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Abstract—We develop the noncooperative game with individual
pricing for the general multiple access channel (MAC) system
without successive interference cancellation (SIC). Each user
allocates its own power by optimizing the individual utility
function with clever price adaptation. We show that by the
proposed prices, the best response (BR) power allocation of each
user converges rapidly. The individual prices are proposed such
that the Shannon rate-based quality-of-service (QoS) requirement
of each user is achieved at the unique Nash equilibrium (NE)
point. We analyse different behavior types of the users, especially
the malicious behavior and the resulting NE power allocation
and achievable rates of all the users with malicious users. We
illustrate the convergence of the BR dynamic and the Price of
Malice (PoM) by numerical simulations.

I. INTRODUCTION

In future heterogeneous dense wireless networks, the

quality-of-service (QoS) requirements can be controlled with

resource allocation via distributed pricing. We consider the

distributed pricing framework for the general multiple access

channel (MAC). In this context, the MAC consists of several

mobile transmitters and a base station (BS). With today’s

high demand of the data communications, the QoS of each

user in the wireless system becomes the main concern. In

the present work, we develop the physical layer resource

allocation, namely the power allocation, in order to satisfy the

QoS requirement of each user in the MAC [4]. The system is

distributed in the sense that each user allocates its own power

by optimizing the individual utility. The distributed pricing is

adopted in the individual utility function of each user such

that the QoS requirement is achieved at the Nash equilibrium

(NE) power allocation.

There are previous works concerning distributed resource

allocation for different scenarios. In [1], the authors con-

sider a distributed power control scheme for wireless ad

hoc networks, in which each user announces a price that

reflects compensation paid by other users for their interference.

The MAC game models are discussed in [2] in which each

transmitter makes individual decisions regarding their power
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level or transmission probability. The authors in [3] address the

efficient distributed power control via convex pricing of users’

transmission power in the uplink of CDMA wireless networks

supporting multiple services. The CDMA power control as a

noncooperative game is also discussed in [4], where a cost

function is introduced as the difference between the pricing

and utility functions. A game-theoretic approach is discussed

in [5] for power control in ad-hoc networks. In [6], the power

control and beamformer design is investigated for interference

networks, based on the exchange of interference prices. A set

of prices corresponding to all degree of freedoms (DoFs) must

be exchanged to achieve the centralized optimal allocation.

The behavior of users on networked systems ranges from

altruistic on the one end to malicious (adversarial) on the other

end. While altruistic users aim to improve the overall network

performance, selfish users develop strategies to maximize

their own throughput and obtain a disproportionate share of

resources. A malicious user, on the other hand, aims to disrupt

the whole network. Malicious behavior may be due to the users

inherent maliciousness or in competitive scenarios where the

loss of a competing user will likely result in future gains for

oneself. Well-known examples of such adversarial behavior

include jamming in wireless networks and denial-of-service

(DoS) attacks [7]-[8]. In this paper, we model the coexistence

of selfish and malicious players by introducing an overarching

noncooperative game-theoretic framework. Specifically, we

adopt a pricing mechanism approach in which a set of rules

and incentives [9] are used to control the outcome of the

underlying game between the players. The malicious user

submits QoS requirement like the regular users in order not to

get detected but computes the best response power strategies

for a modified utility function with the goal to harm the other

links and cause interference to others.

In our work, we develop the distributed power allocation

with individual pricing for the general MAC system without

successive interference cancelation (SIC). Each user has a

rate-based QoS requirement, which is guaranteed through the

noncooperative game with the given prices. We show that by

the proposed prices, the best response (BR) power of each
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user converges rapidly. The QoS requirement of each user is

achieved at the NE point. The pricing should be given such that

the BR power converges to achieve the QoS requirement of

each user and the malicious behavior of the users is prevented.

The behavior types of the users are analysed, especially the

malicious behavior and the resulting NE power allocation and

achievable rates of all the users with malicious player. The

strategy-proof mechanism is designed with the punishment

prices. Numerical results illustrate the sum power needed to

support a given number of users and the Price of Malice (PoM)

as a function of the number of the malicious users.

The paper outline is as follows. In Sec. II, the system and

channel model are discussed. The noncooperative game with

individual pricing is analyzed in Sec. III, where the BR and

NE power and the pricing to ensure the QoS requirement

of each user are proposed in detail. The malicious behavior

of the users are investigated in Sec. IV with the private

types. The resulting BR and NE power with private types are

obtained. The numerical illustrations in Sec. V show that the

BR dynamic of the proposed noncooperative game converges

rapidly to the NE power, which guarantees the rate requirement

of each user.

II. PRELIMINARIES

A. System Model

We study the general MAC with K transmitters and one

receiver as the BS. All the transmitters and the BS are

equipped with single antenna. In the rest of the paper, we will

not differentiate users and transmitters. Each user i ∈ K has a

rate requirement ui to be guaranteed by the MAC system. The

linear receiver without SIC is considered, therefore each user

suffers from the interference of all the other users. We assume

the system guarantees the rate requirement of each user by

providing the individual prices βi. The non-cooperative game

is discussed in the system, where each user maximizes its own

utility ui as a function of the price βi. We introduce the prices

β such that the feasible rate requirement of each user can be

achieved at the NE point of the non-cooperative game with

minimum power allocation. The strategy set of each user is

their power allocation with single power constraint pi < pmax
i .

B. Channel Model

The received signal at the BS is given by y =
∑K

k=1 hkxk+
n, where xk is the transmit signal of user k, n is the additive

white Gaussian noise with zero-mean and variance of σ2
n. The

channel gain of user k is denoted by αk =| hk |2.

We assume the quasi-static block flat-fading channel gains

α = α1, . . . , αK are independent of each other and remain

constant for a sufficiently long period of time.

The Shannon rates are considered as the QoS criterion. For

the MAC system described above, the achievable rate of each

user is

ri(pi, p−i) = log

(
1 +

αipi
1 +

∑
k �=i αkpk

)
,

where p−i = [p1, · · · , pi−1, pi+1, · · · , pK ] denotes the power

allocation of all the other users except user i.

III. SYSTEM OPERATION WITH TRUTHFUL AGENTS

The noncooperative game of the MAC system can be

formulated as an economic model, where the consumers are

the users. The trading good is the power. And the producer

provides the individual prices βi. Since each user has a rate

requirement ui to be guaranteed and the interferences are

coupled among all the users, the demand in power of each user

is dependent on the other users. In order to better illustrate

the properties of the model, we introduce the normalized

distributed pricing term βi(p−i) as a function of the individual

price βi and the demand of all the other users F (p−i), i.e.,

βi(p−i) =
βi

F (p−i)
. (1)

The utility function of each user is based on the achievable

rate ri(pi, p−i) and the normalized pricing term as follows.

ui(pi, p−i) = ri(pi, p−i)− βi(p−i)pi. (2)

When there is single link, i.e., no interference is presented,

the utility function is ui(pi, p−i) = ri(pi, p−i) − βipi. In the

multiuser case, the interference obviously influences the qual-

ity of the good (resource) that user i buys. In order to express

the quality loss due to interference, the higher interference, the

lower the pricing term, and thus the more power allocation.

Therefore, the pricing term βi(p−i) is normalized by the noise

plus interference caused by all the other users.

ui(pi, p−i) = ri(pi, p−i)− βi

1 +
∑

k �=i αkpk
pi (3)

= log

(
1 +

αipi
1 +

∑
k �=i αkpk

)

− βi

1 +
∑

k �=i αkpk
pi. (4)

The normalized pricing term denotes the quality of the good.

If the interference from other users is high, then the price of

the power for user i should be lower in order to achieve the

rate requirement.

The game in normal form G is described by the K players.

Their strategy space is [0, pmax
i ] and their utility function is

ui(pi, p−i). The price controls the trade-off between maximiz-

ing the achievable rate and saving as much power as possible.

The game best response dynamic (BRD) can be expressed as

the K coupled problems

maxpi ui(pi, p−i) = ri(pi, p−i)− βi

1 +
∑

k �=i αkpk
pi

s.t. 0 < pi < pmax
i ∀i = 1, . . . ,K. (5)

A basic result from game-theory is that each fixed point

of the BRD is an NE of the game, although in general,

convergence of the BRD is not guaranteed, nor is the existence

of the fixed point.
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A. Best Response Power Allocation

If the prices βi = 0, transmitting with full power pmax
i

is the BR of each user. Due to the pricing term for positive

βi > 0, we can conclude the first result as follows.

Proposition 1: For all i = 1, . . . ,K, define p
i

as

p
i
(p−i) =

(
1

βi
− 1

αi

)
(1 +

∑
k �=i

αkpk). (6)

The i-th user’s best-response is given by pBR
i =

max(0,min(p
i
, pmax

i )). Moreover, the noncooperative game

G always admits an NE {pBR
i }Ki=1.

Proof: Solve the first derivative of ui(pi, p−i) to be zero

with respect to pi.

∂ui(pi, p−i)

∂pi
=

αi

1 +
∑

k �=i αkpk + αipi
− βi

1 +
∑

k �=i αkpk

= 0. (7)

The positive result p
i

is achieved in (6) if βi < αi. Otherwise

it is set to zero to avoid negative power.

The second derivative of ui(pi, p−i) with respect to pi is

∂2ui(pi, p−i)

∂p2i
=

−α2
i

(1 +
∑

k �=i αkpk + αipi)2
< 0. (8)

By observing that the strategy set of each user is a compact and

convex set, ui(pi, p−i) is a continuous function with respect to

the powers of all users, and concave with respect to pi, which

implies the existence of at least one NE.

B. Nash Equilibrium Power Allocation

The noncooperative game G always admits at least one NE

power allocation {pBR
i }Ki=1. In this part, we figure out the NE

point and show that it is unique.

Proposition 2: The Nash equilibrium power allocation of

each user i in the noncooperative game G in the general

MAC system is pNE
i = max(0,min(pNE

i
, pmax

i )). With given

individual prices βi,

pNE
i

=
αi − βi

α2
i

· 1∑K
j=1

βj

αj
−K + 1

. (9)

The noncooperative game G always admits this unique NE

point.

Proof: Please refer to Appendix 1.

C. Pricing for QoS Requirements

As shown in [10], the power allocation to achieve the rate

requirement ui of each user is

pUi =
BK

αi
· 2

ui − 1

2ui
, (10)

where BK = 1∑K
j=1

1

2
uj

−K+1
is a constant for given uj , j =

1, · · · ,K.

In order to determine the individual prices, pNE
i

should be

equal to pUi . Therefore, we solve the universal individual prices

for the distributed MAC as follows.

Lemma 1: In the K-user non-cooperative game G of the

general MAC system, the rate requirement ui of each user i is

achieved with the NE power allocation pNE
i if the individual

price is

βi =
αi

2ui
. (11)

Proof: Solve the equation pNE
i

= αi−βi

α2
i

·
1

∑K
j=1

βj
αj

−K+1
= pUi = BK

αi
· 2ui−1

2ui
for βi.

In order to ensure the positive power allocation and there-

fore to guarantee the rate requirement of each user, the

following conditions regarding the number of users in the

wireless system, the individual prices and the channel states

should be fulfilled.

Corollary 1: In the general K-user MAC system without

SIC, the rate requirement of each user i is achieved by the

BRD power allocation if and only if

K − 1 <
K∑
i=1

βi

αi
< K. (12)

Proof: The proof is obtained by guaranteeing pNE
i

> 0
in (9).

Remark 1: The region in (12) is equivalent to the feasible

utility region in Corollary 1 in [10], if the individual prices βi

are given in (11).

IV. MALICIOUS BEHAVIOR

We define Vi to denote the private type [11] of users in the

system, where

• Malicious users, 0 < Vi ≤ 1,

• Selfish users, Vi = 0,

• Altruistic users, −1 ≤ Vi < 0.

The private type Vi of each user i is a continuous value

between [−1, 1], which denotes the extent of its behavior.

For example, if user i’s private type is Vi = 1, then it is an

extreme malicious user and if Vi = −1, then it is an extreme

altruistic user. Since each user i in the noncooperative game G
has the individual rate requirement ui to be achieved besides

maximizing its utility function ui(pi, p−i, Vi), altruistic users

who benefits the other users are not concerned in the current

model. Later on, we focus on considering the malicious

behavior with the private types Vi.

Let the normalized noise plus interference to user i caused

by all the other users be Ii(p−i) = 1+
∑

k �=i αkpk. The utility

function of each user with type Vi is defined as

ui = ri(pi, p−i)− βi

Ii(p−i)
pi − Vi

∑
j �=i

rj(pj , p−j)(13)

= ri(pi, p−i)− Vi

(∑
j �=i

log(1 +

K∑
l=1

αlpl)

− log(1 +
∑
l �=j

αlpl)
)
− βi

Ii(p−i)
pi, (14)
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where the first term in (13) is its own achievable rate, the

second term is the pricing term and the third term is its

influence on the other users. For malicious users, they get

benefit from harming all the other users. Since Vi > 0, the

best response of the malicious user is different from the selfish

users. The malicious behavior and its influence on the resulting

NE power allocation is interesting and necessary for the mech-

anism design. In (14), the sum rate term log(1 +
∑K

l=1 αlpl)
is not the target of the malicious user because this will also

harm its own rate. Therefore, the utility of the malicious user

is focused on the other terms. The utility function is modified

to

ui = ri(pi, p−i)− βi

Ii(p−i)
pi

+Vi

⎛
⎝∑

j �=i

log(1 + αipi +
∑
l �=j,i

αlpl)

⎞
⎠

= ri(pi, p−i) + Vi

(∑
j �=i

log
((

1 +
∑
l �=j,i

αlpl
)

(
1 +

αipi
1 +

∑
l �=j,i αlpl

)))− βipi
Ii(p−i)

. (15)

Since 1 +
∑

l �=j,i αlpl is independent of the power of the

malicious user pi, it is skipped further on in order to

simplify the calculation. The second term in (15) becomes

Vi

(∑
j �=i log(1 +

αipi

1+
∑

l�=j,i αlpl
)
)

. Instead of the complicated∑
j �=i log term, we linearize the maximization problem as

follows. The final utility function of each user with the private

types Vi is

ui(pi, p−i, Vi) = ri(pi, p−i)− βi

Ii(p−i)
pi +

Viαipi
Ii(p−i)

, (16)

where the third term reflects the interference to all the other

users after linearization.

A. Best Response Power Allocation with Malicious User

Follow a similar procedure as in Section III, we obtain the

distributed BR power allocation of each user with private types

Vi and NE point with malicious users in the system.

Lemma 2: For all i = 1, . . . ,K with type Vi from (16),

define p
i
(Vi) as

p
i
(Vi) =

(
1

β̃i(Vi)
− 1

αi

)
(1 +

∑
k �=i

αkpk). (17)

Here β̃i(Vi) = βi − Viαi is the individual price with type

Vi. The i-th user’s best-response with type Vi is given by

pBR
i (Vi) = max(0,min(p

i
(Vi), p

max
i )).

Proof: Solve p
i
(Vi) for the first derivative

ui(pi,p−i,Vi)
p
i

=

0 from (16).

We observe that the BR power allocation of the malicious

user is higher than if it was a regular user, i.e., pm
j

> pS
j

.

Since all the selfish users only optimize their utility function

in (5), their BR power allocation pSi remains as in (10), and

it is exactly p
i
(Vi) in (17) when Vi = 0.

B. Nash Equilibrium Power Allocation with Malicious User

Next, we analyse the NE power allocation of the noncooper-

ative game G with private type Vi. From (9), we can conclude

the following result.

Proposition 3: The Nash equilibrium power allocation of

each user i in the noncooperative game G in the gen-

eral MAC system with private type Vi is pNE
i (Vi) =

max(0,min(pNE
i

(Vi), p
max
i )), where given the individual

prices β̃i(Vi) with type Vi,

pNE
i

(Vi) =
αi − β̃i(Vi)

α2
i

· 1∑K
j=1

β̃j(Vj)
αj

−K + 1
. (18)

The noncooperative game always admits this unique NE point.

Proof: The proof follows the same steps as in the Ap-

pendix by replacing the individual price βi with β̃i(Vi).
In order to understand the influence of the malicious be-

haviour on the resulting NE power and the rate of both the

selfish and malicious users comprehensively, we have the

following Proposition.

Proposition 4: With the individual price βi = αi

2ui
, the

Nash equilibrium power allocation pNE
i (Vi) of each user i in

the noncooperative game G in the general MAC system with

private type Vi is higher than or equal to pUi in (10), where

pNE
i

(Vi, V−i) =
1 + Vi − 2−ui

αi

1∑K
j=1(2

−ui − Vj)−K + 1
. (19)

The resulting rate ri(Vi) is

• ri(Vi) = ui, for selfish users with Vi = 0
• ri(Vi) > ui, for malicious users with 0 < Vi ≤ 1.

Proof: Insert β̃i(Vi) = βi−Viαi with βi =
αi

2ui
into (18),

then (19) is proved. It can be observed that the second term in

(19) is a constant for all the users with the given type Vj and it

is larger if there exists at least one user with Vi > 0. If all the

users are selfish, pNE
i

(Vi, V−i) = pUi , which is the minimum

power allocation in order to achieve the rate requirement ui

of each user i. The power pNE
i

(Vi, V−i) of malicious users

is greater than that of selfish users because the first term is

greater if Vi > 0.

Finally, we calculate the achievable rate of each user with

pNE
i (Vi). The rate requirement ui can be achieved for the

selfish users with Vi = 0. Since the power allocation of

malicious users is larger than that of selfish users, their actual

rate is greater than their rate requirements.

V. NUMERICAL RESULTS

In this section, we present some numerical results of our

proposed distributed pricing framework in the general MAC

system without SIC under individual QoS requirement ui.

Define the channel gains αi =| hi |2∼ χ2
n with diversity

order n. Fig. 1 shows the system sum power
∑K

i=1 p
NE
i with

different diversity order n for different numbers of users in

the MAC. The rate requirement ui = 0.05.

Fig. 2 shows the convergence rate of the BRD using the

chosen price βi in (11) for the 2-user MAC. It is shown that
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the BRD converges quite fast. The parameters are α1 = 2,

α2 = 1. u1 = 0.5, u2 = 1.2. The convergence points of the

power allocation are the same as the NE power pNE
i

in (9),

where pNE
i

= pUi .

Fig. 3 shows the Price of Malice (PoM) of the proposed

model. PoM is introduced in [12]. The PoM captures the ratio

between the Nash Equilibrium in a purely selfish system and

the worst NE with M malicious players. Formally, PoM in

our case is

PoM(M) =
PNE
sum(0)

PNE
sum(M)

, (20)
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Fig. 3. Price of Malice vs. Number of Malicious Users

where PNE
sum(M) denotes the sum power allocation when there

are M malicious users. PNE
sum(M) =

∑K
i=1 p

NE
i

(Vi, V−i) in

which M users are with Vi > 0 and K −M selfish users are

with Vi = 0.

We apply the PoM(M) to evaluate how much loss in the

sum power consumption of the whole MAC system with K
users when M malicious users exist. In the simulation, the total

number of users in the system is K = 10. The rate requirement

of each user is set to be ui = 0.05 in order to satisfy the

feasible region. The channel gain is set to be αi = 1. The

private type of the M malicious user i is Vi = 0.06, while

Vj = 0 for the K−M selfish users. When there is no malicious

user in the system, PoM is one and it is strictly decreasing

with the number of malicious users. It is observed that the

PoM quickly drops from one if one or two malicious users

are added. The PoM decreases more than 20% when there

is one malicious user, which indicates the importance of the

counter mechanism.

VI. CONCLUSION

In this paper, we investigate the noncooperative game for the

general MAC system without SIC, where each user allocates

its own power by maximizing its individual utility function.

We propose the individual prices in the utility function such

that the Shannon rate-based QoS requirement of each user is

satisfied at the NE point power allocation. We provide the

BRD power allocation, which converges rapidly to the unique

NE point. The different types regarding the user behavior

are analysed, especially the malicious behavior. The resulting

power allocation and the achievable rates at the NE power

allocation for all the users with the different individual types

are observed.
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APPENDIX

Proof: In order to determine the NE power allocation

pNE
i

, we make a trick to jointly solve the set of utility

maximization problems in (5). We formulate it as linear

equations A+D · p = p. Therefore, p is solved by

p = (I −D)−1 ·A, (21)

where the matrix D is formulated as

D =

⎡
⎢⎢⎢⎣

0 A1α2 . . . A1αK

A2α1 0 . . . A2αK

...
...

. . .
...

AKα1 AKα2 . . . 0

⎤
⎥⎥⎥⎦ , (22)

where Ai =
1
βi

− 1
αi

.

Using the Crammer’s rule, p = det(Bi)
det(B) , where B = I−D.

The matrix Bi is the matrix of B where the ith column is

replaced by the vector A.

B =

⎡
⎢⎢⎢⎣

1 −A1α2 . . . −A1αK

−A2α1 1 . . . −A2αK

...
...

. . .
...

−AKα1 −AKα2 . . . 1

⎤
⎥⎥⎥⎦ . (23)

Now we solve det(Bi) and det(B).

det(Bi)

=

K∏
i=1

Ai

∏
j �=i

αj · det

⎡
⎢⎢⎢⎣

1 −1 . . . −1
1 1

A2α2
. . . −1

...
...

. . .
...

1 −1 . . . 1
AKαK

⎤
⎥⎥⎥⎦

=
K∏
i=1

Ai

∏
j �=i

αj · det

⎡
⎢⎢⎢⎣

1 0 . . . 0
1 1+A2α2

A2α2
. . . 0

...
...

. . .
...

1 0 . . . 1+AKαK

AKαK

⎤
⎥⎥⎥⎦

=

K∏
i=1

Ai

∏
j �=i

αj

(
1 +

1

Ajαj

)
. (24)

det(B) =
K∏
i=1

Aiαi(−1)K det

⎡
⎢⎢⎢⎣

−1
A1α1

1 . . . 1

1 −1
A2α2

. . . 1
...

...
. . .

...

1 1 . . . −1
AKαK

⎤
⎥⎥⎥⎦

=
K∏
i=1

Aiαi · det

⎡
⎢⎢⎢⎣

C 1+A1α1

A1α1
. . . 1+A1α1

A1α1

0 1+A2α2

A2α2
. . . 0

...
...

. . .
...

0 0 . . . 1+AKαK

AKαK

⎤
⎥⎥⎥⎦

=
∏
j

(1 +Ajαj)

⎛
⎝1−

K∑
j=1

Ajαj

1 +Ajαj

⎞
⎠ , (25)

where C = 1
A1α1

− 1+A1α1

A1α1
·∑j �=1

Ajαj

1+Ajαj
. Therefore, the BR

power p
i
= det(Bi)

det(B) is

p
i
=

Ai

1 +Aiαi
· 1

1−∑K
j=1

Ajαj

1+Ajαj

. (26)

Insert Ai =
1
βi

− 1
αi

, The proposition is proved.
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