M∗
m) is the number of ways assigning the

(n − m) nodes from Vm to Mj1j2...jm such that |Mj1j2...jm |
equals |M∗

j1j2...jm
|, for j1, j2, . . . , jm ∈ {0, 1}. Then

f(n−m,M∗
m) =

(n−m)!
∏

j1,j2,...,jm∈{0,1}(|M∗
j1j2...jm

|!) , (24)

which along with (15) yields

f(n−m,M∗
m)≤ [(n−m)!]/(|M∗

0m |!)

≤n

∑
j1,j2,...,jm∈{0,1}:∑m

i=1 ji≥1.

|M∗
j1j2...jm

|

. (25)

For any j1, j2, . . . , jm ∈ {0, 1} with
∑m

i=1 ji ≥ 1, there

exists t ∈ {0, 1, . . . ,m} such that jt = 1, so

P
[
w ∈ Mj1j2...jm | Tm = T ∗

m

]

≤ P[Ewvt
| Tm = T ∗

m] = P[Ewvt
] = qn, (26)

where Ewvt
is the event that an edge exists between nodes

w and vt. Substituting (25) and (26) into (23), and denoting
∑

j1,j2,...,jm∈{0,1}:∑m
i=1 ji≥1.

|M∗
j1j2...jm

| by Λ, we obtain

(22) < (nqn)
Λ×P[w ∈ M0m | Tm = T ∗

m]|M
∗
0m |. (27)

To further evaluate (22) based on (27), we will prove below

that if
(
L∗
m /∈ L

(0)
m

)
or

(
M∗

m 6= M(0)
m

)
, then

Λ ≤ hm− 1. (28)
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On the one hand, if L∗
m /∈ L

(0)
m , there exist i1 and i2 with

1 ≤ i1 < i2 ≤ m such that nodes vi1 and vi2 are neighbors.

Hence, {vi1 , vi2} ⊆ [(
⋃m

i=1 Ni)
⋂Vm] holds. Then from (16),

we have Λ =
∣
∣
⋃m

i=1 Ni

∣
∣ −

∣
∣
(⋃m

i=1 Ni

)
∩ Vm

∣
∣ ≤ hm − 2. On

the other hand, if M∗
m 6= M(0)

m , there exist i3 and i4 with

1 ≤ i3 < i4 ≤ m such that Ni3 ∩ Ni4 6= ∅. Then from (16),

Λ ≤
∣
∣
⋃m

i=1 Ni

∣
∣ ≤

(∑m
i=1 |Ni|

)
−|Ni3∩Ni4 | ≤ hm−1 follows.

Thus, we have proved (28), which along with (15) leads to

|M∗
0m | = n−m− Λ > n−m− hm. (29)

From (7), it is true that nqn ∼ lnn, implying nqn > 1 for all

n sufficiently large. Then substituting (28) and (29) into (27),

we obtain that if
(
L∗
m /∈ L

(0)
m

)
or

(
M∗

m 6= M(0)
m

)
, then for all

n sufficiently large, it holds that

(22) < (nqn)
hm−1×P[w ∈ M0m | Tm = T ∗

m]n−m−hm. (30)

Applying (22) and (30) to (21),we get

(21)<
∑

L∗
m∈Lm

{

|Mm(L∗
m)|×P

[
Lm =L∗

m

]
×R.H.S. of (30)

}

.

(31)

To bound |Mm(L∗
m)|, note that Mm is a 2m-

tuple. Among the 2m elements of the tuple, each of

|Mj1j2...jm |
∣
∣
j1,j2,...,jm∈{0,1}:∑m

i=1 ji≥1.

is at least 0 and at most h; and

the remaining element |M0m | can be determined by (15).

Then it’s straightforward that |Mm(L∗
m)| ≤ (h + 1)2

m−1.

Using this result in (31), and considering
(
Lm = L∗

m

)
is the

union of independent events
(
Tm = T ∗

m

)
and

(
Cm = C∗

m

)
, and

∑

C∗
m∈Cm

P
[
Cm = C∗

m

]
=1, we derive

(21) < (h+ 1)2
m−1(nqn)

hm−1×
∑

T ∗
m∈Tm

{

P
[
Tm = T ∗

m

]

× P[w ∈ M0m | Tm = T ∗
m]n−m−hm

}

. (32)

From (32) and nqn ∼ lnn → ∞ as n → ∞ by (7), the proof

of Proposition 1 is completed once we show
∑

T ∗
m∈Tm

P[Tm = T ∗
m]P[w ∈ M0m | Tm = T ∗

m]n−m−hm

≤ e−mnqn · [1 + o(1)]. (33)

C. Establishing (33)

From (61) and (62) (Lemma 4 in the Appendix), we get

P[w ∈ M∗
0m | Tm = T ∗

m]n−m−hm

=P[w∈M∗
0m |Tm=T ∗

m]nP[w∈M∗
0m |Tm=T ∗

m]−m−hm

≤e−mnqn+m2nqn
2+nqnpn

Kn

∑
1≤i<j≤m|S∗

ij |(1−mqn)
−m−hm (34)

for all n sufficiently large, where S∗
ij := S∗

i ∩S∗
j . With (7) (i.e.,

qn ∼ lnn
n ), we have m2nqn

2 = o(1) and mqn = o(1), which

are substituted into (34) to induce (33) once we prove
∑

T ∗
m∈Tm

P[Tm = T ∗
m]e

nqnpn
Kn

∑
1≤i<j≤m |S∗

ij | ≤ 1 + o(1). (35)

L.H.S. of (35) is denoted by Hn,m and evaluated below.

For each fixed and sufficiently large n, we consider: a)

pn < n−δ(lnn)−1 and b) pn ≥ n−δ(lnn)−1, where δ is an

arbitrary constant with 0 < δ < 1.

a) pn < n−δ(lnn)−1

From pn < n−δ(lnn)−1, |S∗
ij | ≤ Kn for 1 ≤ i < j ≤

m and (20), then for all n sufficiently large, it holds that

e
nqnpn

Kn

∑
1≤i<j≤m |S∗

ij | < e2n
−δ·(m2 ) < em

2n−δ

, which is used in

Hn,m so that Hn,m<em
2n−δ∑

T ∗
m∈Tm

P[Tm = T ∗
m]=em

2n−δ

.

b) pn ≥ n−δ(lnn)−1

We relate Hn,m to Hn,m−1 and assess Hn,m iteratively.

First, with T ∗
m = (S∗

1 , S
∗
2 , . . . , S

∗
m), event (Tm = T ∗

m) is

the intersection of independent events: (Tm−1 = T ∗
m−1) and

(Sm = S∗
m). Then we have

Hn,m =
∑

T ∗
m−1∈Tm−1,

S∗
m∈Sm

(

P[(Tm−1 = T ∗
m−1)∩(Sm = S∗

m)]×

e
nqnpn

Kn

∑
1≤i<j≤m−1 |S∗

ij |e
nqnpn

Kn

∑m−1
i=1 |S∗

im|
)

=Hn,m−1 ·
∑

S∗
m∈Sm

P[Sm = S∗
m]e

nqnpn
Kn

∑m−1
i=1 |S∗

im|. (36)

By
∑m−1

i=1 |S∗
im| ≤ m

∣
∣S∗

m ∩
(⋃m−1

i=1 S∗
i

)∣
∣ and (20), we have

e
nqnpn

Kn

∑m−1
i=1 |S∗

im| ≤ e
2mpn lnn

Kn
|S∗

m∩(
⋃m−1

i=1 S∗
i )|, which is used

in (36) to induce

Hn,m

Hn,m−1
≤

Kn∑

u=0

P

[∣
∣
∣
∣
S∗
m∩

(m−1⋃

i=1

S∗
i

)∣
∣
∣
∣
= u

]

e
2umpn lnn

Kn . (37)

Denoting
∣
∣
⋃m−1

i=1 S∗
i

∣
∣ by v, then for u satisfying 0 ≤ u ≤

|S∗
m| = Kn and S∗

m ∪
(⋃m−1

i=1 S∗
i

)
= Kn + v − u ≤ Pn (i.e.,

for u ∈ [max{0,Kn + v − Pn},Kn]), we obtain

P

[∣
∣
∣
∣
S∗
m∩

(m−1⋃

i=1

S∗
i

)∣
∣
∣
∣
= u

]

=

(
v

u

)(
Pn − v

Kn − u

)/(
Pn

Kn

)

, (38)

which together with Kn ≤ v ≤ mKn yields

L.H.S. of (38) ≤ (mKn)
u

u!
· (Pn −Kn)

Kn−u

(Kn − u)!
· Kn!

(Pn −Kn)Kn

≤ 1

u!

(
mKn

2

Pn −Kn

)u

. (39)

For u /∈ [max{0,Kn + v − Pn},Kn], L.H.S. of (38) equals 0.

Then from (37) and (39),

R.H.S. of (37) ≤
Kn∑

u=0

1

u!

(
mKn

2

Pn −Kn
· e

2mpn lnn
Kn

)u

≤ e
mKn

2

Pn−Kn
·e

2mpn lnn
Kn

. (40)

By [15, Fact 5] and 1−x ≤ e−x for any real x, it holds that

sn ≥ 1−
(
1−Kn/Pn

)Kn ≥ 1− e−Kn
2/Pn , (41)

For n sufficiently large, from pn ≥ n−δ(lnn)−1 and (20) (i.e.,

qn = pnsn ≤ 2 lnn
n ), we have

sn = pn
−1qn ≤ pn

−1 · 2n−1 lnn ≤ 2nδ−1(lnn)2. (42)

Hence, for n sufficiently large, we apply (41) (42) and Pn >
2Kn (which holds from the condition Kn

Pn
= o(1)) to produce

Kn
2/(Pn −Kn) < 2Kn

2/Pn ≤ −2 ln(1− sn)

≤ −2 ln(1− 2nδ−1(lnn)2) ≤ 2
√
2n

δ−1
2 lnn, (43)

where the last step uses − ln(1−y) ≤ √
y for 0 < y < 1. From

(7) and condition Pn = Ω(n), we obtain from [15, Lemma 7]

that Kn = ω
(√

lnn
)
= ω(1). Then for an arbitrary constant

c > 2, it holds that Kn

pn
≥ Kn ≥ 4c·m

(c−2)(1−δ) holds for all n
sufficiently large. Hence,

e
2mpn lnn

Kn ≤ e
(c−2)(1−δ)

2c lnn = n
(c−2)(1−δ)

2c . (44)

The use of (40) (43) and (44) in (37) yields

Hn,m/Hn,m−1 ≤ R.H.S. of (37)

≤ e2
√
2mn

δ−1
2 ·n

(c−2)(1−δ)
2c ·lnn ≤

(

e3n
δ−1
c lnn

)m

. (45)
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To derive Hn,m iteratively based on (45), we compute Hn,2

below. Setting m = 2 in L.H.S. of (35) and considering the

independence between (S1 = S∗
1 ) and (S2 = S∗

2 ), we gain

Hn,2=
∑

S∗
1∈Sm

P[S1 = S∗
1 ]

∑

S∗
2∈Sm

P[S2 = S∗
2 ]e

nqnpn
Kn

|S∗
1∩S∗

2 |. (46)

Clearly,
∑

S∗
2∈Sm

P[S2 = S∗
2 ]e

nqnpn
Kn

|S∗
1∩S∗

2 | equals R.H.S. of

(37) with m = 2. Then from (45) and (46),

Hn,2 ≤
∑

S∗
1∈Sm

P[S1 = S∗
1 ]e

6n
δ−1
c lnn = e6n

δ−1
c lnn. (47)

Therefore, it holds via (45) and (47) that

Hn,m≤
(
e3n

δ−1
c lnn

)m+(m−1)+...+3
e6n

δ−1
c lnn≤e3m

2n
δ−1
c lnn.

Finally, from cases a) and b), for n sufficiently large, Hn,m

is at most max
{
em

2n−δ

, e3m
2n

δ−1
c lnn

}
. Then (35) follows.

V. THE PROOF OF PROPOSITION 2

We define C(0)
m and T

(0)
m by C(0)

m = ( 0, 0, . . . , 0
︸ ︷︷ ︸

m(m−1)/2 number of “0”

)

and T
(0)
m = {Tm | Si ∩ Sj = ∅, ∀1 ≤ i < j ≤ m.}. Clearly,

(
Cm = C(0)

m

)
or

(
Tm ∈T

(0)
m

)
each implies

(
Lm ∈L

(0)
m

)
. Also,

(
Cm = C(0)

m

)
and

(
Mm =M(0)

m

)
are independent of each other.

Thus, with P2 =P
[(
Lm ∈ L

(0)
m

)
∩
(
Mm = M(0)

m

)]
, we derive

P2 ≥ P
[
Cm = C(0)

m

]
P
[
Mm = M(0)

m

]
, (48)

and

P2 ≥ P
[
Tm ∈T

(0)
m

]
P
[(
Mm =M(0)

m

)
|
(
Tm ∈ T

(0)
m

)]
. (49)

Given that event
(
Cm = C(0)

m

)
is

⋃

1≤i<j≤m Cij and event
(
Tm ∈ T

(0)
m

)
is

⋃

1≤i<j≤m Γij , using the union bound, we get

P
[
Cm = C(0)

m

]
≥ 1−

∑

1≤i<j≤m

P[Cij ] ≥ 1−m2pn/2, (50)

and

P
[
Tm ∈ T

(0)
m

]
≥ 1−

∑

1≤i<j≤m

P[Γij ] ≥ 1−m2sn/2. (51)

Denoting (h!)−m(nqn)
hme−mnqn by Λ, we will prove

P
[
Mm = M(0)

m

]
∼ Λ, (52)

and

P
[(
Mm = M(0)

m

)
|
(
Tm ∈ T

(0)
m

)]
≥ Λ · [1− o(1)]. (53)

Substituting (50) and (52) into (48), and applying (51) and (53)

to (49), we get (i) P2/Λ ≥ (1−min{sn, pn} ·m2/2)[1−o(1)].

From (52), we get (ii) P2 ≤ P
[
Mm ∈ M

(0)
m

]
≤ Λ[1+o(1)].

Combining (i) and (ii) above and using min{sn, pn} ≤√
snpn =

√
qn = o(1) which holds from qn = snpn and

(7), Proposition 2 follows. Below we establish (52) and (53).

A. Establishing (52)

We write P
[
Mm = M(0)

m

]
as

∑

T ∗
m∈Tm

{

P
[
Tm=T ∗

m

]
P
[(
Mm=M(0)

m

)
|
(
Tm=T ∗

m

)]}

,

where P
[(
Mm = M(0)

m

)
|
(
Tm = T ∗

m

)]
equals

f
(
n−m,M(0)

m

)
P[w ∈ M0m | Tm = T ∗

m]n−m−hm

×
m∏

i=1

P[w ∈ M0i−1,1,0m−i | Tm = T ∗
m]h,

where f
(
n − m,M(0)

m

)
is the number of ways assigning the

(n−m) nodes from Vm to Mj1j2...jm such that |Mj1j2...jm | is

given by M(0)
m (see (17)). Hence, it holds from (24) that

f
(
n−m,M(0)

m

)
=

(n−m)!

(n−m−hm)!(h!)m
∼(h!)−mnhm. (54)

We will establish
∑

T ∗
m∈Tm

{

P[Tm = T ∗
m]

m∏

i=1

{P
[
w∈M0i−1,1,0m−i |Tm=T ∗

m

]h}
}

≥ qn
hm · [1− o(1)]. (55)

We use (54) and (55) as well as (61) (viz., Lemma 4 in the

Appendix) in evaluating P
[
Mm = M(0)

m

]
above. Then

P
[
Mm = M(0)

m

]

≥ (h!)−mnhm · [1− o(1)] · (1−mqn)
n×

∑

T ∗
m∈Tm

P[Tm = T ∗
m]

m∏

i=1

{
P[w∈M0i−1,1,0m−i |Tm=T ∗

m]h
}

≥ (h!)−m(nqn)
hme−mnqn · [1− o(1)]. (56)

Substituting (33) (54) above and (63) in Lemma 4 into the

computation of P
[
Mm = M(0)

m

]
yields

P
[
Mm = M(0)

m

]

≤ (h!)−mnhmqn
hm × [1 + o(1)]×

∑

T ∗
m∈Tm

P[Tm = T ∗
m]P[w ∈ M0m | Tm = T ∗

m]n−m−hm

∼ (h!)−m(nqn)
hme−mnqn . (57)

Then (52) follows from (56) and (57). Namely, (52) holds

upon the establishment of (55). From (64) in Lemma 4 and

qn = o(1) by (7), we obtain (55) once proving
pn
Kn

∑

T ∗
m∈Tm

(

P[Tm = T ∗
m]

∑

1≤i<j≤m

|S∗
ij |
)

= o(1). (58)

If T ∗
m ∈ T

(0)
m , then |S∗

ij | = 0. Then from (51), we get (58) by

L.H.S. of (58) ≤ pn ·m(m− 1)/2 ·P[T ∗
m ∈ Tm \ T(0)

m ]

≤ pn ·m2/2 ·m2sn/2 ≤ m4n−1 lnn/2 = o(1).

B. Establishing (53)

Let ∆ denote P
[(
Mm = M(0)

m

)
|
(
Tm ∈ T

(0)
m

)]
. Clearly,

∆ is equivalent to P
[(
Mm = M(0)

m

)
|
(
Tm = T ∗

m

)]
for any

T ∗
m ∈ T

(0)
m , so it follows that

∆=f
(
n−m,M(0)

m

)
P[w ∈ M0m |Tm = T ∗

m]n−m−hm

×
m∏

i=1

{
P[w ∈ M0i−1,1,0m−i | Tm = T ∗

m]h
}
, (59)

with f
(
n − m,M(0)

m

)
given by (54). For T ∗

m ∈ T
(0)
m , from

|S∗
ij | = 0 and (64) in Lemma 4, we derive

m∏

i=1

{

P
[
w ∈M0i−1,1,0m−i | Tm = T ∗

m

]}h

≥ qn
hm(1−2hm2qn).

(60)

Substituting (54) (60) above and (61) in Lemma 4 into (59),

we conclude that ∆ is at least

(h!)−mnhm · [1− o(1)]

× qn
hm(1− 2hm2qn) · (1−mqn)

n−m−hm =Λ · [1−o(1)].

VI. NUMERICAL EXPERIMENTS

To confirm our analytical results, we now provide numerical

experiments in the non-asymptotic regime.
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Fig. 1. A plot generated from the simulation and the analysis for the
probability that G(n,K, P, p) is 2-connected versus K with n = 2, 000,
P = 10, 000 and p = 0.2, 0.5, 0.8.

In Figure 1, we depict the probability that graph

G(n,K, P, p) is 2-connected from both the simulation and the

analysis, as elaborated below. In all set of experiments, we fix

the number of nodes at n = 2, 000 and the key pool size at

P = 10, 000. For the probability p of a communication channel

being on, we consider p = 0.2, 0.5, 0.8, while varying the

parameter K from 3 to 21. For each pair (K, p), we generate

1, 000 independent samples of G(n,K, P, p) and count the

number of times that the obtained graphs are 2-connected. Then

the counts divided by 1, 000 become the empirical probabilities.

The curves in Figure 1 corresponding to the analysis are

determined as follows. We use the asymptotical result to

approximate the probability of 2-connectivity in G(n,K, P, p);
specifically, given n,K, P, p and k = 2, we determine α by

considering p ·
[
1 −

(
P−K
K

)/(
P
K

)]
= lnn+(k−1) ln lnn+α

n , a

condition stemming from (4) and the computation of qn in

Section II, and then use e−
e−α

(k−1)! as the analytical reference

of P[G(n,K, P, p) is 2-connected] for a comparison with the

empirical probabilities. Figure 1 indicates that the experimental

results are in agreement with our analysis.

VII. RELATED WORK

Random key graphs. For a random key graph G(n,Kn, Pn)
(viz., Section II) which models the topology induced by the

EG scheme, Rybarczyk [7] derives the asymptotically exact

probability of connectivity, covering a weaker form of the result

– a zero-one law which is also obtained in [1], [10]. Rybarczyk

[8] further establishes a zero-one law for k-connectivity, and

we [14] obtain the asymptotically exact probability of k-

connectivity. Under Pn = Θ(nc) for some constant c > 1 and
Kn

2

Pn
= lnn+(k−1) ln lnn+αn

n , Rybarczyk’s result [8] is that the

probability of k-connectivity in graph G(n,Kn, Pn) is asymp-

totically converges to 1 (resp. 0) if limn→∞ αn equals ∞ (resp.,

−∞), while we [14] prove that such probability asymptotically

approaches to e−
e−α∗

(k−1)! if limn→∞ αn = α∗ ∈ (−∞,∞).
Erdős–Rényi graphs. For an Erdős–Rényi graph G(n, pn)

where any two nodes have an edge in between independently

with probability pn, Erdős and Rényi consider connectivity in

[2] and k-connectivity in [3], where the latter result is that if

pn = lnn+(k−1) ln lnn+αn

n and limn→∞ αn = α∗ ∈ [−∞,∞],
graph G(n, pn) is k-connected with a probability asymptoti-

cally tending to e−
e−α∗

(k−1)! .

Random key graphs ∩ Erdős–Rényi graphs. As given

in Section II, our studied graph G is the intersection of a

random key graph G(n,Kn, Pn) and an Erdős–Rényi graph

G(n, pn). For graph G, Yağan [9] establishes a zero-one law

for connectivity, and we [15], [12] extend Yağan’s result to

k-connectivity and show that with Pn = Ω(n), Kn

Pn
= o(1)

and qn set as
lnn+(k−1) ln lnn+αn

n , graph G is (resp., is not) k-

connected with high probability if limn→∞ αn = ∞ (resp.,

limn→∞ αn = −∞). Compared with this result in [15],

[12], our result on the asymptotically exact probability of k-

connectivity is stronger and more challenging to derive.

Random key graphs ∩ random geometric graphs. Con-

nectivity properties have also been studied in secure sensor

networks employing the EG scheme under the disk model,

where any two nodes need to be within a certain distance

rn to have a link in between. When nodes are assumed

to be uniformly and independently deployed in some region

A, the topology of such a network is represented by the

intersection of a random key graph G(n,Kn, Pn) and a random

geometric graph, where a random geometric graph denoted by

G(n, rn,A) is defined on n nodes independently and uniformly

distributed in A such that an edge exists between two nodes

if and only if their distance is at most rn. Krzywdziński

and Rybarczyk [6], Krishnan et al. [5], and we [13] present

connectivity results in graph G(n,Kn, Pn) ∩G(n, rn,A). With

the network region A being a square of unit area, Krzywdziński

and Rybarczyk [6] show that G(n,Kn, Pn) ∩G(n, rn,A) is

connected with high probability if πrn
2 · Kn

2

Pn
∼ c lnn

n for any

constant c > 8. Krishnan et al. [5] improves the condition on

c to c > 2π. Later we [13] derive the critical value c∗ of c as

max{1+limn→∞
(
ln Pn

Kn
2

/
lnn

)
, 4 limn→∞

(
ln Pn

Kn
2

/
lnn

)
};

namely, graph G(n,Kn, Pn) ∩G(n, rn,A) is (resp., is not)

connected with high probability for any constant c > c∗ (resp.,

c < c∗). There has not been any analogous result for k-

connectivity reported in the literature.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we consider secure WSNs under the

Eschenauer–Gligor (EG) key predistribution scheme with unre-

liable links and obtain the asymptotically exact probability of

k-connectivity. A future direction is to consider k-connectivity

in WSNs employing the EG scheme under the disk model [9],

[5] in which two nodes have to be within a certain distance for

communication in addition to sharing at least one key.
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APPENDIX

A. Useful Lemmas

We present below Lemmas 4 and 5, which are proved in the

next subsections. Lemma 4 is used in establishing Propositions

1 and 2 in Section IV-B. The condition Pn ≥ 3Kn in Lemma

4 follows for all n sufficiently large given Kn/Pn = o(1) in

Propositions 1 and 2. Lemma 5 is used in proving Lemma 4.

Lemma 4. Given Pn ≥ 3Kn and any T ∗
m = (S∗

1 , S
∗
2 , . . . , S

∗
m),

with S∗
ij denoting S∗

i ∩S∗
j , for any node w ∈ Vm, we obtain

P[w ∈ M0m | Tm = T ∗
m] ≥ 1−mqn, and (61)

P[w ∈ M0m | Tm = T ∗
m]

≤ e−mqn+m2qn
2+Kn

−1qnpn

∑
1≤i<j≤m |S∗

ij |; (62)

and for any i = 1, 2, . . . ,m, we have

P
[
w ∈ M0i−1,1,0m−i | Tm = T ∗

m

]
≤ qn, and (63)

∏m
i=1

{
P
[
w ∈ M0i−1,1,0m−i | Tm = T ∗

m

]}h

≥ qn
hm

(
1− 2hm2qn − 2hpn

Kn

∑

1≤i<j≤m |S∗
ij |
)
. (64)

Lemma 5. With Γij denoting the event that an edge ex-

ists between distinct nodes vi and vj in random key graph

G(n,Kn, Pn), if Pn ≥ 3Kn, then for three distinct nodes vi, vj
and vt, we have P[(Γit∩Γjt | (|Sij | = u)] ≤ Kn

−1snu+2sn
2

for u = 0, 1, . . . ,Kn.

B. The Proof of Lemma 4

For any node w ∈ Vm, event (w ∈ M0m) equals
⋃m

i=1 Ewvi
,

where Ewvi
is the event that there exists an edge between nodes

w and vi in G. By a union bound, L.H.S. of (61) is at least

1−∑m
i=1 P[Ewvi

| Tm = T ∗
m] = 1−mqn so that (61) is proved.

And to prove (62), by the inclusion–exclusion principle, we get

P[w∈M0m |Tm=T ∗
m]≤ 1−

m∑

i=1

P[Ewvi
|Tm=T ∗

m]

+
∑

1≤i<j≤m

P[Ewvi
∩Ewvj

|Tm=T ∗
m].

Then we use Lemma 5 to further derive

P[w ∈ M0m | Tm = T ∗
m]

≤ 1−mqn + pn
2

∑

1≤i<j≤m

(
Kn

−1sn|S∗
ij |+ 2sn

2
)

≤ e−mqn+m2qn
2+Kn

−1qnpn

∑
1≤i<j≤m |S∗

ij |,

where the last step uses 1 + x ≤ ex for any real x.

For any node w ∈ Vm, event w ∈ M0i−1,1,0m−i means that

node w has an edge with node vi, but has no edge with any

node in Vm \ {vi} = {vj | j ∈ {1, 2, . . . ,m} \ {i}}. Then

(63) follows since P
[
w ∈ M0i−1,1,0m−i | Tm = T ∗

m

]
is at most

P[Ewvi
| Tm = T ∗

m] = P[Ewvi
] = qn. where the last step uses

the independence between event Ewvi
and event (Tm = T ∗

m).
We now demonstrate (64). From the above, we have

P
[
w ∈ M0i−1,1,0m−i | Tm = T ∗

m

]

=P[Ewvi
∩
(⋂

j∈{1,2,...,m}\{i} Ewvj

)
| Tm = T ∗

m]

=P[Ewvi
]−P[Ewvi

∩
(⋃

j∈{1,2,...,m}\{i}Ewvj

)
|Tm=T ∗

m], (65)

where the last step uses P[Ewvi
| Tm = T ∗

m] = P[Ewvi
] since

event Ewvi
is independent of event (Tm = T ∗

m).
From (65) and P[Ewvi

] = qn, we obtain

qn
−1

P
[
w ∈ M0i−1,1,0m−i | Tm = T ∗

m

]

=1−qn
−1

P[Ewvi
∩
(⋃

j∈{1,2,...,m}\{i} Ewvj

)
| Tm = T ∗

m],

so that

qn
−hm ·∏m

i=1

{

P
[
w ∈ M

(0)
0i−1,1,0m−i | Tm = T ∗

m

]}h

=

m∏

i=1

{

1−qn
−1

P[Ewvi
∩
(⋃

j∈{1,2,...,m}\{i} Ewvj

)
|Tm=T ∗

m]
}h

≥1−h

m∑

i=1

{

qn
−1

P[Ewvi
∩
(⋃

j∈{1,2,...,m}\{i}Ewvj

)
|Tm=T ∗

m]
}

,

(66)

where the last step uses the following inequality easily proved

by mathematical induction:
∏r

ℓ=1(1 − xℓ) ≥ 1 −∑r
ℓ=1 xℓ for

any positive integer r and any xℓ with 0 ≤ xℓ ≤ 1 for ℓ =
1, 2, . . . , r (we set r = mh, with the mh number of xl as m
groups, where the group i for i = 1, 2, . . . ,m has m members

all being qn
−1

P[Ewvi
∩
(⋃

j∈{1,2,...,m}\{i} Ewvj

)
|Tm=T ∗

m].)
To analyze (66), we use the union bound and Lemma 5 to get

P[Ewvi
∩
(⋃

j∈{1,2,...,m}\{i} Ewvj

)
| Tm = T ∗

m]

≤ ∑

j∈{1,2,...,m}\{i} P[Ewvi
∩ Ewvj

| Tm = T ∗
m]

≤ ∑

j∈{1,2,...,m}\{i} pn
2
(
Kn

−1sn|S∗
ij |+ 2sn

2
)

≤ 2mqn
2 +Kn

−1pnqn
∑

j∈{1,2,...,m}\{i} |S∗
ij |,

which is substituted into (66) to establish (64) by

qn
−hm ·∏m

i=1

{
P
[
w ∈ M0i−1,1,0m−i | Tm = T ∗

m

]}h

≥ 1− h
∑m

i=1

{
2mqn +Kn

−1pn
∑

j∈{1,2,...,m}\{i} |S∗
ij |
}

≥ 1− 2hm2qn − 2hpn

Kn

∑

1≤i<j≤m |S∗
ij |. (67)

C. The Proof of Lemma 5

We use the inclusion–exclusion principle to obtain

P[Γit∩Γjt | (|Sij | = u)]

= P[Γit | (|Sij | = u)] + P[Γjt | (|Sij | = u)]

− P[Γit∪Γjt | (|Sij | = u)]

= 2sn − 1 +
(
Pn−(2Kn−u)

Kn

)/(
Pn

Kn

)
, (68)

in view that event (|Sij | = u) is independent of each of Γit

and Γjt, and event Γit∪Γjt means St ∩ (Si ∪Sj) 6= ∅.

By [9, Lemma 5.1] and [15, Fact 2], we derive

(1− sn)
2Kn−u

Kn ≤ 1− sn(2Kn−u)
Kn

+ 1
2

( sn(2Kn−u)
Kn

)2

≤ 1− 2sn +Kn
−1snu+ 2sn

2,

which is substituted into (68) to complete the proof.
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