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Abstract—In this paper we study a transmission power-
tune/control problem in the context of 802.11 Wireless Local Area
Networks (WLANs) with multiple (and possibly densely deployed)
access points (APs). Previous studies on power control tend to
focus on one aspect of the control, either its effect on transmission
capacity (PHY layer) assuming simultaneous transmissions, or its
effect on contention order (MAC layer) by maximizing spatial
reuse. We observe that power control has a dual effect: it affects
both spatial reuse and capacity of active transmission; moreover,
maximizing the two separately is not always aligned in maximizing
system throughput and can even point in opposite directions. In
this paper we introduce an optimization formulation that takes
into account this dual effect, by measuring the impact of transmit
power on system performance from both PHY and MAC layers.
We show that such an optimization problem is intractable and
develop an analytical framework to construct simple yet efficient
solutions. Through numerical results, we observe clear benefits of
this dual-effect model compared to solutions by trying to maximize
spatial reuse and transmission capacity separately. This problem
does not invoke cross-layer design, as the only degree of freedom
in design resides with transmission power. It however highlights
the complexity in tuning certain design parameters, as the change
may manifest itself differently at different layers which may be
at odds.

I. INTRODUCTION

Power-tune has emerged as an important issue in an IEEE

802.11 WLAN network of multiple interacting users (Access

Points, or APs). Earlier results in this area may be classified

into the following two independent approaches.

The first relies on a PHY-layer framework in interference-

bounded networks, i.e., the optimal power-tune problem is

defined with respect to the Signal-Noise-Ratio (SNR) of each

AP or the entire network. For example, Chiang et al. looked

into the transmit power control problem through management

of interference, energy and connectivity in [2]. In [5], Phan et

al. investigate distributed power control problem on physical

layer; a distributed algorithm is given and critical performance

criteria, such as convergence are analyzed. In [11], Tan et

al. analyze several multi-user spectrum management problems

with focus on power control. Within this framework, each AP’s

transmission power has two contradicting roles: The first is that

a higher transmission power will improve the noise resistance

capability for its own communication and thus potentially the

network capacity. The other role is the unavoidable interaction

with other APs. A higher transmission power will contribute

higher noise/interference to other APs using the same chan-

nel (we assume Orthogonal Frequency Division Multiplexing,

OFDM, at PHY layer and thus we will not consider inter-

channel interference). Many results have been established in

this framework with different techniques focusing on either

centralized or distributed solutions.

The second class of results stems from MAC layer techniques

by trying to reduce the level of contention within a network,

or improving spatial reuse, as more generally referred to. For

instance in [10], Wan et al. consider a power control problem

w.r.t. reducing contention order on the link layer while keeping

the physical layer interference under certain levels. Kim et

al. investigated a transmit power and carrier sensing threshold

tuning problem for improving spatial reuse in [3]. Specifically,

when users fall into each other’s audible range, transmission

back-off under CSMA/CA is triggered to resolve contention and

enable sharing. Therefore, decreasing users’ transmission range

helps improve spatial reuse of a given channel. It follows that

they are often modeled as congestion games or other similar

graph problems. Specifically Sharma et al. proposed a game

theoretical approach for decentralized power allocation in [6].

In [9], a congestion game model is proposed to analyze power

control problem as a form of resource allocation. Equilibrium

strategies have been given under certain assumptions. In [12],

a power control problem is modeled as repeated games with

strategic users and intervention theory is proposed to induce

target strategy from users.

Even though conceptually both frameworks aim at optimiz-

ing the same system performance, e.g., overall throughput, the

technical objectives and thus the net impact under the two are

clearly not always aligned, and in fact can be quite different

and even point in opposite directions. To illustrate, consider

maximizing users’ achievable throughput or capacity without

considering the induced spatial contention relationship; the

resulting power-tune can create areas of very high contention

order. Thus, even though a user’s (or the network’s) transmis-

sion capacity/rate may be maximized on a per transmission

basis, significant amount of air time may be spent in the back-

off process instead of data transmission, leading to wasted

spectrum resources. The opposite may also be true. If we simply

control the contention topology of the network, the transmission
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power settings may be such that users do not have sufficient

noise resistance capability and thus fall short of the theoretically

achievable capacity. In this case, even though we may have

successfully reduced the contention and saved a lot of air time,

the quality of active transmissions (or on a per-transmission

basis) may be low.

In short, reducing transmission power has a dual effect on

the MAC and PHY layers: it can help increase spatial reuse

order under CSMA/CA, but can at the same time decrease

noise resistance capacity and therefore the transmission ca-

pacity. A desirable solution should thus take both effects into

consideration in determining the optimal power control. This is

strictly speaking not a cross-layer problem, as the only degree

of freedom in design resides with transmission power, i.e.,

there is no joint design or feedback between different layers.

This problem simply highlights the complexity in tuning certain

design parameters, as the change may manifest itself differently

at different layers which could be self-defeating as illustrated

above.

In this study we approach this problem by introducing a

performance measure (or utility function) based on the power-

tune impact on both PHY and MAC layers simultaneously. An

interesting technical aspect of this formulation is the combina-

tion of both continuous (SNR and PHY) and discrete (MAC

or graph-based) elements in a single optimization problem.

Not surprisingly, this problem is intractable; its properties and

structures we then investigate to help construct efficient solution

techniques. Extensive simulation is conducted to verify the

effectiveness and performance of our solution approach. An

equally important aspect of our study, besides solving the above

optimization problem, is to obtain insight into how the resulting

power-tune differs from the two approaches outlined earlier,

each focusing on the effect on a single layer, respectively.

The remainder of the paper is organized as follows. Section II

gives the system model and problem formulation, while Section

III characterizes the optimal solution. Section V provides

extensive numerical results to evaluate our approach. Section

VI concludes the paper.

II. SYSTEM MODEL

A. Preliminaries

Consider a WLAN network with N APs denoted by the

set Ω = {1, 2, ..., N}. Each AP is associated with a number

of stations with whom it communicates. Denote an AP’s

transmission power space (i.e., the set of power levels it may

employ) by Qi, i ∈ Ω. Different from many prior works,

here we do not assume any finiteness of Qi; instead, we will

show that the finiteness of the optimal power profile follows

naturally from our formulation. We will assume Qi, i ∈ Ω
are all compact (closed and bounded) and use Pi and Pi to

denote the maximum and minimum value in Qi, respectively.

The transmission power profile of all users is denoted by

P = [P1,P2, ...,PN ].
Each AP also has a certain attempt rate for channel access

under IEEE 802.11, and these are denoted by the vector

p := [p1, p2, ..., pN ], also referred to as the attempt rate profile.

Channel gain (or path loss) from user i to j is denoted by hij .

We will assume hij , i, j ∈ Ω stay unchanged during a single

transmission; alternatively, we may view hij as the expectation

of channel dynamics. N0 denotes the average noise level, and

Pi
cs denotes the carrier sensing (CS) threshold of the i−th AP.

For the rest of the paper we will use the terms AP and user

interchangeably.

B. Contention domain

Due to the fact that many hardware/circuits put a requirement

on CS signal’s strength, some CS signals cannot be correctly

decoded and the corresponding back-off actions will not be

triggered; only those with strength higher than the CS threshold

can be correctly identified. We thus define two notions of a

contention domain for user/AP i. The first one ∆r
i , the receive

contention domain, is the set of users/APs whose CS signals

can be correctly decoded by user i; while the other ∆t
i, the

transmit contention domain, is the set of users who can decode

user i’s CS signals correctly. Mathematically we have

∆r
i = {j : Pj · hji ≥ Pi

cs, j ∈ Ω\{i}} (1)

∆t
i = {j : Pi · hij ≥ Pj

cs, j ∈ Ω\{i}} (2)

By definition, contention domain is closely related to spatial

reuse. With a larger contention domain, the degree of spatial

reuse is potentially smaller around that user. Define ni(P) to be

the number of competing users of user i under power profile

P; i.e., ni(P) := |∆r
i |. This will also be referred to as the

contention order for user i.

C. Neighbor-reaching threshold

Consider AP i and the maximum (resp. minimum) transmis-

sion power it can use without reaching (resp. so that it can still

reach) another AP k, expressed as follows (assumed to exist):

P−
ik : = max{Pi : Pi · hik < Pk

cs,Pi ∈ Qi} (3)

P+
ik : = min{Pi : Pi · hik ≥ Pk

cs,Pi ∈ Qi} . (4)

To make it complete for k = i we have

P−
ii : = Pi,P

+
ii := Pi (5)

With a real WLAN, these values exist in general; when they

do not exist (in the form of inf or sup) we can instead use

approximated values around the limits.

Denote the set of these neighbor-reaching thresholds for AP

i as

Q̃i = ∪k∈Ω{P
−
ik,P

+
ik}. (6)

and denote the neighbor-reaching profile space for the whole

network as

Q̃ := Q̃1 × Q̃2 × ...× Q̃N . (7)
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Since we are considering a finite size network (i.e., the number

of APs, N , is a finite positive integer), this profile space is

finite, i.e., |Q̃i| < ∞, ∀i ∈ Ω, and consequently |Q̃| < ∞.

D. A performance measure/utility function

From AP i’s point of view, its transmission power setting

has the following implications:

I. Higher transmission power will increase AP i’s received

SNR (SNRi) by its associated stations.

II. Higher transmission power will cause higher interference

to APs outside ∆r
i ∪∆t

i.

III. Higher transmission power will add i to some other AP

j’s contention domain.

As a result, AP i’s perceived performance, or utility Ui, as a

function of the transmission power profile P and attempt rate

profile p across all APs, may be captured by the following

expression:

Ui(P,p) = Si(P,p) · Ci(P,p), i ∈ Ω, (8)

where Si is the “sharing” function representing AP i’s share

of channel access under CSMA/CA-type of collision avoidance

mechanism, and Ci is the “capacity” function representing the

rate/quality of active transmissions under P and p.

Under 802.11, we can approximate Si using the probability

of successful channel reservation given by
∏

j∈∆r
i
(1 − pj)pi,

where the dependence on the transmission power profile P
is implicit through the contention domain ∆r

i = ∆r
i (P).

Therefore, we have

Si(P,p) =
∏

j∈∆r
i

(1− pj)pi (9)

which approximates the air time share of AP i within its

contention domain.

Ci is intended to capture the rate or capacity of active

transmission attained by AP i. To make this concrete, we will

focus on the downlink capacity from the AP to its associated

stations. As the stations’ locations can change dynamically and

are often unknown, we will not explicitly model this level of

detail and simply assume that the stations are sufficiently close

to their associated AP, relative to the other APs. Consequently,

their capacity may be approximated using the transmit power

by the AP (rather than the received power at a station) and the

interference at the AP (rather than at a station), in the standard

Shannon formula: (similar formulation can also be found in

[8]):

Ci(P,p) = log(1 +
Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji

) ,

(10)

where ∆̄r
i (∆̄t

i) denotes the complement of AP i’s contention

domains, i.e., ∆̄r
i = Ω−i\∆

r
i , reflecting the fact that the

interference comes primarily from APs outside the contention

domain as a result of the back-off mechanism of IEEE 802.11

collision avoidance.

III. THE OPTIMAL POWER-TUNE PROBLEM AND ITS

CHARACTERIZATION

In this section, we formally define our optimization problem

and do so in comparison with its single-layer counterparts, i.e.,

that aim at only the PHY or MAC layer effect, respectively.

A. Considering only PHY layer effects

When we limit our attention to PHY layer effects of power

control, typically no contention is considered and parallel trans-

missions are implicitly assumed. Therefore each single user’s

transmissions will contribute to other users’ noise/interference.

Problems along this line have been well investigated in the

literature, see e.g., [2], [8]. Specifically these assumptions result

in the following optimization problem

(PPHY) max
∑

i∈Ω log(1 + Pi

N0+
∑

j 6=i Pj ·hji
)

s.t. Pj ∈ Qi, ∀i ∈ Ω.

This rate maximization problem is in general hard to solve.

Previous work has focused on different approximation tech-

niques, see e.g., [8]. In order to obtain comparable results in

order to compare this with our optimization formulation, in our

numerical experiments (Section V) we shall use the following

simple approximation

log(1 +
Pi

N0 +
∑

j 6=i Pj · hji
) ≈ log(

Pi

N0
)−

∑

j 6=i Pj · hji

N0

(11)

Since both terms log( Pi

N0
) and −

∑
j 6=i Pj ·hji

N0
are concave, we

now have an approximate/relaxed optimization problem which

is convex:

(R-PPHY) max
∑

i∈Ω{log(
Pi

N0
)−

∑
j 6=i Pj ·hji

N0
}

s.t. Pj ∈ Qi, ∀i ∈ Ω.

This problem can be efficiently solved using classical convex

optimization techniques (assuming all Qi are convex or piece-

wise convex). These are used in our numerical results provided

later, and the algorithmic details are omitted for brevity.

B. Considering only MAC layer effects

We next limit our attention to MAC layer effects of power

control, in which case the objective is typically to mini-

mize the sum of contention orders over all users, given as

min
∑

i∈Ω ni(P) , see, e.g., a similar objective used in [10].

However, without any constraint on P , the above minimization

could lead to somewhat pathologic solutions, i.e., with very

low power, we can obtain
∑

i∈Ω ni(P) ≈ 0 thereby achieving

the minimum value. However, with very low transmission

powers and relatively constant background noise, each AP’s

SNR is significantly impacted leading to poor transmission

performance. Consequently, in order to make this model com-

parable with others considered in our numerical experiments,

we will instead consider a similar optimization problem with

an SNR constraint. Specifically, we will try to minimize the
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total contention order within the network, subject to a minimum

requirement on each AP’s SNR, as shown below:

(PMAC) min
∑

i∈Ω ni(P)
s.t. Pi

N0+
∑

j∈∆̄r
i
∩∆̄t

i
Sj(P,p)·Pj ·hji

≥ SNR0, ∀i ∈ Ω.

Here we use SNR0 to denote some baseline SNR that needs to

be met at each AP’s transmission.

The above problem has a mixture of a combinatorial term

and continuous term in the following sense: while the SNR is

continuous w.r.t. setting transmission power Pi, the contention

domains ∆is are discrete. Thus the problem is hard to solve in

general. We thus consider a relaxation of the above problem.

Since we have

Pj · hji < Pi
cs, ∀j ∈ ∆̄r

i ∩ ∆̄t
i , (12)

the inequality below holds immediately
∑

j∈∆̄r
i∩∆̄t

i

Sj(P,p) · Pj · hji <
∑

j∈∆̄r
i∩∆̄t

i

Sj(P,p) · Pi
cs (13)

Moreover, we have

Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Pj · hji

>
Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pi

cs

.

(14)

Thus, we have the following relaxed problem that are solvable:

(R-PMAC) min
∑

i∈Ω ni(P)
s.t. Pi

N0+
∑

j∈∆̄r
i
∩∆̄t

i
Sj(P,p)·Pi

cs
≥ SNR0, ∀i ∈ Ω.

Theorem III.1. In solving R-PMAC there is no loss of opti-

mality to limit our attention to the space Q̃, i.e., if an optimal

solution exists, we can always find an optimal solution within

the space Q̃.

Proof. Suppose there is an optimal power profile with some

element, say P∗
j /∈ Q̃j . Then consider relaxing/increasing P∗

j

to the nearest P−
jk, ∀k ∈ Ω. Note that such a change would

not modify the contention topology and thus all ni values and

∆
r(t)
i remain the same, without violating the corresponding

SNR constraint. Thus we have found an optimal solution within

Q̃.

C. Considering dual effects

We now formalize the optimal power-tune problem outlined

earlier that takes into account both the PHY and MAC layer

effects. Specifically, we will seek centralized solutions to the

following social welfare maximization problem:

(P) max U =
∑

i∈Ω Ui(P,p)
s.t. Pi ∈ Qi, i ∈ Ω.

As the power profile space Q := Q1 × Q2 × ... × QN is

potentially infinite, and U is in general a non-convex and non-

differentiable function w.r.t. P , the optimization problem is

NP-hard. To illustrate, Fig. 1 shows three examples of the

sum utility as a function of the power Pi of AP i, under

different parameter settings. As can be seen, there lack prop-

erties commonly used to derive efficient solution techniques

(e.g., differentiability, convexity). There are, however, some

interesting features such as the prominent step shape shown in

the result. This observation motivates key results in subsequent

section.
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Fig. 1: Examples of U w.r.t. a specific Pi

IV. SOLUTION APPROACH

A. A Lower bound problem

Recall that for j ∈ ∆̄r
i , we have Pj · hji < Pi

cs, i.e., the

received signal strength is below the CS threshold. Thus

log(1 +
Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji

)

> log(1 +
Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pi

cs

) . (15)

We use this relationship to form the following lower bound

problem.

(PL) max UL =
∑

i∈Ω Si(P,p)·
log(1 + Pi

N0+
∑

j∈∆̄r
i
∩∆̄t

i
Sj(P,p)·Pi

cs
)

s.t. Pi ∈ Qi, ∀i ∈ Ω.

Lemma IV.1. For an optimal solution P∗ to (PL), we have

P∗ ∈ Q̃. That is, there is no loss of optimality in restricting

the solution space to Q̃ in searching for an optimal solution.

Proof. For AP i, suppose there exists a P∗
i 6∈ Q̃i. This means

one of the following must be true: (1) P+
ik < P∗

i < P−
ij for

some (k, j), (2) P∗
i < P−

ij for all j, and (3) P+
ik < P∗

i for all

k. For the first two cases, if we increase Pi from P∗
i to P−

ij ,

the resulting contention topology remain unchanged, i.e., the

terms Sj , nj(P),∆
r(t)
j , ∀j ∈ Ω stay unchanged, but Pi is now

bigger and UL is strictly increasing in Pi. This contradicts the

optimality of P∗, so the first two cases cannot be true. If it’s

the third case and P+
ik < P∗

i for all k, then increasing Pi from

P∗
i to Pi results in the same argument as above, so (3) also

cannot be true, completing the proof.

Lemma IV.2. We can bound the performance of (PL) for a

large dense network (i.e., with N being large) as follows

U∗ − U∗
L ≤

∑

i∈Ω

(1− pc)
(
Pi
P

)1/γ ·N

[

1− (Pi

P
)1/γ

]

·N · Pi
cs

N0

(16)
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Proof. For simplicity of presentation we assume p1 = p2 =
... = pN = pc for the analysis. Since our model applied

to any topology, the bounding will become intractable when

considering an arbitrary network. In order to give meaningful

bounds, we consider a network with APs being placed randomly

in a certain area. We first notice according to the wireless

transmission model we have

ni(Pi) = (
Pi

P
)1/γ ·N (17)

We take the difference between U and UL for any power profile

P ,

log(1 +
Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji

)

− log(1 +
Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pi

cs

)

≤ log(
N0 +

∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pi

cs

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji

)

≤ log 2 ·

∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · (P i

cs − Pj · hji)

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji

≤ log 2 ·

[

1− (Pi

P
)1/γ

]

·N · Pi
cs

N0
(18)

Therefore we have

U∗ − U∗
L ≤ log 2 ·

∑

i∈Ω

(1− pc)
(
P∗
i

P
)1/γ ·N ·

[

1− (
P∗

i

P
)1/γ

]

·N · Pi
cs

N0
(19)

Remark IV.3. When Pi
cs is small or when the network is dense

and large (i.e., with a large N ), the lower bound problem will

provide a good approximation for the original problem.

B. An Upper bound problem

We similarly form an upper bound to the original objective

function:

log(1 +
Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji

)

≤
Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji

· log 2, (20)

and we have the following upper bound problem

(PU) max UU =
∑

i∈Ω Si(P,p)
· Pi

N0+
∑

j∈∆̄r
i
∩∆̄t

i
Sj(P,p)·Pj ·hji

s.t. Pi ∈ Qi, ∀i ∈ Ω.

Lemma IV.4. UU is piece-wise convex w.r.t. each Pi, i ∈ Ω.

Proof. Consider Pi and fix the transmission power of all other

APs. Suppose Pi ∈ [P+
ik,P

−
ij ] for some k, j. Within this range,

the contention topology remains the same, i.e., Si(P,p) is

a constant for any value Pi taking within this interval. Next

consider the second term in UU . Pi appears in this term in

two forms: one as Pi

N0+
∑

l∈∆̄r
i
∩∆̄t

i
Sl(P,p)·Pl·hli

which is convex

w.r.t. Pi, and the other as Pl

N0+
∑

m∈∆̄r
l
∩∆̄t

l
Sm(P,p)·Pm·hml

for

some l such that i ∈ ∆̄r
l ∩ ∆̄t

l , in the form of Si(P,p) ·Pi ·hil;

these terms are also convex w.r.t. Pi. As the sum of convex

functions is convex, we have established the convexity of UU .

When P+
ik < Pi for all k, UU is convex w.r.t. Pi over

the interval [maxP+
ik,Pi] using the same argument as above.

Similarly, when Pi < P−
ik , ∀k 6= i UU is convex w.r.t. Pi over

the interval [Pi,minP−
ik].

Lemma IV.5. Suppose P∗
U is the optimal solution to (PU), we

have P∗
U ∈ Q̃.

Proof. The result readily follows from Lemma IV.4 and the

fact that optimal solution over a closed interval for a convex

function is an end point.

Lemma IV.6. We can bound the performance of (PU) for a

large dense network (i.e., with N being large) as follows

U∗ − U∗
U ≤

∑

i∈Ω

(1− pc)
(
Pi
P

)1/γ ·N Pi

N0
log(1 +

Pi

N0
) (21)

Proof. We follow similar assumptions as made in the proof for

our lower bound problem. In our upper bound since we know

x− ln(1 + x) ≤ x · ln(1 + x) (22)

and the R.H.S. is increasing (x ≥ 0) we know we only need to

bound x. A trivial bound comes useful in our case

Pi

N0 +
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji

≤
Pi

N0
(23)

and therefore, for each term in UU , the difference is bounded

by

(1− pc)
(
Pi
P

)1/γ ·N Pi

N0
log(1 +

Pi

N0
) (24)

Remark IV.7. The bound can be certainly made tighter by

working more on the term
∑

j∈∆̄r
i∩∆̄t

i
Sj(P,p) · Pj · hji.

However dues to space limitation we omit the details.

Remark IV.8. By finding the optimal solution for problems

(PL) and (PU), we have the bounds for the optimal solutions.

UL(P
∗
L) ≤ U(P∗) ≤ UU (P

∗
U ) (25)

Meanwhile we can use P∗
L and P∗

U as approximate strategies

for our original problem (P) with

U(P∗
L) ≥ UL(P

∗
L), U(P∗

U ) ≤ UU (P
∗
U ) (26)

In next section we will focus on solving (PL) and (PU) instead

of (P).
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C. Greedy search

In solving (PL) and (PU) instead of the original (P), the

problem reduces to searching over a finite strategy space which

can be done within a finite number of steps dependent on

the size of the network. For the lower bound problem (PL),

the strategy space is on the order of O(NN ), while for

the upper bound problem (PU) the order is O((2N − 1)N ).
However with a large scale WLAN network (referring to the

number of APs in the network), these could still be excessively

large even though finite. This is the classical rollout problem

in combinatorial optimization. In terms of computation, for

standard integer optimization (or combinatorial optimization)

problems researchers typically seek relaxation to convert the

problem into a continuous problem in the hope it can be solved

by standard LP or convex algorithms; in [4], [7], [14], efficient

search algorithms have been proposed to tackle finite space

optimization problems.

Following previous literatures, a heuristic greedy approach

can be easily deployed, which is shown later through numerical

experiment to provide a near-optimal solution efficiently. The

basic idea of a greedy search method is to maximize the

system’s total throughput w.r.t. a single variable at each stage

of the computation while keeping the others fixed.

D. Optimal search

In this part, we present a randomized search algorithm that

guarantees convergence to the optimal solution for (PL) and

(PU). The algorithm works in rounds starting from AP 1
and computes the power for one AP in each round. Denote

the state of the system at round n as G(n) and G(n) :=
[P1(n),P2(n), ...,PN (n)]. Suppose at round n AP i’s (i.e.,

i = n mod N ) power is being computed. Then AP i’s
next power level is updated using the following transition

probability:

P(G(n+ 1) = (Pi,G−i(n))|G(n))

=
eU(Pi,G−i(n))/τ(n)

eU(Pi,G−i(n))/τ(n) + eU(G(n))/τ(n)
·
1

Li
,

∀Pi ∈ Q̃i,P
i 6= Pi(n). (27)

with the probability of not changing the power level given as

P(G(n+ 1) = G(n)|G(n))

=
∑

Pi∈Q̃i,Pi 6=Pi(n)

eU(G(n))/τ(n)

eU(Pi,G−i(n))/τ(n) + eU(G(n))/τ(n)
·
1

Li
.

(28)

Here τ(n) := 1
n is a positive smoothing factor and Li is a

normalization factor for user i. This search algorithm will be

referred to as P RAND. As before, the function U() in the

above equation is the objective in problem (PL) (resp. (PU))

if the algorithm is used to search for an optimal solution to

problem (PL) (resp. (PU)).

Theorem IV.9. P RAND converges to the optimal solution to

the two approximate problems (PL) and (PU).

Set Pi(0) = Pi, ∀i ∈ Ω.
temp = U(P(0)), ǫ = temp, n = 0.
thrs = 10−4. (some small positive value)
while ǫ > thrs do
n := n+ 1 ;
m := n mod N ;
Set Pm(n) = Pm with probability

e
U(Pm,G−m(n))/τ(n)

e
U(Pm,G−m(n))/τ(n)

+eU(G(n))/τ(n)
· 1
Lm

, ∀Pm ∈ Q̃m,Pm 6=

Pm(n).
While Pm(n) stays unchanged with probability
∑

Pm∈Q̃i,P
m 6=Pm(n)

eU(G(n))/τ(n)

e
U(Pm,G−i(n))/τ(n)

+eU(G(n))/τ(n)
· 1
Lm

.

for j = 1 : N do
if j 6= m

Pj(n) = Pj(n− 1);
end for
ǫ = |U(P(n))− temp|;
temp = U(P(n));

end

Algorithm 1: Pseudocode for Randomized Search

Proof. Due to the finiteness of the strategy spaces of all APs,

we can form an N -dimensional positive recurrent Markov

chain, with state at time n given by G(n); there exists a

stationary distribution of this Markov chain.

We next show that the following probability distribution π
over the state space Q̃ is the stationary distribution of this

Markov Chain.

π(G) = T · eU(G)/τ(n), ∀G ∈ Q̃ , (29)

where T is the normalization constant. As
∑

G∈Q̃ π(G) = 1 the

above is equivalent to T =
∑

G∈Q̃ eU(G)/τ(n) , and thus

π(G) =
eU(G)/τ(n)

∑

G∈Q̃ eU(G)/τ(n)
, ∀G ∈ Q̃ , (30)

To prove this, consider the detailed balance equations. Specif-

ically consider two states G1 and G2. Note that, only when

G1 and G2 differ in one element, the transition probability is

positive; otherwise the transition probability is zero. We would

like to show the following

π(G1) · P(G2|G1) = π(G2) · P(G1|G2), ∀G1,G2. (31)

When there is only one element difference between the two

states we know

P(G2|G1) = L ·
eU(G2/τ(n))

eU(G2/τ(n)) + eU(G1/τ(n))
(32)

P(G1|G2) = L ·
eU(G1/τ(n))

eU(G1/τ(n)) + eU(G2/τ(n))
(33)

with L being some constant. Therefore (31) holds readily. It

follows from standard result that π is indeed the stationary

distribution.

Denote G∗ = {P∗} as the set of global maximizers; i.e., the

set of power profiles that maximizes our objectives in (PL) and
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(PU) respectively. Suppose there is a state G
′

/∈ G∗. We have

π(G
′

) =
eU(G

′
)/τ(n)

∑

G∈Q̃ eU(G)/τ(n)
=

1
∑

G∈Q̃ e(U(G)−U(G′ ))/τ(n)
(34)

For G ∈ G∗ we have U(G)− U(G
′

) > 0 and

lim
n→∞

(U(G)− U(G
′

))/τ(n) → ∞ (35)

and hence we have limn→∞ π(G
′

) = 0 ; furthermore by [1]

we establish the following

lim
n→∞

π(G ∈ G∗) = 1 (36)

i.e., the Markovian chain converges to the maximization states

with probability 1.

Theorem IV.10. P RAND converges exponentially fast.

Proof. Consider at time n, for any sub-optimal state G we know

there exists a positive constant ǫ > 0 such that

U∗ ≥ U∗ − U(G) ≥ ǫ (37)

Therefore the probability of staying at state G at time n is

bounded by

π(G) =
eU(G

′
)/τ(n)

∑

G∈Q̃ eU(G)/τ(n)

≤
1

∑

G∈Q̃ e(U(G)−U(G′ ))/τ(n)
≤ e−ǫ/τ(n) (38)

Therefore

U∗ − E[U(n)] ≤ U∗ · e−ǫ/τ(n) (39)

Take τ(n) = 1/n we have U∗ − E[U(n)] ≤ U∗ · e−ǫn.

V. NUMERICAL EXPERIMENTS

In this section, we provide simulation results to show system

performance under the greedy and randomized search algo-

rithms (denoted as “Greedy” and “P RAND” in the figures,

respectively). We further compare them with the maximum

transmission power strategy (“Max”), PPHY and PMAC re-

spectively. The WLAN network’s topology used in the experi-

ment is randomly generated, with 10 APs placed according to

a uniform distribution in a square area; this topology is shown

in Fig.2.

A. Optimization with dual effects

We begin by comparing the computed power levels and

the resulting system-wide throughput under the greedy and

randomized search algorithms and the fixed, maximum power

scheme.

For the first set of results, we fix pc = 0.6 and a maximum

transmission power level of 15 for all APs. The resulting

optimal power profile is depicted in Fig.3a. Here to get the

“optimal solution” we utilize P RAND to solve (PL) and (PU)

separately and then choose the one that gives us a better total

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

X

Y

9

8

7

10

4

1

2

3

5

6

Fig. 2: Topology of the AP Network

throughput. We see that in this case APs (8, 9, 10)’s power

levels are far short of the maximum level. This reflects the

need to avoid excessive interference with each other as they

are clustered in a relatively crowded neighborhood. APs (2, 4)
are sitting relatively “alone” and thus they could transmit at a

higher power. Similar observations can be made at each AP.

Next, the system performance is shown in Fig. 3b as a func-

tion of the attempt rate pc. It is interesting to note the opposite

trends exhibited by using optimal power tuning vs. always using

maximum power levels as the attempt rate increases. As the

network gets busier (more congested with higher attempt rate),

the maximum power levels exacerbates the problem and the

system throughput degrades even though the APs are trying

harder. On the other hand, using optimal power-tune, as the

network becomes more congested, the APs react by decreasing

their transmission powers appropriately so that the system

throughput actually improves. By either the greedy search

or the randomized search algorithm, our optimal power-tune

problem helps achieve a significant throughput performance

improvement compared to the static maximum transmission

power scheme.

We end this part with a look into the convergence per-

formance of P RAND, shown in Fig.3c. It is seen that our

randomized search algorithm converges quickly to the end

solution; under the same simulation setting, the greedy policy

converges to a solution of system throughput at around 1.6.

B. Compare with PPHY and PMAC

We next compare our optimization model with dual effect to

the model given by PPHY and PMAC, which tries to maximize

the total rate at the physical layer and contention respectively.

We present the total system throughput performance in Fig.

3d. We see PPHY and PMAC are clearly out-performed by

our optimization model especially under higher attempt rate.

Moreover from our experiments we observe a clear difference

in how power levels are tuned and the resulting throughput

across different AP nodes. The reason is that under PPHY

each AP treats all other APs as noise resources. However, due

to CSMA/CA, no parallel transmission would be allowed for

APs within the carrier sensing range and thus the first-order

noises (those from the closest neighbors) could be removed.
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Fig. 3: Experiment results

Therefore APs could increase their power to some extent

without contributing too much to their neighbors’ noise level.

This is why we observe a few APs with much higher power

under P RAND than under PPHY. By contrast, with only PHY

layer optimization APs cannot take full advantages of the noise-

free property of CSMA, and therefore act conservatively.

On the other hand, we see that with PMAC in order to reduce

the contention order the APs again act rather conservatively

in reducing their power levels. This leads to a drop in noise

resistance and the overall network throughput.

VI. CONCLUSION

With the proliferation of densely-deployed WLANs, power

tuning becomes a critical problem as it has major impacts

on SNR as well as contention levels in these networks. Prior

works mostly focused on one of these two issues in pursuit of

either higher throughput or lower contention level, but not both.

Our formulation and solution are given within a centralized

framework. A natural next step is to examine distributed imple-

mentations of the solution, and similar optimization problems

when users are strategic. These remain interesting directions of

future research, but are out of the scope of the present paper.

In this paper, we have investigated the network throughput

optimization problem by optimizing both spatial reuse (MAC)

and SNR (PHY) performance at the same time. We have

presented the complexity of solving the joint optimization

problem and derived approximations to make it tractable.

Then, by analyzing the problem structure, we have proposed

efficient and near-optimal solutions. In order to demonstrate

the effectiveness of our approach, we compared our results with

several models optimizing on only either PHY or MAC layer.

A clear advantage has been demonstrated for the dual efforts

approach.
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