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Abstract—Connectivity in an information-theoretically secure
graph is considered where both the legitimate and the eaves-
dropper nodes are distributed as Poisson point processes. To
allow concurrent transmissions from multiple legitimate nodes, a
signal-to-interference plus noise ratio secure graph is introduced,
and its percolation (having an unbounded connected component)
properties are studied. It is shown that for a fixed eavesdropper
node density, percolation happens for large enough (but finite)
legitimate node density and small enough interference suppres-
sion parameter of the legitimate nodes. Conversely, a concrete
bound is obtained that shows that if the legitimate node density
is below a fixed threshold, then the probability of percolation is
zero.

I. INTRODUCTION

Ensuring connectivity in wireless multi-hop networks is
a challenging problem. Several seminal results have been
obtained in this area [1], [2] starting with [3]. The problem
is complicated because of the network topology, dynamic
nature of connection between any pair of nodes, large range
interdependency for connections between different pair of
nodes, short range and long range fading etc. Another critical
limitation of the wireless network is its broadcast nature that
makes it vulnerable to eavesdropping. Through cryptographic
techniques one can try to secure the communication, however,
ensuring a feasible non-breakable cryptographic protocol over
a large distributed wireless network is a daunting task. To
avoid the complexities/limitations of a cryptographic protocol,
we turn our attention to the information theoretic notion of
secrecy that assumes the presence of eavesdropper with infinite
capability and even then ensures that the randomness about
the message at any eavesdropper does not change with the
knowledge of the signal transmitted by the source [4].

Wyner [4] in his work on information theoretic security,
showed that non-zero rate of secure communication is possible
as long the channel to the eavesdropper is weaker compared
to the intended receiver, even if the eavesdropper has infinite
capability. This notion of security has been widely used
for answering some basic fundamental questions in wireless
communication [5]–[8].

Typically, connectivity in wireless networks is studied using
the tools of percolation theory, e.g. in [9] for the SINR graph,
where two nodes are connected if the SINR between them is
greater than a threshold, and the random connection model in
[10], where two nodes are connected with some probability
that depends on the distance between them independently of
other nodes. In recent work, connectivity in an information
theoretic secure graph has been studied in [11]–[15], where
two legitimate/licensed nodes i and j are connected, if node
j is closer to node i than its nearest eavesdropper. The graph
resulting out of this connection model is referred to as the
secrecy graph. Following [4], with this model, communication
between two legitimate nodes is secure from any eavesdropper
with arbitrary capability.

The secrecy graph model of [11], [12], [14], [15], as-
sumes that all legitimate nodes transmit in non-overlapping
time/frequency slots, and their signals do not interfere with
each other. For large number of legitimate nodes, this is
not always feasible and severely limits the spatial capacity.
To model the more realistic scenario that allows concurrent
transmissions from legitimate nodes, we introduce and analyze
the SINR secure graph (SSG) model, where a link between
two legitimate nodes exists if the signal-to-interference ratio
plus noise (SINR) between them is more than SINR between
the legitimate node and any eavesdropper.

For this new model, we restrict ourselves to the path-
loss model of wireless signal propagation (similar to [11]–
[15]) with finite support and ignore multi-path fading. The
SSG model is characterized by a parameter γ, 0 < γ ≤ 1
which represents the interference suppression capability of
any legitimate node. For example, if each legitimate node is
using a CDMA system, then γ corresponds to the imperfect
orthogonality of the codes used in CDMA, where γ = 0 im-
plies perfect orthogonality between different legitimate users.
Hence γ is multiplied to the total interference while computing
the SINR at any legitimate node. An important aspect of SSG
is that the interference suppression is not available at any
eavesdropper, which corresponds to the weaker signal at the
eavesdropper compared to the intended receiver in [4].
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Similar to our SSG model, recently, capacity scaling laws
of wireless networks in the presence of eavesdropper with
the SINR model have been derived in [6]–[8]. For deriving
capacity scaling laws of wireless networks, however, two
nodes are defined to be connected even if the individual links
on the connected path between the two nodes are not active
simultaneously. In comparison, while considering connectiv-
ity/percolation, we ask for the existence of an unbounded con-
nected component where all links are active simultaneously.
Thus results obtained in [6]–[8] do not apply for studying
percolation on the SSG graph.

II. OUR CONTRIBUTIONS

• (Super-Critical Regime) For the SSG, when the distance
based path-loss or signal attenuation function has a finite
support, we show that for small enough γ, there exists a
large enough legitimate node density for which the SSG
percolates for any value of eavesdropper node density.
By percolation, we mean there is an unbounded size con-
nected component in the network. This result is similar in
spirit to [9], [16], where percolation is shown to happen
in the SINR graph, where two nodes are connected if
the SINR between them is more than a fixed threshold
β, (without the secrecy constraint due to eavesdroppers)
for small enough γ with finite and infinite support signal
attenuation function, respectively. The major difference
between the SSG and SINR graph [9], [16], is that with
SSG, the threshold for connection between two nodes
(maximum of SINRs received at all eavesdroppers) is
a random variable that depends on both the legitimate
and eavesdropper density, in contrast to the SINR graph,
where the threshold is a fixed constant.

• (Sub-Critical Regime) For the SSG, when the distance
based signal attenuation function has a finite support, we
derive a lower bound on the critical density of legitimate
nodes required for percolation. We show that if the
density of legitimate nodes is less than 1

CπE{ρ2} , ρ is
the random variable representing the maximum distance
to which any legitimate node can connect directly to any
other legitimate node in the SSG, and C is a constant,
then the probability of percolation is zero. We use the
technique developed in [17] for studying percolation on
the random Boolean model, where nodes are spatially
distributed as a Poisson point process (PPP), and balls
with i.i.d. radius are centered at each node of the PPP.
The random Boolean model is said to percolate if the
area of the region spanned by the union of overlapping
(connected) balls is unbounded. We show that for the
distance based signal attenuation function with finite
support, we can adapt the proof of [17] to obtain a lower
bound of on the critical density.

III. SYSTEM MODEL

In this section, we introduce the SSG, which generalizes the
secrecy graph considered in [11], by allowing all legitimate
nodes to transmit at the same time/frequency and interfere
with each other’s communication. We restrict ourselves to the
path-loss model of signal propagation and ignore multi-path
fading. Let Φ be the set of legitimate nodes, and ΦE be the
set of eavesdropper nodes. Let xi and xj , xi, xj ∈ Φ, want to
communicate secretly, i.e. without providing any knowledge
of their communication to any node in ΦE . Let the distance
between xi and xj be denoted as dij . Then to send a message
m, xi sends a signal si = (si(1), . . . , si(n)) to xj over n time
slots. The received signals at xj denoted by yj , and at e ∈ ΦE

denoted by ye, are

yj(t) = ℓ(xi, xj)sk(t)+
√
γ

∑

xk∈Φ, k ̸=i

ℓ1/2(xk, xj)sk(t)+vij(t),

and

ye(t) = ℓ(xi, e)si(t) +
∑

xk∈Φ, k ̸=i

ℓ1/2(xk, e)sk(t) + vie(t),

for t = 1, 2, . . . , n, respectively, where ℓ(xi, xj) = ℓ(|xi −
xj |) = ℓ(dij) is the signal attenuation function that is
a decreasing function of distance dij between xi and xj ,
0 < γ ≤ 1 is the processing gain of the system (interfer-
ence suppression parameter) which depends on the transmis-
sion/detection strategy. For example, on orthogonality between
codes used by different legitimate nodes during simultaneous
transmissions, e.g. CDMA system [18], and vij(t) and vie(t)
are additive White Gaussian noise terms with zero mean
and unit variance. No processing gain is, however, available
at any of the eavesdroppers. We assume that the signal
attenuation function ℓ(.) has a finite support, i.e. ℓ(x) = 0
for x > η, η > 0 for reasons described in Remark 5. Finite
support signal attenuation functions have been considered in
prior work on percolation on SINR graph [16].

We assume that si, vij(t), vie(t) are independent of each
other. Without loss of generality, we assume an average power
constraint of unity at each node in Φ. Then the SINR between
xi and xj is

SINRij :=
ℓ(xi, xj)

γ
∑

xk∈Φ, k ̸=i ℓ(xk, xj) + 1
,

and between xi and e is

SINRie :=
ℓ(xi, e)

∑

xk∈Φ, k ̸=i ℓ(xk, e) + 1
.

From [4], [6], the maximum rate of reliable communication
between xi and xj such that an eavesdropper e gets no
knowledge about message m, is

Rij(e) := [log2 (1 + SINRij)− log2 (1 + SINRie)]
+ , (1)

10th International Workshop on Spatial Stochastic Models for Wireless Networks 2014

621



and the maximum rate of communication between xi and xj

that is secured from all the eavesdropper nodes of ΦE ,

RSINR
ij := min

e∈ΦE

Rij(e).

We note that the information theoretic secure rate Rij(e)
depends on modeling assumptions, however, the basic struc-
ture of the secure rate function Rij(e) (1) remains unchanged.
In any case, the focus of this paper is to develop techniques to
study the percolation behavior of random graphs originating
from secure models of communication with simultaneous
communication between all nodes, that remains valid for a
wide class of secure rate functions.

Definition 1: SINR Secrecy graph (SSG) is a directed graph
SSG(θ) := {Φ, E}, with vertex set Φ, and edge set E :=
{(xi, xj) : RSINR

ij > θ}, where θ is the minimum rate of
secure communication required between any two nodes of Φ.

Similar to [11], [12], [14], in this paper we assume that
the locations of Φ and ΦE are distributed as independent
homogenous Poisson point processes (PPPs) with intensities
λ and λE , respectively.

Definition 2: We define that a node xi can connect to xj (or
there is a link/connection between them) if (xi, xj) ∈ SSG.

Definition 3: We define that there is a path from node xi ∈
Φ to xj ∈ Φ if there is a connected path from xi to xj in
the SSG. A path between xi and xj on SSG is represented
as xi → xj .

Definition 4: The connected component of any node xj ∈ Φ,
is defined as Cxj

:= {xk ∈ Φ, xj → xk}, with cardinality
|Cxj

|.
Remark 1: Note that because of stationarity of the PPP, the

distribution of |Cxj
| does not depend on j, and we consider

a typical mark x1 located at the origin for the purposes of
defining connected components.

In this paper we are interested in studying the percolation
properties of the SSG. In particular, we are interested in
finding the minimum value of λ, λc, for which the probability
of having an unbounded connected component in SSG is
greater than zero as a function of λE , i.e. λc := min{λ :
P (|Cx1

| = ∞) > 0}. The event {|Cx1
| = ∞} is also

referred to as percolation on SSG, and we say that percolation
happens if P ({|Cx1

| = ∞}) > 0, and does not happen if
P ({|Cx1

| = ∞}) = 0. The regime of λ < λc is known as the
sub-critical regime, while the λ > λc regime is known as the
super-critical regime.

Remark 2: Note that SSG(θ) ⊆ SSG(0) for θ > 0.
Therefore if SSG(0) does not percolate then SSG(θ) also
cannot percolate, hence considering the sub-critical regime for
SSG(0) is sufficient. For the super-critical regime, we will
only show the existence of percolation for SSG(0) for large
enough λ and small enough γ. The same result can be shown
to hold for SSG(θ) for θ > 0 using the same technique.
Thus, for simplicity of the exposition, we will consider θ =
0 for the rest of the paper, and represent SSG(0) as SSG.

With θ = 0, SSG := {Φ, E}, with edge set E := {(xi, xj) :
SINRij > SINRie, ∀ e ∈ ΦE}.

Remark 3: Assuming that all legitimate nodes can transmit
in orthogonal time/frequency slots, secrecy graph SG was
introduced in [11], where two legitimate nodes are connected
if the received signal power between them is more than
the received signal power at the nearest eavesdropper, i.e.
SG := {Φ, E}, with vertex set Φ, and edge set E := {(xi, xj) :
ℓ(xi, xj) > ℓ(xi, e), ∀ e ∈ ΦE}. Percolation properties of SG
were studied in [12], [14], where in [14] it was shown that if
λ < λE , then there is no percolation, while [12] showed the
existence of λ for any fixed λE for which the SG percolates.
The graph structure of SSG is more complicated compared
to SG because of the presence of interference power terms
corresponding to simultaneously transmitting legitimate nodes,
and hence the results of [12], [14] do not apply for SSG. For
example, consider the case of γ = 0 where it is possible that
two legitimate nodes xi and xj , with dij > mine∈ΦE

die can
connect to each other in the SSG, however, xi and xj cannot
connect to each other in the SG. Similarly, if xj is closer to
xi than any other eavesdropper node, then xi is connected to
xj in SG, however, that may not be the case in SSG.

Remark 4: Without the presence of eavesdropper nodes,
percolation on the SINR graph, where the vertex set is Φ,
and edge set E := {(xi, xj) : SINRij ≥ β, xi, xj ∈ Φ} for
some fixed threshold β, has been studied in [9], [16], [19].
The results of [9], [16], [19], however, do not apply for the
SSG, since for SSG, β = SINRie is a random variable that
depends on both Φ and ΦE .

Remark 5: The graph structure of SSG is more complicated
compared to secrecy graph [11], since the connection between
any two legitimate nodes not only depends on all the eaves-
dropper nodes, but also on all the legitimate nodes through
the interference they cause. For analytical tractability and to
obtain meaningful insights, similar to [16], we assume that
the signal attenuation function ℓ(x) has a finite support, i.e.
ℓ(x) = 0 for x > η, η > 0. This assumption is primarily made
to limit the dependency of link formation between xi and xj

to a finite area around xi and xj , xi, xj ∈ Φ. Without this
assumption, an eavesdropper node e that is far away from xi

and xj can influence the link formation between them.

Remark 6: Note that we have defined SSG to be a di-
rected graph, and the connected component of x1 is its
out-component, i.e. the set of nodes with which x1 can
communicate secretly. Since xi → xj , xi, xj ∈ Φ, does
not imply xj → xi xi, xj ∈ Φ, one can similarly define
in-component Cin

xj
:= {xk ∈ Φ, xk → xj}, bi-directional

component Cbd
xj

:= {xk ∈ Φ, xk → xj and xk → xj}, and

either one-directional component Ced
xj

:= {xk ∈ Φ, xk →
xj or xk → xj}. Percolation on Cin

xj
, Cbd

xj
and Ced

xj
is in

principle similar to the percolation on out-component, and is
presently out of scope of this paper.
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IV. PERCOLATION ON THE SSG

A. Sub-Critical Regime

In this section, we are interested in obtaining a lower bound
on λc as a function of λE for which percolation does not
happen. For the sub-critical regime, we consider the case of
γ = 0, where xi and xj are connected in the SSG if

ℓ(dij) >
ℓ(xi, e)

1 +
∑

j ̸=i ℓ(xj , e)
, ∀ e ∈ ΦE , (2)

for dij ≤ η, since ℓ(x) = 0, x > η. For γ = 0, if we can show
that the critical density λc > λ0 for some fixed λ0 ∈ R+, then
since SSG with γ > 0 is contained in SSG with γ = 0, we
have that for all γ > 0, λc > λ0. So the lower bound of λ0
on λc obtained with γ = 0 serves as a universal lower bound
on the critical density λc required for percolation.

For the case of γ = 0, we proceed as follows.
Definition 5: For a node xi ∈ Φ, we define the maximum

distance to which it can have a connection in SSG as ρ(xi) =
sup {d : ℓ(d) > maxe∈ΦE

SINRie}. Therefore, if (xi, xj) ∈
SSG then following (2), xj is such that dij < ρ(xi).

Remark 7: Note that ρ(xi) ≤ η, ∀ xi, since the signal
power received at a distance x, ℓ(x), is zero for x > η. With
the PPP assumption on both Φ and ΦE , it follows that ρ(xi)
is identically distributed for all xi ∈ Φ, and we represent
it as ρ, and drop the index of node xi where ever possible.
The probability density function of ρ is denoted as ωρ. Since
ρ ≤ η, E{ρm} < ∞ for a fixed m, however, finding E{ρm}
explicitly is not straightforward, since it depends on the signal
attenuation function ℓ(.).

Remark 8: From the definition of ρ (5), it is immediate
that ρ is a non-decreasing (stochastic) function of λ, since
SINRie, ∀ e ∈ ΦE decreases with increasing λ, and a non-
increasing function of λE , since maxe∈ΦE

SINRie increases
with increasing λE .

Let Dm be the square box with side 2m centered at the
origin, i.e. Dm = [−m m]× [−m m]. For r ≥ η, consider any
node x1 ∈ Φ ∩Dr,1 and let Cx1

be its connected component.
Let xL ∈ Cx1

be the farthest node from x1 in terms of
Euclidean distance as shown in Fig. 1.

Definition 6: Let E(q, r), q ∈ R2, be the event that there
is a path from a node x ∈ Φ ∩ (q +Dr) to a node w ∈ Φ ∩
(q+D9r\q+D8r). Note that due to stationarity P (E(q, r)) =
P (E(0, r)).

Recall that the quantity of interest is P (|Cx1
| = ∞). Let the

complement of set A ⊂ R2 be denoted by Ā = R2\A. Clearly,
P (|Cx1

| = ∞) ≤ limr→∞ P (xL ∈ D̄10r), since infinitely
many nodes of a PPP cannot lie in a finite region. Thus, to
upper bound P (|Cx1

| = ∞), it is sufficient to upper bound
P (xL ∈ D̄10r), which can be done as follows.

Lemma 1:

P (xL ∈ D̄10r) ≤ P (E(0, r)).

1Without loss of generality we can assume that x1 is located at the origin.

Proof: Since the maximum distance between any two con-
nected legitimate nodes ρ(x) ≤ η, where r ≥ η, if the
farthest node xL of Cx1

lies in D̄10r, then there is at least
one node on the connected path between x1 and xL that lies
in Dmr\D(m−1)r for each m = 2, . . . , 10. In particular, there
is a path from x1 ∈ Dr to some node w ∈ D9r\D8r, i.e.
E(0, r) occurs. Hence P (xL ∈ D̄10r) ≤ P (E(0, r)).

D

8rD
9rD

10rD

2rD

4rD

1x
2x

(x)ρ

L

Nx

y

x

r

ρ(x) ≤ ηr ≥ η

Fig. 1. Illustration of connected component of x1 (origin) and event E(0, r).

Hence to show that limr→∞ P (xL ∈ D̄10r) = 0 for λ < λ0,
using Lemma 1, it is sufficient to show that P (E(0, r)) goes
to zero as r → ∞ for λ < λ0, which is proved in the next
Lemma.

Lemma 2: For λ < 1
CπE{ρ2} , where C is a constant,

P (E(0, r)) → 0 as r → ∞.

Proof: See Appendix A.

The main Theorem of this subsection is as follows.

Theorem 1: The critical density λc ≥ 1
CπE{ρ2} , where C is

a constant.

Proof: From Lemma 1, P (|Cx1
| = ∞) ≤

limr→∞ P (E(0, r)). From Lemma 2, for λ ≤ 1
CπE{ρ2} ,

limr→∞ P (E(0, r)) = 0.

From Remark 8, we can let E{ρ2} := g(λ,λE), where g is a
non-decreasing function of λ, and a non-increasing function
of λE . Thus, Theorem 1 states that if λg(λ,λE) <

1
πC , then

the connected component of x1 is bounded for any x1 ∈ Φ.

The main ingredient of the proof of Theorem 1 is Lemma
2 that is proved in Appendix A using ideas similar to [17],
where a lower bound on the critical density is derived for a
random Boolean model. In a random Boolean model, nodes
are spatially distributed as a PPP, and balls with i.i.d. radius are
centered at each node of the PPP. The quantity of interest is the
region spanned by the union of overlapping balls (also called
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the connected component). Percolation on the SSG is similar
to the random Boolean model, however, where two nodes xi

and xj have an edge in SSG if ℓ(dij) >
ℓ(xi,e)

1+
∑

j ̸=i ℓ(xj,e)
, ∀ e ∈

ΦE . Thus, with SSG, for two different nodes xi, xk ∈ Φ, the
distance to which they can connect to other nodes of Φ is
correlated, and hence the proof of [17] does not apply directly.

Discussion: In this section, we obtained a universal lower
bound on the critical intensity λc required for percolation
in the SINR secure graph, where all nodes are allowed to
transmit simultaneously with γ = 0. As discussed before,
the lower bound with γ = 0 holds for all γ > 0 as well.
Our proof is an adaptation of [17], for the non-independent
radii of connectivity under the finite support signal attenuation
function. The main idea behind the proof is that if λ is below a
threshold (the derived lower bound), the probability that there
is a path between two legitimate nodes at a distance r from
each other goes to zero as r → ∞. Therefore with probability
one, if λ is below a threshold, the connected component of any
node lies inside a bounded region, and since infinitely many
nodes of a PPP do not lie in a bounded region, the connected
component of any node is finite.

In prior work, a lower bound of λc > λE has been derived
in [11] for the secrecy graph model, where each legitimate
node can communicate with any other node without causing
interference to any other node by using non-overlapping
time/frequecy slot. The results of [11], are derived using the
branching process arguments on the out-degree distribution,
similar to [20]. With the SSG, however, it is difficult to find
even the marginal distribution of the out-degree distribution
for any legitimate node. Hence, we used an alternate technique
developed in [17] for the random Boolean model.

B. Super-Critical Regime

In this section, we are interested in the super-critical regime
and want to find an upper bound on λc. Towards that end, we
will tie up the percolation on SSG to a bond percolation on the
square lattice, and show that bond percolation on the square
lattice implies percolation in the SSG.

We tile R2 into a square lattice S with side s. Let S′ =
S + ( s2 ,

s
2 ) be the dual lattice of S obtained by translating

each edge of S by ( s2 ,
s
2 ). For any edge a of S, let S1(a)

and S2(a) be the two adjacent squares to a. See Fig. 2 for a
pictorial description. Let {ai}4i=1 denote the four vertices of
the rectangle S1(a)∪S2(a). Let Y (a) be the smallest square
containing ∪4

i=1B(ai, η), and Z(a) be the smallest square
containing ∪4

i=1B(ai,
√
5s). In the sequel, we will let s to

be small enough, so without loss of generality, let η > s.
Definition 7: Any edge a of S is defined to be open if

1) there is at least one node of Φ in both the adjacent
squares S1(a) and S2(a),

2) there are no eavesdropper nodes in Z(a),
3) and for any pair of legitimate nodes xi, xj ∈

Φ ∩ (S1(a) ∪ S2(a)), the interference received at xj

a

s

2 aS  (  )1 S  (  )
S

Sa

Fig. 2. Square lattice and its dual lattice with side s.

a

aZ (  )

s a
S (  )

$\sqrt{5}s$

2 aS (  )1

Fig. 3. Open edge definition where black dots represent a legitimate node
while a cross represents an eavesdropper node.

from all legitimate nodes Φ other than xi, Iij :=
∑

k∈Φ,k ̸=i ℓ(xk, xj) ≤ ϵ
γ , and for any eavesdropper

node e ∈ ΦE ∩ Y (a), the interference received from
legitimate nodes Φ other than xi ∈ Φ∩(S1(a) ∪ S2(a)),
Iie :=

∑

k∈Φ,k ̸=i ℓ(xk, xe) > ϵ for any fixed ϵ > 0.

An open edge is pictorially described in Fig. 3 by red edge
a, where the black dots represent a legitimate node while a
cross represents an eavesdropper node.

The next Lemma allows us to tie up the continuum perco-
lation on SSG to the bond percolation on the square lattice,
where we show that if an edge a is open, then all legitimate
nodes lying in S1(a) ∪ S2(a) can connect to each other.

Lemma 3: If an edge a of S is open, then any node
xi ∈ Φ ∩ (S1(a) ∪ S2(a)) can connect to any node xj ∈
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Φ ∩ (S1(a) ∪ S2(a)) in SSG.

Proof: First note that since ℓ(x) = 0 for x > η, SINRie = 0
for xi ∈ Φ ∩ (S1(a) ∪ S2(a)) and e ∈ ΦE ∩ Ȳ (a). Now
for xi, xj ∈ Φ ∩ (S1(a) ∪ S2(a)), by definition of an open

edge SINRij ≥ ℓ(
√
5s)

1+ϵ , while for xi ∈ Φ ∩ (S1(a) ∪ S2(a))

and e ∈ ΦE ∩ Y (a), SINRie ≤ ℓ(
√
5s)

1+ϵ , since there is no
eavesdropper node in Z(a). Thus, clearly, (xi, xj) ∈ SSG, if
xi, xj ∈ Φ ∩ (S1(a) ∪ S2(a)).

Definition 8: An open component of S is the sequence of
connected open edges of S.

Definition 9: A circuit in S or S′ is a connected path of
S or S′ which starts and ends at the same point. A circuit in
S or S′ is defined to be open/closed if all the edges on the
circuit are open/closed in S or S′.

Some important properties of S and S′ which are immediate
are as follows.

Lemma 4: If the cardinality of the open component of S

containing the origin is infinite, then |Cx1
| = ∞.

Proof: Follows from Lemma 3.

Lemma 5: [21] The open component of S containing the
origin is finite if and only if there is a closed circuit in S′

surrounding the origin.

Hence, if we can show that the probability that there exists a
closed circuit in S′ surrounding the origin is less than one, then
it follows that an unbounded connected component exists in
S with non-zero probability. Moreover, having an unbounded
connected component in the square lattice S implies that there
is an unbounded connected component in SSG from Lemma 3.
Next, we show that if λ is large enough and γ is small enough,
then probability of having a closed circuit in S′ surrounding
the origin is less than one for any fixed value of λE . This
is a standard approach used for establishing the existence of
percolation in discrete graphs.

First we upper bound the probability that
any edge a of S is closed. Let F1 :=
{

Iij ≤ ϵ
γ , ∀ xi, xj ∈ Φ ∩ (S1(a) ∪ S2(a))

}

, and F2 :=
{

Iie > ϵ, ∀ xi ∈ Φ ∩ (S1(a) ∪ S2(a)) , e ∈ ΦE ∩ Y (a)
}

.
From Definition 7, P (a is closed)

= P ({|S1(a)|Φ = 0 ∪ |S2(a)|Φ = 0}
∪ {|Z(a)|ΦE

> 0} ∪ F̄1 ∪ F̄2

)

,
(a)
≤ P ({|S1(a)|Φ = 0 ∪ |S2(a)|Φ = 0})

+P ({|Z(a)|ΦE
> 0}) + P

(

F̄1

)

+ P
(

F̄2

)

= 1− (1− e−λs
2

)2 + 1− e−2λEν(Z(a))

+ P

(

Iij >
ϵ

γ
for any xi, xj ∈ Φ ∩ (S1(a) ∪ S2(a))

)

+P
(

Iie ≤ ϵ for any xi ∈ Φ ∩ S1(a) ∪ S2(a),

e ∈ ΦE ∩ Y (a)) , (3)

where (a) follows from the union bound.

For any edge a, let X(a) be the smallest square containing
∪4
i=1B(ai,

√
5s + 2η), where ai, i = 1, . . . , 4, are the four

vertices of the rectanlge S1(a) ∪ S2(a). Now consider a
sequence of edges (or path) Pn := {ai}ni=1 of S. We want to
upper bound P (Pn is closed).

Lemma 6: P (Pn is closed) ≤ qn/ψ, where q :=
P (a is closed), and ψ is a positive integer independent of
λ,λE .

Proof: The states (open/closed) of any two edges of Pn, ai
and aj are independent if X(ai)∩X(aj) = φ, since ℓ(x) = 0
for x > η. Consider a subset of path Ps

n ⊂ Pn where Ps
n =

{ai}i∈I , where for any n,m ∈ I, X(an)∩X(am) = φ. Since
X(a) occupies at most

(

L+
⌈

2η
s

⌉)

×
(

L+ 1 +
⌈

2η
s

⌉)

squares

of lattice S, where L = 2
⌈√

5
⌉

, it follows that |I| ≥ n
ψ , where

ψ = 8
(

L+
⌈2η

s

⌉)2−1. Thus, P (Pn is closed) ≤ qn/ψ , where
q = P (ai is closed) for any ai ∈ S.

Using the Peierl’s argument, the next Lemma characterizes
an upper bound on q for which having a closed circuit in S

surrounding the origin is less than one.

Lemma 7: If q <
(

11−2
√
10

27

)ψ
, then the probability of

having a closed circuit in S′ surrounding the origin is less
than one.

Proof: From [21], the number of possible circuits of length
n around the origin is less than or equal to 4n3n−2. From
Lemma 6, we know that the probability of a closed circuit of
length n is upper bounded by qn/ψ. Thus,

P (closed circuit around the origin) ≤
∞
∑

n=1

4n3n−2qn/ψ,

=
4q1/ψ

3(1− 3q1/ψ)2
,

which is less than 1 for q < (11−2
√
10

27 )ψ .

Now we are ready to state and prove the main Theorem of
this section as follows.

Theorem 2: For the signal attenuation function ℓ(x) with
finite support, for any λE , there exists λ′ < ∞ and a function
γ′(λ,λE) > 0, such that P (|Cx1

| = ∞) > 0 in the SSG for
λ > λ′, and γ < γ′(λ,λE).
Proof: Using Lemmatas 4, 5, and 7, to conclude the result
we just need to show that q = P (a is closed) can be made
arbitrarily small for large enough λ and small enough γ. Recall
that an upper bound on q has been derived in (3). Consider
the four terms in the R.H.S. of (3). Clearly, the second term,
1 − e−2λEν(Z(a)), can be made arbitrarily small by choosing
a small enough s (the side of the lattice). Now depending on
the choice of s, the first term, 1− (1− e−λs

2

)2, can be made
arbitrarily small for large enough λ. For the third and fourth
term, note that both (S1(a) ∪ S2(a)) and Y(a) have finite
areas and hence only finitely many nodes of Φ and ΦE can
lie in them, respectively. Therefore, the fourth term can also
be made arbitrarily small by choosing small enough ϵ, and
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depending on the choice of ϵ, choosing small enough γ, the
third term can be made as small as required. Note that both ϵ
and γ could possibly depend on λ,λE .

Discussion: In this section, we showed that for any eaves-
dropper node density, percolation happens in the SSG for
large enough legitimate node density and small enough γ,
when concurrent transmissions are allowed from all legitimate
nodes. We mapped the continuum percolation to discrete per-
colation (percolation on the square grid), for which concrete
percolation results can be obtained. We needed the signal
attenuation function to have a finite support, since otherwise,
nodes (legitimate or eavesdropper) with arbitrarily large dis-
tances can interact with each other, thereby introducing long
range correlations and complicating the graph structure.

V. CONCLUSIONS

In this paper, we considered percolation in a wireless net-
work, where two legitimate nodes can connect/communicate
with each other if the SINR between them is more than the
SINR at any eavesdropper. This model of communication
is complicated since the link formation between any two
legitimate nodes depends on all the other legitimate nodes
in the network (through their interference contribution) and
entails infinite range dependencies. For analytical tractability,
we assumed a signal attenuation function that has a finite
support, and found existential results on the sub-critical and
super critical regimes of percolation. Finding concrete bounds
on the critical density remains an open problem.

APPENDIX A
PROOF OF LEMMA 2

We now prove some intermediate results that are required
for proving Lemma 2. The first key element required for
proving Lemma 2 is described in the next Lemma.

Lemma 8: Event E(q, r) only depends on x ∈ Φ ∩ (q +
D10r+η), and e ∈ ΦE ∩ (q +D10r+η).
Proof: By definition, E(q, r) is the event that there is a path
from a node x ∈ Φ∩(q+Dr) to a node w ∈ Φ∩(q+D9r\q+
D8r). With a finite support signal attenuation function ℓ(.),
ρ(x) ≤ η, and hence connections between legitimate nodes of
Φ lying in (q +D10r) can most be influenced by nodes of Φ
and ΦE lying in (q +D10r+η), since ℓ(x) = 0 for x > η.

The second key ingredient required for proving Lemma 2
is described in the next Lemma that uses Lemma 8.

Lemma 9: For r ≥ η, P (E(0, 10r)) ≤ CP (E(0, r))2,
where C is a constant that does not depend on r.

Proof: The essential idea here is to show that if E(0, 10r)
occurs, then two small events E(q1, r) and E(q2, r) happen,
where ||q2 − q1|| > 20r + 2η, which makes the two events
E(q1, r) and E(q2, r) independent following Lemma 8. A
rigorous proof is as follows.

Let K and L be two finite discrete subsets of R2, such that
K ⊂ δD10, L ⊂ δD80, and D10\D9 ⊂ K +D1, D81\D80 ⊂

D

10D

1D
9

Fig. 4. Covering of D10\D9 by discrete points lying on the boundary (black
dots) of D10 using D1.

80rD
90rD

100rD

9rDζ +
8rDζ +

10D

10rD
9rD

rDrk + 

k

ζ

ρ(x) ≤ η r ≥ η

Fig. 5. Picture to illustrate the idea used in Proof of Lemma 9.

L +D1. For example, see Fig. 4 where black dots represent
the points of K ⊂ δD10 covering D10\D9 using D1. Let C
be the product of the cardinality of K and L.

Assume that E(0, 10r) occurs for r ≥ η. Thus, there
exists a node in D10r that has a connected path to a node in
D90r\D80r. Since ρ(x) ≤ η ≤ r for any x ∈ Φ, there exists
a node ζ ∈ D10r\D9r that has a connected path to a node in
D90r\D80r. By the definition of K , ζ ∈ rk + Dr for some
k ∈ K . See Fig. 5 for a pictorial description. Moreover, since
ρ(x) ≤ η for all x, there is a connected path from node ζ to
some node in ζ +D9r\D8r. Hence if E(0, 10r) occurs, then
∪k∈KE(rk, r) happens, where P (E(rk, r)) = P (E(0, r)) for
any k ∈ K . Similarly looking at nodes around D80r and
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using the definition of L we can show that if E(0, 10r) occurs
then ∪ℓ∈LE(rℓ, r) happens. Hence if E(0, 10r) occurs, then
∪k∈KE(rk, r)∩∪ℓ∈LE(rℓ, r) happens, where P (E(rℓ, r)) =
P (E(0, r)) for any ℓ ∈ L. From Lemma 8, we know that the
event ∪k∈KE(rk, r) depends only upon the nodes of Φ and
ΦE lying in D20r, while the event ∪ℓ∈LE(rℓ, r) depends only
upon the nodes of Φ and ΦE lying in D̄69r. Since D20r and
D̄69r are disjoint, and since Φ are ΦE are independent PPPs,
the events ∪ℓ∈LE(rℓ, r) and ∪k∈KE(rk, r) are independent,
and hence we get that P (E(0, 10r)) ≤ CP (E(0, r))2.

We also need the following upper bound on the P (E(0, r))
to prove Lemma 2.

Lemma 10: P (E(0, r)) ≤ λπE{ρ2}.
Proof: Event E(0, r) implies that for some x ∈ Φ ∩ Dr,
there is at least one node in a disc of radius ρ(x). Hence event
E(0, r) implies |(Φ ∩ B(x, ρ(x)))| > 0, i.e., P (E(0, r)) ≤
P (|(Φ ∩ B(x, ρ(x)))| > 0). Since for any random variable
X , E{X} ≥ P (X > 0), we get the result by noting that
E{|(Φ ∩B(x, ρ(x)))|} = λπE{ρ2}.

Next, we need a technical result that is similar to Lemma
3.7 [17].

Lemma 11: For η ≥ 1, suppose f : [η,∞) → R+ is a non-
increasing function such that f(η) = a < 1, and f satisfies
f(x) ≤ f(x/10)2 for all x ≥ 10η. Then f(x) → 0 as x → ∞.
Proof: For all x ≥ 10η, we have that f(x) ≤ af(x/10).
Hence for all integers n ≥ 1, we have

f((10η)n) ≤ anf(η),

≤ an+1,

Thus, f((10η)n) → 0 as n → ∞. The result now follows
since f is non-increasing.

Definition 10: Let f(r) := CP (E(0, r)) for r ≥ η.
Then the following is true.

Lemma 12: For λ < 1
πCE{ρ2} , f(r) < 1 for r ≥ η.

Proof: From Lemma 10, f(r) = CP (E(0, r)) ≤ λπCE{ρ2}.
Thus, for λ < 1

πCE{ρ2} , f(r) < 1 for r ≥ η.

Finally, we are ready to prove Lemma 2.
Proof: (Lemma 2) Using the definition of f(r), from Lemma
9, f(r) ≤ f(r/10)2 for r ≥ η. Moreover, from Lemma 12,
f(r) < 1 for r ≥ η, and f(r) is non-increasing. Hence using
Lemma 11, it follows that f(r) → 0, and using the definition
of f(r), P (E(0, r)) → 0 as r → ∞.
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