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Abstract—This paper solves the problem of long-term revenue

maximization of a spectrum database operator, through joint

pricing of spectrum resources and admission control of secondary

users. A unique feature that we consider is the stochastic and

heterogeneous nature of secondary users’ demands. We formulate

the problem as a stochastic dynamic programming problem, and

consider the optimal solutions under both static and dynamic

prices. In the case of static pricing, we constrain the prices to be

time-independent while allowing the admission control policies

to be time dependent. We show that in most cases a stationary

(time independent) admission policy is in fact optimal in this

case. We further look at the general case of dynamic pricing,

where both the prices and admission control policies can be time

dependent. We show that the flexibility of dynamic pricing can

significantly improve the operator’s revenue (by more than 30%)

when secondary users have high demand elasticities.

I. INTRODUCTION

Database-assisted spectrum sharing is a promising ap-
proach to improve the utilization of limited spectrum resources
[1], [2]. In such an approach, primary licensed users (PUs)
report their spectrum usage patterns to a third-party spectrum
database, which coordinates the spectrum access of secondary
unlicensed users (SUs). Many government regulators, such as
FCC in the US and Ofcom in the UK, strongly advocate such
an approach due to its high reliability (comparing with other
approaches such as spectrum sensing). The wireless industry
also embraces such an approach, and companies like Spectrum
Bridge [3], Microsoft [4], and Google [5] are pioneers in the
growing list of spectrum database operators. Though extensive
research efforts have made significant progress in addressing
various technical issues in terms of database system manage-
ment and resource allocation [6]–[8], the study of spectrum
database economics remains an under-explored research area.
Without a proper economic mechanism, the database operator
may not have enough incentives to serve the SUs. This moti-
vates us to consider a database operator’s long-term revenue
maximization problem in this paper.

There are two key challenges when considering such a
revenue maximization problem. First, SUs’ demands are often
heterogeneous in terms of spectrum occupancy. For example,
a large file download may require several time slots to finish,
while sending a short text message or location information
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in location based services can be completed in a single time
slot. Instead of using the same unit price per time slot, the
database may improve its revenue by charging different prices
to different types of demands. Second, SUs request resources
from the database at random time instances. As different
types of demands may bring different amount of revenue
to the database, it may not be optimal to serve the SUs’
demands according to their order of arrivals. The database
needs to perform proper admission control to reserve spectrum
resources to serve the most profitable future SU demands.

To address the above two issues, we propose a joint spec-
trum pricing and admission control mechanism for the database
operator to maximize its long-term revenue. As an initial
study of this challenging research problem, here we focus
on a stylized model, where the database operator optimizes
the admission control and prices of multiple time slots of a
single channel. The database operator needs to determine the
optimal prices for different types of SU demand in each time
slot. These prices can vary over time and will affect SUs’
demands. When SUs randomly arrive and inform the database
of their demands, the operator also needs to determine the
optimal admission control policy to maximize the revenue.

Let us briefly summarize the related literature and contrast
them with our approach. We can categorize the recent studies
on pricing limited wireless resources into static and dynamic
pricing schemes. Under static pricing, the pricing decisions
may be simply flat rate or depend on usage, reservation,
and priority, but do not depend on time (e.g., [7]–[14]).
In contrast, many dynamic pricing works focus on revenue
maximization over a finite time horizon, by optimally setting
dynamic prices for a perishable product (e.g., [15], [16] and
those on airline seat management, hotel room booking, and
transportation networks). Other studies on dynamic pricing
are summarized and surveyed in detail in [17]. Several recent
studies have looked at dynamic pricing of wireless resources
(e.g., [18]–[20]). Song et al. in [18] studied the network
revenue maximization problem by using dynamic pricing in
a wireless multi-hop network. Ha et al. in [19] proposed a
new system architecture of time-dependent (dynamic) pricing,
which increases wireless operators’ revenue and decreases
customers’ cost. Ma et al. in [20] proposed time and location
based pricing for mobile data traffic. Our approach is novel
comparing to the prior literature, in the sense that none of the
previous results considered admission control with dynamic
pricing, or considered both stochastic demands and different
consecutive spectrum occupancy requirements.

978-3-901882-63-0/2014 - Copyright is with IFIP

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

497



Our main results and key contributions are summarized as
follows.

• Joint spectrum pricing and admission control scheme.
To our best knowledge, this is the first work that
jointly prices and allocates the spectrum resource to
serve heterogeneous and stochastic SU demands. We
elaborate the model and formulate the problem as a
stochastic dynamic programming problem in Sec. II.

• Optimal static pricing and stationary admission poli-
cies. In Sec. III, we constrain ourself to both static
pricing and stationary admission control, and derive
the optimal policy. The optimal policy has simple
threshold structures, and remains to be optimal most of
the time even if we allow dynamic admission decision-
s. These easy-to-use stationary policies are threshold-
based, depending on SUs’ demand elasticities.

• Optimal dynamic pricing and dynamic admission. In
Sec. IV, we further allow the prices to be dynamic,
which change based on different SUs’ stochastic de-
mands over time. Although the optimal prices and ad-
mission decisions are coupled, we are able to compute
the optimal decisions through proper decomposition in
each time slot.

• Revenue improvement evaluation. By comparing the
static and dynamic pricing both under dynamic admis-
sion, we show that dynamic pricing can significantly
improve the database operator’s revenue (by more than
30%) when SUs have high demand elasticities.

Most of the proof details can be found in our online
appendix [21].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a database operator who knows which channel
is not used by PUs and can be used to serve SUs. The database
operator wants to maximize the revenue through selling spec-
trum opportunities in the secondary spectrum market. We
consider a period of N = {1, · · · , N} time slots during where
a single channel will not be used by the PUs. The value of N
depends on the type of PU traffic, and is known in advance as
the PUs need to register all traffic with the database (e.g., [1],
[2], [6]).

SUs randomly arrive and request channel access at the
beginning of each time slot. We classify SUs into two types
according to their required number of consecutive time slots
to access the channel. A light-traffic SU only needs to use the
channel for one time slot. For simplicity, we assume that a
heavy-traffic SU needs to occupy two consecutive time slots.
In [21], we also extend our analysis to the case where a heavy-
traffic SU occupies more than two time slots.

Once an SU is admitted, the database operator will serve
and charge the SU either rl(n) or rh(n), depending on whether
it is a light- or heavy-traffic SU. We assume that SUs are price-
sensitive, and the arrival rates of SUs are decreasing in the
prices. As we focus on a single channel scenario, the database
operator will admit at most one SU (light- or heavy-traffic)
at a time. Once an SU arrives and requests resource from the
database, it will leave the system immediately if such request is
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Fig. 1. Database operation: The blocks denote time slots available to serve
SUs. At the beginning of each time slot, the database operator’s pricing
decision will affect the SUs’ incoming requests and the revenue of the current
time slot. After observing the requests, the database operator then makes
admission decisions. (Sn, Xn, Yn) denotes the resultant channel occupancy
and two SU types’ demand information (will be further explained in Sec. III).

not accommodated. This is reasonable when SUs have delay-
intolerant applications such as VoIP and video conferencing.

Fig. 1 summarizes the database’s operations in terms of the
joint pricing and admission control. At the beginning of each
time slot n, the database operator first announces two prices
rl(n) and rh(n) for the light- and heavy-traffic SU types, then
some SUs arrive and request to access the channel, and finally
the database operator admits at most one SU and rejects the
others. After these three phases, the admitted SU will transmit
data over the channel during the rest of the time slot.1

To maximize its long-term average revenue, the database
operator wants to optimize spectrum prices and admissions
over all N time slots. In this optimization problem, the
database operator’s admission of a heavy-traffic SU in one time
slot will prevent serving a light-traffic SU in the next time slot,
hence the operation decisions over time are correlated. We will
model the problem as a dynamic programming problem, and
propose the optimal admission policies under static pricing in
Sec. III and under dynamic pricing in Sec. IV.

III. OPTIMAL DATABASE OPERATION UNDER STATIC
PRICING AND DYNAMIC ADMISSION

Before studying the general case of optimal dynamic pric-
ing problem, we will first consider the simplified case of static
pricing, where prices do not change over time. Static pricing
will reduce the signaling overhead, as we no longer need to
update prices in every time slot as in Fig. 1. It will also serve as
a benchmark and help us to quantify the performance benefit of
dynamic pricing in Sec. IV. More precisely, with static pricing
the database only needs to optimize and announce prices once
in time slot 1, and keeps the prices fixed for the rest N � 1

time slots, i.e., rl(n) = rl and rh(n) = rh for each time slot
n 2 {1, · · · , N}.

We will formulate the revenue maximization problem as
a stochastic dynamic programming problem. In Sec. III-A
and Sec. III-B, we will solve the optimal admission control
problem through backward induction from the last time slot,
under any fixed prices. In Sec. III-C, we will optimize the static
prices, considering the optimal admission policies derived in
Sec. III-A and Sec. III-B.

1We assume that the signaling overhead is small in each time slot. This is
especially true when we have a stationary admission policy as discussed in
Sec. III.
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A. Admission Control Optimization under Fixed Prices

In this subsection, we assume that the prices are fixed at rl
and rh, and optimize the channel admission in each time slot.
Such optimization needs to consider the channel availability
and SU arrivals in the current time slot, as well as SU arrivals
in future time slots. We will formulate and solve the problem
as a stochastic dynamic programming problem.

We first define the system state as follows.

Definition 1 (System State): The system state in time slot
n is (Sn, Xn, Yn). Here Sn is the binary channel state, where
Sn = 0 means that the (single) channel is available for
admission in time slot n, and Sn = 1 otherwise. Xn = 1

means that at least one light-traffic SU arrives at the beginning
of the time slot and is willing to use the channel and pay for
the price rl, and Xn = 0 otherwise. Yn is defined similarly as
Xn but for the heavy-traffic SU.

The system state evolves over time, depending on the
channel admission decisions and SU arrivals. The feasible
set of admission actions in each time slot depends on the
current system state. Formally, we define the state-dependent
admission action set as follows.

Definition 2 (Admission Action Set): The set of feasible
admission actions in time slot n is a state-dependent set
An(Sn, Xn, Yn). When Sn = 1 such that the current time slot
is not available for admission due to the admission of a heavy-
traffic SU in the previous time slot, then An(1, Xn, Yn) = {0}
for all (Xn, Yn). When Sn = 0, the action set depends on
which type SU requests we have in the current time slot. If
no SUs request in time slot n (i.e., (Xn, Yn) = (0, 0)), the set
of actions is An = {0}. If both light- and heavy-traffic SUs
demand, i.e., (Xn, Yn) = (1, 1), then we can either serve no
SU (denoted by 0), or a light-traffic SU (denoted by 1), or a
heavy-traffic SU (denoted by 2), and thus the set of actions
is {0, 1, 2}. The sets of actions with the other requests are
similarly determined:

An(0, Xn, Yn) =

8
>><

>>:

{0}, if (Xn, Yn) = (0, 0),

{0, 1}, if (Xn, Yn) = (1, 0),

{0, 2}, if (Xn, Yn) = (0, 1),

{0, 1, 2}, if (Xn, Yn) = (1, 1).

We further define the specific admission action at t = n as
an(Sn, Xn, Yn) 2 An(Sn, Xn, Yn). Here, an = 0 means that
we will not admit any SU, and an = 1 and an = 2 mean that
we admit a light-traffic SU and a heavy-traffic SU, respectively.

When Sn = 1, we will not admit any SU, hence in the
next time slot Sn+1

= 0 = Sn�1. When Sn = 0, the channel
availability of the next time slot depends on the action an. If
we admit the light-traffic SU with an = 1, then the channel is
available in the next, i.e., Sn+1

= 0 = an�1. If we admit the
heavy traffic SU with an = 2, then the channel is not available
in the next time slot, i.e., Sn+1

= 1 = an � 1. To summarize,
we have the following state dynamics.

Lemma 1 (State Dynamics): The dynamics of the system
state component Sn for any n = 1, · · · , N � 1 satisfies the
following equation:

Sn+1

= (Sn + an(1� Sn)� 1)

+, (1)

TABLE I. KEY NOTATIONS AND PHYSICAL MEANING

Symbols Physical Meaning

N = {1, · · · , N} Time slot index of unused spectrum
(Sn, Xn, Yn) System state (occupancy, light, and heavy requests)

an(Sn, Xn, Yn) Admission action in time slot n
An(Sn, Xn, Yn) Set of possible actions in time slot n
Rn(Sn, Xn, Yn) The total revenue from time slot n to N

⇡⇤
(Sn, Xn, Yn) Optimal admission policy (in time slot n)

E[R⇤
n(Sn, Xn, Yn)], ˜R⇤

n(Sn) Optimal expected future revenue from n to N

rl(n), rh(n) Prices for light- and heavy-traffic SUs

pl(rl(n)), ph(rh(n))
The probability of having at least one SU
requesting for spectrum (in time slot n)

Vn(rl(n), rh(n)) Expected future revenue from n to N

kl, kh Demand elasticities of SUs with prices change

where (x)+ := max{0, x}, and Sn 2 {0, 1}, for all n 2 N .

The system state components (Xn, Yn) only depend on SU
arrivals (and prices) in the current time slot, but do not depend
on the action an in previous time slots. The key notations we
introduced so far are listed in Table I.

We are now ready to introduce the revenue maximization
problem. We define a policy ⇡ = {an(Sn, Xn, Yn), 8n 2 N}
as the set of decision rules for states and time slots, and we let
⇧ = {A

1

(·), · · · ,AN (·)} be the feasible set of ⇡. We define
the total revenue from time slot n to N as Rn(Sn, Xn, Yn, an).
Given S = {S

1

, · · · , SN}, X = {X
1

, · · · , XN}, Y =

{Y
1

, · · · , YN}, and the admission policies ⇡ 2 ⇧, the database
operator aims to find an optimal policy ⇡⇤ that maximizes the
expected total revenue from the entire N time slots:

P1: Revenue Maximization by Dynamic Admission
Maximize E⇡

X,Y [R
1

(S,X,Y ,⇡)] (2)
Subject to an(Sn, Xn, Yn) 2 An(Sn, Xn, Yn), 8n 2 N ,

Sn+1

= (Sn + an(1� Sn)� 1)

+,

8n 2 {1, · · · , N � 1},
Variables ⇡ = {an(Sn, Xn, Yn), 8n 2 N},

where E⇡
X,Y [R

1

(·)] denotes the expected total revenue and the
expectation taken over SUs’ random requests (X,Y ).

We proceed to analyze the problem P1 by using back-
ward induction [22]. At the beginning of n, the operator
makes the admission action an to maximize the total revenue
Rn(Sn, Xn, Yn, an). The total revenue has two parts, the
immediate revenue r(an) for the current admission action
an, where r(an) = 0, rl, or rh if an = 0, 1, or 2,
respectively; and the expected future revenue from n + 1 to
N , i.e., E[Rn+1

(Sn+1

, Xn+1

, Yn+1

)], where the expectation
is taken over the SU requests in the next time slot n+ 1, i.e.,
(Xn+1

, Yn+1

).2 Then the problem for stage n in the backward
induction is

R⇤
n(Sn, Xn, Yn) = maxan2An Rn(Sn, Xn, Yn, an), (3)

where the revenue dynamic recursion is

Rn(Sn,Xn,Yn,an)=r(an)+E[R⇤
n+1

(Sn+1

,Xn+1

,Yn+1

)]. (4)

As a boundary condition, we set R⇤
N+1

(·) = 0 for any
(SN+1

, XN+1

, YN+1

) and aN+1

. By using backward induc-
tion, we start with the final time slot N and derive the optimal

2In this paper, the expectation E[Rn(Sn, Xn, Yn)] is always taken over
SU requests (Xn, Yn), 8n 2 N , unless otherwise mentioned.

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

499



TABLE II. THREE STATIONARY ADMISSION POLICIES

Tables (Sn, Xn, Yn)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)

Tab.II–H: aH⇤
n 0 2 1 2

Tab.II–M : aM⇤
n 0 2 1 1

Tab.II–L: aL⇤
n 0 0 1 1

decisions stage by stage. In time slot n, the admission decision
is made by comparing the corresponding total revenues in
terms of different admission actions from time slot n to N ,
i.e., Rn(Sn, Xn, Yn, an), an 2 An, which can be computed
iteratively based on different states and the prices by (3)
and (4). We present the algorithm that computes the optimal
admission policy in [21].

B. Stationary Admission Policies

The optimal admission control solution in general does
not have a closed form characterization nor clear engineering
insights. In the following, we will focus on a class of stationary
admission policies, where the admission rules do not change
over time. We will try to understand when these stationary
policies will be optimal. Note that even with the stationary
admission policy, the actual admission decision in different
time slots may still be different as it depends on the system
state.

Table II shows all three possible stationary policies. Re-
call that (Sn, Xn, Yn) is the system state, and the three
rows, Tab.II–H: aH⇤

n , Tab.II–M : aM⇤
n , and Tab.II–L: aL⇤

n ,
correspond to the heavy-, mixed-, and light-traffic admission
policies that we will introduce. We will derive the conditions
of the static prices rl and rh, under which one-of-the-three
stationary policies achieves the optimality of the problem P1.
Notice that when Sn = 1, we have a⇤n = 0 for any values
of Xn and Yn. Thus Table II only focuses on the case of
S = 0. We further write the optimal expected future revenue
E[R⇤

n(Sn, Xn, Yn)] as ˜R⇤
n(Sn), since the expectation is taken

over (Xn, Yn).

We first analyze the performance of the heavy-traffic ad-
mission policy (in Tab.II–H: aH⇤

n , 8n 2 N ). Under this policy,
we will serve a heavy-traffic SU whenever possible, and only
serve a light-traffic SU if there is no heavy-traffic SU. Such
a stationary policy is optimal if the following two conditions
hold for each slot n 2 {1, · · · , N � 1},

rh +

˜R⇤
n+2

(0) � 0 +

˜R⇤
n+1

(0), (5)
rh +

˜R⇤
n+2

(0) � rl + ˜R⇤
n+1

(0). (6)

Inequality (6) means that serving a heavy-traffic SU is better
than serving a light-traffic SU in the current time slot followed
by serving another potential light-traffic SU in the next time
slot (with certain positive probability computed based on the
system parameters). Since (6) implies (5), we only need to
consider (6).

Similarly, we can derive the condition under which the
mixed-traffic admission policy (in Tab.II–M : aM⇤

n ) is optimal,
i.e., 0 + ˜R⇤

n+1

(0) < rh +

˜R⇤
n+2

(0) < rl + ˜R⇤
n+1

(0) for all n.
Under this policy, when both types of SUs are available, we
will always serve the light-traffic SU. Finally, we can derive
the condition under which the light-traffic admission policy (in

rh
rl

2pl +
1�pl
1�phpl 1 + pl

0

Light-traffic Admission Policy

Mixed-traffic Admission Policy

Algorithm

Heavy-traffic Admission Policy

Fig. 2. Stationary admission policies for any price ratio rh/rl 2 [0,1). No
stationary policy exists in the “Algorithm” segment, we need to resort to the
dynamic admission algorithm (see [21]) for the general switch-over policy.

Tab.II–L: aL⇤
n ) is optimal, i.e., rh +

˜R⇤
n+2

(0)  0 +

˜R⇤
n+1

(0)

for all n. Under this policy, we will choose to serve a light-
traffic SU whenever possible.

According to our analysis, it turns out that each of the
three stationary policies is optimal (i.e., the corresponding
condition holds) under a particular range of price ratio rh/rl.
We summarize the result in the following theorem.

Theorem 1 (Optimality of Stationary Admission Policies):
A stationary admission policy becomes the optimal policy to
solve the problem P1 if the following is true:

• The heavy-traffic admission policy aH⇤
n in Tab.II–H

for all n 2 N is optimal if rh
rl
� 2pl +

1�pl

1�ph
.

• The mixed-traffic admission policy aM⇤
n in Tab.II–M

for all n 2 N is optimal if pl  rh
rl
 1 + pl.

• The light-traffic admission policy aL⇤
n in Tab.II–L for

all n 2 N is optimal if rh
rl

< pl.

Fig. 2 illustrates the results stated in Theorem 1. In this
figure, we divide the feasible price choices rh/rl (i.e., the
range between [0,1)) into four segments, among which three
table segments corresponds to three stationary policies that
we have discussed. The “Algorithm” segment corresponds to
the case where we do not know whether a stationary policy is
optimal or not, since the conditions in Theorem 1 are sufficient
but not necessary. In that case, we need to use the algorithm
(in our online appendix [21]) to compute the optimal dynamic
admission policy for the problem P1.

Except the “Algorithm” segment, we are able to derive
the closed-form optimal revenue (the maximum objective
function) of the problem P1 for all the other three stationary
policy segments as functions of the prices (detailed analysis is
presented in [21]). Next we will proceed to consider the static
price optimization problem for the database operator.

C. Optimization of Static Pricing

We have developed the optimal admission choices in The-
orem 1 given fixed prices rl and rh. Now we are ready to
compute the optimal static pricing. As introduced in Sec. II,
we assume that prices will affect the number of SUs requesting
the resource. In particular, a higher price will drive down the
SUs’ demands. As an example, we will consider the linear
demand function in economics [23], where the probability of
having an SU of type i demanding spectrum in a time slot
is pi(ri) = 1 � kiri, i 2 {l, h}.3 The parameters kl and

3Linear demand function is also a widely used model in the revenue
management literature (e.g., [15], [16]). Changing to some common nonlinear
functions are unlikely to change the key results.
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Fig. 3. Optimal admission policies with optimized prices, for different values
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square ⇤ regime is the heavy-traffic admission policy. These three regimes
correspond to the three stationary policy segments in Fig. 2, respectively. The
black dot • regime corresponds to the “Algorithm” segment in Fig. 2.

kh characterize the demand elasticity of light- and heavy-
traffic SUs, respectively, and larger values indicate higher price
sensitivities.

We proceed to optimize the prices that maximize the total
revenue in the problem P1. Although we may derive the
closed-form optimal revenue ˜R⇤

n as a function of prices rl
and rh (if one of the stationary admission policy is optimal,
see Sec. III-B), the function ˜R⇤

n(rl, rh) turns out to be non-
convex in general, and the optimal prices cannot be solved in
closed form.

However, notice that the key benefit of static pricing is that
it does not need to be recomputed and updated frequently over
time, thus we can compute the optimal static prices offline and
afford a high computation complexity.

Recall that the three conditions in Theorem 1 are charac-
terized by the price ratio rh/rl. It is natural to ask whether
the optimal static pricing satisfies one of the conditions so
that it is indeed optimal to choose a stationary policy. Fig. 3
illustrates the corresponding result, showing that when a sta-
tionary admission control policy is optimal under the optimal
static prices for particular system parameters kl and kh. As
we can see, except few black dots which correspond to the
case of “Algorithm” segment in Fig. 2, the stationary policies
are optimal in most cases (more than 94% in Fig. 3) once we
optimize the static prices.

IV. OPTIMAL DATABASE OPERATION UNDER DYNAMIC
PRICING AND DYNAMIC ADMISSION

A. Joint Dynamic Pricing and Admission Formulation

Now we further study the general case of dynamic pricing,
where the database operator has the flexibility of chang-
ing prices over time. The database operator’s goal is to
compute the optimal prices r⇤l = {r⇤l (1), · · · , r⇤l (N)} and
r⇤h = {r⇤h(1), · · · , r⇤h(N)}, and the optimal admission policy
⇡⇤

= {a⇤
1

(S
1

, X
1

, Y
1

), · · · , a⇤N (SN , XN , YN )} from time slot
1 to time slot N to maximize its expected long-term revenue,

i.e.,

P2: Joint Dynamic Pricing and Dynamic Admission
Maximize E⇡

X,Y [R
1

(S,X,Y ,⇡, rl, rh)] (7)
Subject to an(Sn, Xn, Yn) 2 An(Sn, Xn, Yn), 8n 2 N ,

Sn+1

= (Sn + an(1� Sn)� 1)

+,

8n 2 {1, · · · , N � 1},
0  rl(n)  rmax

l , 8n 2 N ,

0  rh(n)  rmax

h , 8n 2 N ,

Variables {⇡, rl, rh}.

We can again use backward induction to solve the problem
P2, by starting from the last time slot and analyze till the first.
The subproblem in each time slot is to jointly determine the
prices and the admission decision to maximize the expected
future revenue from the current time slot to time slot N .
For the ease of exposition, at any time slot n, we denote
the expected future revenue EXn,Yn

[Rn(·)] as Vn(·), and its
optimized value over rl(n), rh(n) and an(Sn, Xn, Yn) as V ⇤

n .
The key notations have been listed in Table I. The subproblem
in each time slot n 2 N is

P3: Pricing-Admission Subproblem in time slot n
Maximize Vn

�
rl(n), rh(n), an(Sn, Xn, Yn)

�
(8)

Subject to an(Sn, Xn, Yn) 2 An(Sn, Xn, Yn), (8.1)
0  rl(n)  rmax

l , (8.2)
0  rh(n)  rmax

h , (8.3)
Variables {an(Sn, Xn, Yn), rl(n), rh(n)}.

The key challenge of solving the problem P3 is due to the
coupling among the decisions variables. Next we will propose
a decomposition scheme that helps us solve the problem P3

in each time slot n.

B. Decomposition of Pricing and Admission in Each Time Slot

First we want to clarify the difference between an admis-
sion strategy and an admission policy. An admission strategy
specifies admission actions for a specific time slot n, while
an admission policy specifies the admission strategies for all
time slots in N . Next we consider all possible admission
control strategies for a particular time slot n, as shown in
Table III.4 In this table, each strategy is accompanied by a
condition of the total revenue from time slot n to time slot
N , which consists of the immediate revenue for an admission
action at time slot n and the expected future revenue after
this admission action is made. The strategy is optimal to use
in a time slot if the condition is satisfied. Let us take the
heavy-traffic strategy as an example. It means that admitting
a heavy-traffic SU is optimal when it is possible to do so,
i.e., choose an = 2 if Yn = 1, regardless of the value of
Xn. When Yn = 0, admitting a light-traffic SU is optimal if
it is possible, i.e., an = 1 if (Xn, Yn) = (1, 0) and an = 0

if (Xn, Yn) = (0, 0). Finally, by combining all the analysis
together, the decision under the heavy-traffic strategy can be
summarized as an = (2 � Xn)Yn + Xn. The corresponding
condition for the heavy-traffic strategy implies that the total

4Note that the heavy-traffic policy in Sec. III requires that the heavy-traffic
strategy holds for all time slots n 2 N .
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TABLE III. ADMISSION STRATEGIES IN TIME SLOT n

Three Admission Strategies in time slot n Conditions
Heavy-traffic Strategy an = (2 � Xn)Yn+Xn rh(n) + V ⇤

n+2�rl(n) + V ⇤
n+1

Mixed-traffic Strategy (1{·} is the indicator function) rh(n) + V ⇤
n+2<rl(n) + V ⇤

n+1

an = Xn · 1{Yn=0} + (2� Xn) · 1{Yn=1} rh(n) + V ⇤
n+2 > 0 + V ⇤

n+1

Light-traffic Strategy an = Xn rh(n) + V ⇤
n+2  0 + V ⇤

n+1

revenue of admitting a heavy-traffic SU is no less than that of
admitting a light-traffic SU, i.e., rh(n)+V ⇤

n+2

� rl(n)+V ⇤
n+1

.
The conditions for the other two admission strategies can be
understood similarly. By looking at the conditions in Table III,
we can see that the three admission strategies cover all possible
decisions in time slot n. This observation helps us decompose
the problem P3 into three subproblems.

More specifically, in the pricing phase of time slot n
(see Fig. 1), the pricing-admission decomposition approach
involves two steps:

• Price optimization under a chosen admission strategy:
Assume that one of the three admission strategies in
Table III will be used in time slot n, we optimize
prices rl(n) and rh(n) to maximize the expected
future revenue.

• Admission strategy optimization of the one-out-of-
three admission strategies: Compare the maximized
expected future revenues under the three admission
strategies, and pick the best admission strategy (and
the corresponding optimized prices) that leads to the
largest revenue.

Next, we will derive the closed-form optimal pricing under
any chosen admission strategy, respectively.

1) Optimal Pricing under the Heavy-traffic Strategy (HTS):
Given HTS chosen in time slot n, we derive the expected future
revenue V H

n

�
rHl (n), rHh (n)

�
by considering the nested form

of revenues produced by actions an plus the optimal expected
future revenue V ⇤

n+1

or V ⇤
n+2

, weighted by the probabilities of
different SU arrivals (values of (Xn, Yn)), i.e.,

V H
n

�
rHl (n), rHh (n)

�
= pl(r

H
l (n))ph(r

H
h (n)) · �rHh (n) + V ⇤

n+2

�

+ ph(r
H
h (n))

�
1� pl(r

H
l (n))

� · �rHh (n) + V ⇤
n+2

�

+ pl(r
H
l (n))

�
1� ph(r

H
h (n))

� · �rHl (n) + V ⇤
n+1

�

+

�
1� pl(r

H
l (n))

��
1� ph(r

H
h (n))

� · �0 + V ⇤
n+1

�
,

where the superscript H indicates the HTS admission strategy
for time slot n. Note that this does not imply that the database
will always use HTS in future time slots. The database operator
needs to solve the following problem.

P4: Optimal Pricing for time slot n under HTS
Maximize V H

n (rHl (n), rHh (n)) (9)
Subject to rHh (n) + V ⇤

n+2

� rHl (n) + V ⇤
n+1

, (9.1)
0  rHl (n)  rmax

l , (9.2)
0  rHh (n)  rmax

h , (9.3)
Variables rHl (n) and rHh (n).

The first constraint guarantees that the heavy-traffic admission
strategy is optimal to use in time slot n, where V ⇤

n+2

and
V ⇤
n+1

are determined by the solutions of the subproblems in

TABLE IV. OPTIMAL PRICING UNDER HEAVY-TRAFFIC STRATEGY

V ⇤
n+1 � V ⇤

n+2

 4kl�3kh
4khkl

0

@ 4kl�3kh
4khkl

,
2�

r
1+

kh
kl

kh

1

A �
2�

r
1+

kh
kl

kh

kh
kl

< 4
3 I0 E1 E2

4
3  kh

kl
< 3 N/A E1 E2

kh
kl

� 3 N/A N/A E2

time slots n+2 and n+1 earlier in the problem P4. Since the
optimization is a continuous function over a compact feasible
set, the maximum is guaranteed to be attainable. It is easy
to show that the problem P4 is not a convex optimization
problem. Thus any solution satisfying KKT conditions may be
only a local optimum of the problem P4. Hence we need to find
all local optimum solutions satisfying KKT conditions, and
then compare these solutions to pick up the global optimum.

To find out an optimal solution to the problem P4, we need
to first examine the feasible region based on any possible pa-
rameter values rHl (n) and rHh (n). It turns out that the feasible
region is a polyhedron on a two-dimensional plane. As such,
we only need to check whether all the possible extreme points
and the interior points satisfying KKT conditions are local
optima. There are several possible extreme point solutions with
either one or two active (binding) constraints. We can further
show that most extreme points are not local optimal solutions.
We skip the details due to space limit, and summarize the
optimal pricing results in Proposition 1.

Proposition 1: Under the linear demand functions, the op-
timal dynamic pricing in time slot n under HTS is summarized
in Table IV, which depends on the value of V ⇤

n+1

� V ⇤
n+2

.

In Table IV, the notations I0, E1, and E2 represent the
interior point solution with no active constraint, the extreme
point solution with one active constraint, and the extreme
point solution with two active constraints, respectively. “N/A”
represents the cases where the combinations of conditions are
infeasible. For example, the first column of V ⇤

n+1

� V ⇤
n+2

and
the row 4

3

 kh

kl
< 3 lead to the condition of V ⇤

n+1

� V ⇤
n+2


4kl�3kh

4khkl
 0. This is not possible, since V ⇤

n+1

includes one
more time slot. Hence, the corresponding cell is labeled as
“N/A”.

2) Optimal Pricing under the Mixed-traffic Strategy (MTS):
Given MTS chosen in time slot n, the expected future revenue
V M
n

�
rMl (n), rMh (n)

�
can be similarly derived as the HTS case,

where the superscript M indicates the MTS admission strategy.
The database operator needs to solve the following problem.

P5: Optimal Pricing for time slot n under MTS
Maximize V M

n (rMl (n), rMh (n)) (10)
Subject to rMh (n) + V ⇤

n+2

 rMl (n) + V ⇤
n+1

, (10.1)
rMh (n) + V ⇤

n+2

� V ⇤
n+1

, (10.2)
0  rMl (n)  rmax

l , (10.3)
0  rMh (n)  rmax

h , (10.4)
Variables rMl (n) and rMh (n).

The first two constraints guarantee that the mixed-traffic strat-
egy is optimal to used in time slot n. Similarly to the analysis
of the problem P4, we have the following proposition.
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TABLE V. OPTIMAL PRICING UNDER MIXED-TRAFFIC STRATEGY

V ⇤
n+1 � V ⇤

n+2

�
2

r
1� kh

kl
�1

kh

0

@ kl�3kh
2khkl

,
2

r
1� kh

kl
�1

kh

1

A  kl�3kh
2khkl

kh
kl

< 1
3 I00 E1

0 E2

0

1
3  kh

kl
< 3

4 I00 E1

0 N/A
kh
kl

� 3
4 I00 N/A N/A

Proposition 2: Under the linear demand functions, the
optimal dynamic pricing solutions in time slot n under MTS
is summarized in Table V, which depends on the determined
difference V ⇤

n+1

� V ⇤
n+2

.

Table V is similarly derived as the HTS case. In this table,
the notations I00, E1

0, and E2

0 represent the interior point
solution with no active constraint, the extreme point solution
with one active constraint, and the extreme point solution with
two active constraints in the MTS case, respectively. Notice
that they have different expressions from those in the HTS
case (in Table IV). Likewise, we also use “N/A” to represent
the three cases where the conditions lead to the impossible
relationship of V ⇤

n+1

� V ⇤
n+2

 0.

Table IV and Table V show the optimal dynamic pricing in
each time slot n. Given the demand elasticities kl and kh, the
solution will be uniquely given by one of the three cases of
the difference V ⇤

n+1

�V ⇤
n+2

, 8n. In Sec. IV-C, we will propose
an algorithm to compute the difference of V ⇤

n+1

� V ⇤
n+2

.

3) Optimal Pricing under the Light-traffic Strategy (LTS):
Given LTS chosen in time slot n, the expected future revenue
V L
n (rLl (n), r

L
h (n)) can also be similarly derived as the HTS

case, where the superscript L indicates the LTS admission
strategy. The database operator needs to solve the following
problem.

P6: Optimal Pricing for time slot n under LTS
Maximize V L

n (rLl (n), r
L
h (n)) (11)

Subject to rLh (n) + V ⇤
n+2

 0 + V ⇤
n+1

, (11.1)
0  rLl (n)  rmax

l , (11.2)
0  rLh (n)  rmax

h , (11.3)
Variables rLl (n) and rLh (n).

Unlike the HTS and the MTS cases, we can derive the
optimal prices under LTS in closed-form.

Proposition 3: Under the linear demand functions, the
optimal prices in time slot n under LTS are

rLI
l (n) =

1

2kl
, rLI

h (n) = min{V ⇤
n+1

� V ⇤
n+2

, rmax

h }. (12)

C. Optimal Dynamic Pricing and Admission Policies

After deriving the optimal prices under each admission
strategy, we can now compare the corresponding revenues and
choose the best admission strategy for time slot n. We need
to do this for each of the N time slots to derive the optimal
admission strategies and prices. We show this process in the
policy development phase in Algorithm 1, which involves the
previous three propositions (Tables IV, V, and Equation (12)).
More specifically, the algorithm iteratively computes the prices

Algorithm 1: Policy Development and Implementation
1: Policy Development Phase:
2: Set n N + 1, V ⇤

N+1

 0

3: Set r⇤l (N), r⇤h(N) by (12) and V ⇤
N by the objective

function in the problem P6 V L
N (r⇤l (N), r⇤h(N)).

4: for n = N � 1..., 2, 1 do

5: Compute rH⇤
l (n), rH⇤

h (n) and V H⇤
n by Table IV.

6: Compute rM⇤
l (n), rM⇤

h (n) and V M⇤
n by Table V.

7: Compute rL⇤
l (n), rL⇤

h (n) and V L⇤
n by (12).

8: Then r⇤l (n), r
⇤
h(n) argmax{V H⇤

n , V M⇤
n , V L⇤

n }.
9: if r⇤l (n), r

⇤
h(n) = rH⇤

l (n), rH⇤
h (n) then

10: The heavy-traffic strategy in Table III is optimal.
11: else if r⇤l (n), r

⇤
h(n) = rM⇤

l (n), rM⇤
h (n) then

12: The mixed-traffic strategy in Table III is optimal.
13: else

14: The light-traffic strategy in Table III is optimal.
15: end if

16: end for

17: return Dynamic pricing-admission policy r⇤ and ⇡⇤.
18: Policy Implementation Phase:
19: Set n 1, S

1

 0

20: while n  N do

21: Announce the prices r⇤(n) and determine the SU
requests (Xn, Yn).

22: if Sn = 1 then

23: The admission action a⇤n  0.
24: else

25: Check ⇡⇤
(an(0, Xn, Yn)) for the action a⇤n.

26: end if

27: Set Sn+1

 (Sn + an(1� Sn)� 1)

+, n n+ 1

28: end while

and revenues under the three admission strategies, respectively,
and then selects the optimal prices which lead to the largest
revenue (lines 4 to 16). The complexity of Algorithm 1 is low
and linear in the number of time slots O(N), as it only needs
to check Table IV, Table V, and Equation (12) that we derived.
We summarize the optimality result as follows.

Theorem 2: The dynamic prices r⇤ = {r⇤(n), 8n 2 N}
and the admission policy ⇡⇤

= {a⇤n(Sn, Xn, Yn), 8n 2 N}
derived in the policy development phase in Algorithm 1
correspond to the optimal solution to the problem P2.

Theorem 2 can be proved by using the principle of optimal-
ity in dynamic programming [22]. Note that the optimal prices
and admission policy form a contingency plan that contains
information about the optimal prices and admission decision
at all the possible system states (S,X,Y ) in any time slots
n 2 N . To implement the optimal policy, the database operator
needs to decide actual admission actions according to the
realizations of random demands and the transition of system
states (see the policy implementation phase in Algorithm 1).
More specifically, at the beginning of each time slot n, the
operator first announces prices r⇤(n) and checks the actual
arrivals (Xn, Yn) (line 21). Then, the admission decisions are
carried out based on the optimal policy ⇡⇤ through checking
a table (lines 22 to 26) and the state component Sn is updated
accordingly (line 27).
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Fig. 4. Revenue improvement evaluation: N = 100. The revenue improve-
ments are given in terms of kl and kh, where the red circle � regime is less
than 10%, the blue cross + regime is between 10% and 30%, and the dark
green square ⇤ regime is more than 30%.

D. Comparison between Static and Dynamic Pricing

Now we compare the total operator revenue under opti-
mized dynamic pricing and optimized static pricing. Fig. 4
shows the revenue improvement of dynamic pricing over the
static pricing under different demand elasticities of kl and kh.
As shown in Fig. 4, dynamic pricing outperforms static pricing
by more than 30% when both types of SUs are sensitive to
prices and have high demand elasticities parameters kl and kh.
When both types of SUs are not very price-sensitive, dynamic
pricing leads to limited revenue improvement (less than 10%)
than the static pricing, and it is better to implement static
pricing due to its low complexity.

V. CONCLUSION

In this paper, we consider a spectrum database operator’s
revenue maximization problem through joint spectrum pricing
and admission control. We incorporate the heterogeneity of
SUs’ spectrum occupancy and demand uncertainty into the
model, and consider both the static and dynamic pricing
schemes. In static pricing, we show that stationary admission
policies can achieve optimality in most cases. In dynamic
pricing, we compute optimal pricing through a proper pricing-
admission decomposition in each time slot. Finally, we show
that dynamic pricing significantly improves revenue over the
static pricing when SUs are sensitive to prices.

In the future work, we will consider the pricing and
admission control of multiple parallel channels. In this case,
SUs may flexibly request different spectrum-time chunks in a
two-dimensional time and frequency plane. One challenge is
how to solve this Markov Decision Process (MDP), where the
system state and state dynamics are much more complicated.
We may further consider delay tolerant SUs who are willing
to wait in queues if not admitted immediately. We may use
the Lyapunov method to analyze the system stability and

performance under such a scenario [24]. We may further use
the queueing based MDP to analyze the pricing and admission
decision for such a scenario.
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