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Abstract—In this paper, we apply statistical mechanics methods
to the problem of detection of multiple primary wireless sources
by a wireless sensor network. We assume that the location of the
primary sources is known, but that the channel connecting them
to the sensors is random. The sensor network tries to detect which
sources are emitting by employing a belief propagation algorithm.
We use the Replica approach to estimate the probability of error
and we provide analytical expressions and numerical results for
the case of random connectivity between sources and sensor
nodes, for the fading channel model. This method can provide
a simple way to calculate performance metrics for the detection
problem.

I. INTRODUCTION

Dynamic spectrum sensing has emerged as an important
issue in the context of heterogeneous, hierarchically structured
wireless networks, where secondary users need to sense the
presence and transmitted energy of primary (licensed) sources.
This ensures that the transmission by secondary, opportunistic
sources does not interfere too heavily on the signal of primary
sources and vice-versa. The detection and localization of pri-
mary sources may be achieved by making use of all available
information at the location of secondary sensors. One approach
is to measure the delay of each signal received at several
sensors and essentially by triangulation to locate the primary
sources [1]. However, multiple scattering and the interference
due to the reception of multiple measurements from different
sources as well as the need of synchronization are important
impediments of this method.

The use of non-coherent energy detection [2] is perhaps the
simplest approach, since it does not require synchronization
and is less sensitive to multiple scattering. In this case, the
problem boils down to finding the most probable strength of
interference at any location in the network, conditioned on
the total interference energy measured at the sensor locations.
For this purpose, some information for the statistics of the
signal is necessary. One approach is to simply assume that the
primary signal is spatially correlated due to the fast and/or
slow fading of the channel [3]. Thus, given the signal at
the location of the sensors it is possible to obtain the most
probable interference level at other locations. This method
should provide satisfactory results when the fluctuations due
to fading are large. Otherwise, one needs to factor in the
effects of pathloss by taking into account that the interference
at all locations is due to a discrete number of primary sources
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located at given points in the network. The outcome of such an
algorithm is the most probable locations and power strengths
of the primary sources and from that the primary signal at
all locations can be obtained. In [4] such an algorithm was
developed, providing the powers and locations of primary
sources in simple examples with a few sources with reasonable
accuracy. However, since the algorithm is centrally controlled,
it is not clear how it can work in a large scale system with
a fixed source density. Therefore, distributed algorithms are
necessary.

A particular family of distributed algorithms that has been
known to be near-optimal in some cases is based on message
passing [5] and its variants. Besides their efficiency, the appeal
of message passing procedures resides in their local nature.
Information is propagated along the edges of the graph and
each message is updated using other messages coming into
the same node, resulting to the possibility of parallelization
[6]. In such algorithms the convergence to the most probable
result is reached in essentially linear time in the number of
sources. Typically the channel matrix is required to be sparse,
since this makes the type of exchanged messages simpler. It
is typically used in the case of binary unknowns, i.e. when
the sources are assumed either on or off. In this case the
almost-sure convergence to the most probable result has been
shown for both random fully connected [7] as well as sparse
(Erdos-Renyi) graphs. They have also been extended to non-
binary sources [8], [9]. In particular, this has been shown to
be exact for fully connected random graphs [10], [11] under
some sparsity constraints.

In this paper we address the performance of message
passing in the detection of large-scale network of multiple
primary sources from a network of sensors. As a first step we
assume that the locations of the primary users are known and
that their transmitters are either on or off. This is a realistic
scenario, when through radio-neighborhood maps the sensors
may know the location of the primary users, but do not know if
they are active. Despite the apparent simplicity of the model,
it is still quite challenging due to the large scale nature of
problem and the fact that each sensor receives a signal from
multiple sources. The basic question we would like to address
is: For a given type of environment and a REM, what is the
region in the parameter space of the system, such as density
of sensors and primary sources, signal to noise ratio for the
power, where the detection of the active sources is adequate?
To answer this question, we applied a statistical physics
approach to provide a closed set of equations for the density
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ĥk3→µ
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Fig. 1. Graph depicting the incoming messages to source sµ (ĥ→µ) and
sensor yi (h→i). The network structure has been modelled as a Bethe lattice
[13], where every sensor/source is connected to and arbitary number of
sources/sensors .

of two parameters, which can be solved straightforwardly
using population dynamics. As a result we obtain the average
detection probability of the sources. This set of equations
corresponds to the so-called replica symmetric solution [12]
and is effectively a mean-field result, valid for Erdos-Renyi
type graphs. Nevertheless, by comparing this to the results
from the behavior of the message passing algorithm in many
realizations of a two-dimensional random network, we find
good agreement.

The rest of the paper is organized as follows: In section II
we present the system model. Section III presents the belief
propagation algorithm that is used for detection, while Section
IV analyzes the replica symmetric solution for the model.
Section V presents the simulation results. Concluding remarks
in Section VI end the paper.

II. SYSTEM MODEL

We consider a wireless network with sensor nodes and
primary source nodes randomly located in the field with
average densities Ns and Nt, respectively. The channel power
strength at the νth sensor location due to transmitter i is
denoted by

Giν =
P0

2

(
ziνr

γ
0

dγiν + rγ0

)
(1)

In the above equation, P0 is the transmission power of source
i, assumed known and fixed, ziν is the fading coefficient, diν
is the distance between the source and the sensor, r0 is a
cutoff distance of the pathloss model and γ is the pathloss
exponent. In each instantiation of the network of area A the
numbers of sensor and primary nodes are random, following
the Poisson distribution with parameters λs = NsA and λt =
NtA, respectively. For simplicity however, when generating
the network numerically it is convenient to generate a fixed

number of sensors and sources equal to M = λsA and N =
λtA for a unit area.

For pragmatic reasons we assume that a sensor detects a
source if Giν ≤ G0 = 0.5P0R

−γ
c , for a certain radius Rc

which depends on the sensitivity of the sensor receiver. The
number of connected sensors per source follows the Poisson
distribution, whose parameter ρs = NsAeff is determined in
Appendix A by calculating the effective area over which a
source can be observed by a sensor which is

Aeff = πR2
0Γ

(
1 +

2

γ

)
exp

{
− r

γ
0

Rγc

}
(2)

Similarly, the number of connected sources per sensor has
Poisson parameter ρt = NtAeff.

Having discussed the measurement matrix G with entries
given by Giµ we are now in the position to present the
detection process. Let σ = [σ1, σ2, ..., σN ]T be the N × 1
column vector, with entries στ = 2 or στ = 0, depending
on whether the corresponding source is transmitting or not.
The power measured at each sensor node is then corrupted
by noise, which we take to be additive white Gaussian given
by the vector η. The measurement vector at the sensors is
w = Gσ+η. It is convenient to shift the variables σi = si+1,
so the new vector s has elements si = ±1. Then the shifted
vector y = w −G1 is given by

y = Gs+ η (3)

where 1 = [1, 1, . . . , 1, 1]T . It is obvious that the measurement
matrix G has a sparse form. We will use this fact to make a
key approximation later on that there are no (short) loops in
the corresponding graph, thus approximating the graph by a
tree.

In order to recover the signal s, we will solve the LS
minimization problem which can be formulated as follows

ŝ = arg min
s∈[−1,1]n

‖y −Gs‖2 (4)

Before defining the message passing algorithm in the next
section, we will define the above quantity as an energy
function

E =
∑
i

εi(s∂i) (5)

=
∑
i

(
yi −

∑
ν∈∂i

Giνsν

)2

where εi is the energy (cost) corresponding to the i-th sensor
node and denoting as ∂i (∂µ) the set of sources (respectively
sensor nodes) adjacent to sensor node i (respectively source
node µ).

The above detection problem can be depicted in Figure 1.
To proceed we recast the detection problem as a statistical
mechanics system with energy E and inverse temperature β.
We define the so-called partition function Z as

Z =
∑
sµ

exp {−βE} (6)
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Fig. 2. Convergence of the Message Passing algorithm in random networks
with various connectivity matrices for fixed SNR = 0 dB.

and the corresponding Helmholtz free energy as F =
−β−1 lnZ. Then the detection problem above becomes equiv-
alent to finding the minimum energy configuration of the
statistical mechanics system, which can be obtained by taking
the β →∞ limit. As noted above, we will only consider the
special case of binary variables, but the same arguments with
some small modifications can be used to extend it to the field
of continuous variables.

III. THE BELIEF PROPAGATION ALGORITHM

We will now describe the belief propagation method that
will minimize our cost function in (5).

If we denote by mµ→i(sµ) and m̂i→µ(sµ) the incoming
messages to the sensor node yi and source sµ respectively, we
get the following update rules

mµ→i(sµ) ∝
∏

j∈∂µ\i

m̂j→µ (sµ) (7)

and

m̂i→µ(sµ) ∝
∑
sµ

fi(s∂i)
∏

ν∈∂i\µ

mν→i(sν) (8)

fi(s∂i) = exp {−βεi}

Since all messages are functions of binary variables they can
be parametrized by their log-likelihood ratios (usually called
“effective (local) field”) as,

ĥi→µ ≡
1

2β
· log

[
m̂i→µ(sµ = +1)

m̂i→µ(sµ = −1)

]
(9)

so that

m̂i→µ(sµ) =
1

2

(
1 + sµ tanh(βĥi→µ)

)
(10)

and correspondingly

mµ→i(sµ) =
1

2
(1 + sµ tanh(βhµ→i)) (11)

To include the bias due to the prior distribution of s0µ for
each source µ it is convenient to first perform the following
gauge transformation

sν 7→ s̃νs
0
ν (12)

Now, the optimum values of s̃ are simply s̃ = 1. In order
to maintain the energy function of (5) invariant to the afore-
mentioned transformation, we also need to transform the gain
matrix G as follows

G 7→ GS0 (13)

where S0 = diag
(
s0ν
)
.

Rearranging the various summations and using the trans-
form described above in (12) and (13) we get the expression
of the update rules in a recursive way (with each node’s prior
distribution included) as follows:

mµ→i(s̃µ) =
1

Zµ→i

∏
j∈∂µ\i

m̂j→µ(s̃µ) (14)

This equation may be restated in terms of the fields ĥ and h
as

hµ→i =
∑

j∈∂µ\i

ĥj→µ (15)

The corresponding equation for m̂i→µ is

m̂i→µ(s̃µ) =
1

Zi→µ

∑
s̃ν∂i\µ

fi(s̃∂i)
∏

ν∈∂i\µ

mν→i(s̃ν) (16)

where

fi(s̃∂i) = exp

{
−β
(
yi −

∑
ν∈∂i

Giν s̃νs
0
ν

)2
}

(17)

After some algebra it is easy to show that

m̂i→µ(sµ) =
1

2
(1 + s̃µtβ) (18)

where
tβ =

sβ
cβ

(19)

with

cβ =
∑
s̃ν∈∂i

exp

−β
[
yi −

∑
ν∈∂i

Giν s̃νs
0
ν

]2
·
∏

ν∈∂i\µ

exp{βs̃νhν→i}
2 cosh(βhν→i)

(20)

and

sβ =
∑
s̃ν∈∂i

ŝµ exp

−β
[
yi −

∑
ν∈∂i

Giν s̃νs
0
ν

]2
·
∏

ν∈∂i\µ

exp{βs̃νhν→i}
2 cosh(βhν→i)

(21)
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Fig. 3. Graphical comparison of Message Passing algorithm and Population
Dynamics method in an irregular bipartite graph. The network we deployed
for testing these two algorithms, consisted of 10 sources and 10 sensors with
a random degree of connectivity between them. It is readily seen that both
algorithms give almost the same results, regarding error detection rate. In
this case, we considered a tentative environment without pathloss but with
Rayleigh fading. An important factor that we neglected, on purpose, is the
loop-free tree and it is definitely an explanation for the small difference of
these two curves in high SNR values.

These equations are quite complicated to update in the
message passing algorithm. However, as mentioned in the
previous section, we are ultimately interested in their β →∞
limit. In this case, the corresponding equation for ĥi→µ is
derived in the Appendix to be

ĥi→µ = σµ
ξ+ − ξ−

2
(22)

where

ξ+ = min
sν∈∂i

εi(sν∈∂i)− ∑
ν∈∂i\µ

hi→ν

 (23)

σµ = arg min
sν∈∂i

εi(sν∈∂i)− ∑
ν∈∂i\µ

hi→ν

 (24)

ξ− = min
sν∈∂i\µ,sµ=−σmu

εi(sν∈∂i)− ∑
ν∈∂i\µ

hi→ν

(25)

As we see, −βξ+ is the maximum of all exponents in (20),
and σµ is the value of sµ in the corresponding s vector, while
−βξ− is the maximum over the subset of the exponents with
sµ = −σµ. The above equations (15) and (22) form the basis
of our message passing algorithm.

IV. THE BETHE APPROXIMATION

It is well known that the above belief propagation equations
are the stationary points of the so-called Bethe free energy,
which effectively only takes into account pairwise interactions
between nodes [14]. This approximation becomes exact when

there are no loops in the graph of the network. In this
approximation, we can write the free energy of the system
as the sum of the contributions of sensor and source sites as
well as bond contributions,

FBethe[{hµ→i}, {ĥi→µ}] =
∑
µ

Fµ +
∑
i

Fi −
∑
(i,µ)

Fiµ (26)

where the contribution of the source sites µ and sensor sites
i are up to a constant respectively given by

Fµ = ln

[∑
sµ

∏
j∈∂µ

(
1 + sµ tanh(βĥj→µ)

)]
(27)

and

Fi = ln

∑
sν

e−βεi
∏

ν∈∂i\µ

(1 + sµ tanh (βhν→i))

 (28)

and the contribution from the bond i↔ µ is

Fiµ = ln

[
1

2

(
1 + tanh(βĥi→µ) tanh(βhµ→i)

)]
(29)

We can use this formulation to obtain an expression for the
detection error rate of the system in terms of the fields h and
ĥ. We start by adding an effective magnetic field term in the
cost function, E , from (5)

E → E − δ
∑
µ

sµs
0
µ = E − δ

∑
µ

s̃µ (30)

By taking the derivative of F with respect to δ at δ = 0 in
(26), we see that the fraction of of which the state has been
detected erroneously is

Perr =
1

2

(
1− 1

M

∑
µ

〈
sµs

0
µ

〉)

=
1

2

(
1− 1

Mβ

∂FBethe
∂δ

∣∣∣∣
δ=0

)
(31)

Thus, including the above term in the free energy above alters
Fµ to

Fµ = ln

[
e−βδ

∏
j∈∂µ

(
1− tanh(βĥj→µ)

)
+ eβδ

∏
j∈∂µ

(
1 + tanh(βĥj→µ)

)]
(32)

which then gives

1− Perr =
1

2M

∑
µ

tanh

β ∑
i∈∂µ

ĥi→µ

 (33)

=
1

2M

∑
µ

tanh
{
β
(
ĥi→µ + hµ→i

)}
→

β→∞

1

2M

∑
µ

sign
(
ĥi→µ + hµ→i

)
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Fig. 4. Average error detection rate vs. SNR, using the belief propagation algorithm in 100 random networks compared to the population dynamics algorithm
in linear and logarithmic axes. The graph corresponds to (a) random networks with 5 sensors and 5 sources, 10 sensors and 10 sources and (b) 10 sensors
and 5 sources, with random connectivity. In Figure (a) for comparison purpose only, we simulated the network with 10 sensors and 10 sources with each
sensor having effective radius Rc = 0.5 and the network with 5 sensors and 5 sources with each sensor having effective radius Rc =

√
0.5 so as to have

comparable performance. Additionally r0 was set to 0.9 for every deployed network. The channel matrix contains in both cases, the pathloss exponent and
the Rayleigh fading with γ = 4.

A. The Replica-Symmetric Approach
The above equations are still dependent on the particular

graph realization of the network. In this section we will
make one further approximation, namely that the graph is
statistically equivalent. Hence the environment of each node
or sensor is equivalent with every other. We may therefore
define the random fields H and Ĥ corresponding to the fields
hi→µ and hµ→i above and provide them with distributions
Q(H) and Q̂(Ĥ) respectively. These distributions will then
be obtained self-consistently by enforcing the message passing
equations.

From Eqs. (15) and (22) we get two basic recursive relations
for the probability density [15]

Q̂
(
Ĥ
)

=

〈 r∏
i=1

∫
dHiQ(Hi)·δ

(
Ĥ − β−1 tanh−1 [tβ(H)]

)〉
(34)

with the expectation over G,y, r and

Q (H) =

〈 t−1∏
k=1

∫
dĤkQ̂

(
Ĥk

)
· δ

(
H −

t−1∑
k=1

Ĥk

)〉
t

(35)

which are the saddle point equations resulted from the Bethe
free energy. Expectations over r and t which are the number
of sources per sensor and vice versa are taken over the
corresponding distribution coming out from fixed density of
sources and sensors in a network.

Generally the above equations cannot be solved in closed
form. However, it is possible to obtain the fixed point distri-
butions Q(H) and Q̂(Ĥ) using a simple stochastic algorithm
called population dynamics [12], [16]. Instead of working with
Q (H) and Q̂(Ĥ) directly, we represent the effective field dis-
tributions by a large population of K copies (fields) randomly

Fig. 5. A random network of 10 sources and 10 sensors in a 2 × 2 area.
The connectivity between the nodes is formed in a completely random way.

drawn from these two distributions. K is sufficiently large
(e.g. K = 1000) so as to provide good resolution in the desired
performance measures [16] We initiate the process by creating
K random values for H and K random samples for Ĥ , for
example with K = 1000. We then continue by generating the
number t from a given distribution, in our case the Poisson
distribution with parameter ρs. We then take t − 1 random
samples from the Ĥ bin and save their sum at a random
location in the H bin. We then generate the number r randomly
from a distribution, in our case the Poisson distribution with
parameter ρt and pull r random samples from the H bin. With
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these, we calculate the function tanh−1[tβ(H)] and pass its
value to a randomly chosen element in the Ĥ bin. We continue
this process until the distributions of Ĥ and H converge.

The probability of erroneous detection can be obtained
directly from the above distributions (35) and (34) and it is

Perr =
1

2

(
1−

〈
sign(H + Ĥ)

〉
H,Ĥ

)
(36)

It should be pointed out that the above error probability
includes only the situations where each source is connected
to at least one sensor. Therefore to describe the source outage
concisely we need to include the probability where a primary
source is completely detached from the sensor network Punc =
exp−ρs. Then the total error detection rate is given by

Ptotal = Punc + (1− Punc) · Perr (37)

At this point it is worth to summarize the main aim and basic
notion of the proposed algorithm. First, the goal of this paper
is to develop an analytic methodology, which can quantify the
ability of the message passing algorithm to correctly detect
primary sources in a large random wireless sensor network,
subject only to the statistical characteristics of the network.
This methodology can be described as follows. Given a density
of primary users and secondary users Nt and Ns, respectively,
the characteristics of propagation, such as the path-loss expo-
nent γ and the fading distribution the coefficients ρt and ρs
(see (2)) can be determined. Note that in this paper we only
dealt with Rayleigh fading, but this can be generalized. These
coefficients determine the Poisson distributions of the number
of connected sources per sensor and the number of sensors per
source respectively. These distributions characterize accurately
the degree distribution in the actual two-dimensional network.
They are then used to characterize the degree distributions of
an equivalent irregular random bipartite network. Equations
(35) and (34) then determine the distributions Q(H) and Q̂(Ĥ)
of the effective fields for such a graph with thermal noise
in the detection included, from which finally the probability
of detection error is evaluated in (36) and then (37). In the
above context the main approximation we have made is that
the two dimensional network of sources and sensors can be
approximated with a random graph with connections possible
between any pair of sensor-source.

V. SIMULATION RESULTS

In this section we will briefly discuss the numerical valida-
tion of the above approach. As a starter we show that message
passing is a fast converging algorithm in this context. Indeed,
Fig. 2 shows the simulation results regarding the convergence
rate for the case of the Message Passing algorithm. It can
be seen that for various neighbouring matrices the proposed
algorithm converges very fast to the optimal solution. The
neighbouring matrices differ not only in the size, which reveals
the number of sensors and sources but also in the connectivity
between sensors and sources. Without loss of generality, we
kept a fixed SNR value of 0 dB. In terms of the complexity,

the belief propagation algorithm has the significant advantage
of linear complexity, which makes it especially appealing in
practice.

Next, we wish to validate the accuracy of the replica
symmetric approach depicted in (35) and (34) and the corre-
sponding population dynamics algorithm in comparison to an
Erdos-Renyi random graph. In Figure 3 we show the detection
error rate for the two employed algorithms, the Message
Passing and the Population Dynamics is depicted. It is readily
seen that in this case these algorithms have extremely good
agreement of performance.

To quantify now the behavior of the replica symmetric
approach in two dimensional networks we have generated a
number of random instantiations of a network with 5 × 5,
10 × 10 and 10 × 5 sensors and sources respectively. One
particular realization is shown in Fig. 5. For each of these
networks we calculated the average detection error rate as a
function of the noise (or SNR) and then compared it to the
corresponding values of the replica-symmetric system obtained
using population dynamics. This comparison is depicted in
Fig. 4, which shows good agreement between the two algo-
rithms.

Finally, having justified the usefulness of the replica-
symmetric methodology, we obtain the values of the detection
error rate using population dynamics for various values of ρt
and ρs in Fig. 6. In the left-and side we plot the probability
of error given that the source is connected to some sensor, i.e.
Perr. We find here the approximate symmetry around the line
ρt = ρs; above that the error is higher, while below that the
error is much lower. The right figure shows the total value
of error Ptot. We see that for this set of parameter values
the detection rate is dominated by the probability of non-
connection.

In closing, it is worth saying that although we modelled
our network as a Cayley tree, in many of our random net-
works’ simulations, the neighbouring matrices contained many
short loops which caused local correlations within groups of
elements. This phenomenon did not degrade substantially the
overall network performance.

VI. DISCUSSION AND CONCLUSIONS

This paper presented a study of multiple source detection
using a sensor network in the presence of interference and
noise. We used the replica symmetric approach to calculate
the detection error for the network and showed that its results
are in numerical agreement with the more network-message
passing approach. This enables us to provide predictions for
the detection error behavior in large scale networks, based on
only a few parameters of the statistical characteristics of the
connections, such as sensor and source density, pathloss expo-
nent and fading. In the future we will expand this algorithm
in the prediction of the powers of the sources.

APPENDIX A
CONNECTIVITY STATISTICS

In this paper we are dealing with a random sensor deploy-
ment with the received power in a sensor due to a given
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Fig. 6. Error detection rate as a function of source’s ρt and sensor’s ρs factors for fixed SNR = 10. Figure (a) depicts the Perr derived from the population
dynamics algorithm according to Eq. (36) and (b) the total error detection rate Ptot where the probability of a node to be isolated has been considered. We
have assumed that Rc = 2, r0 = 1 and the environmental factor γ = 4. The regions with the same error detection rate (in dB) are marked with the same
colour. As expected, since ρs and ρt are proportional to densities Ns and Nt, the total error detection rate is higher when the number of sensors placed
within the area of an emitting source is small.

source given by (1). For convenience we use a function, f(r),
to represent the edge appearing probability as a function of
the distance between two nodes [17]. This link probability
function, is very useful since the probability of a sensor to
be connected with a source is clearly range dependent. For
the Rayleigh fading environment, the channel model has a
random component which is exponentially distributed and can
be viewed as the pdf of the received power in the sensor. Then,
the communication range r can be defined as the distance at
which the SNR falls below a certain threshold Pth = R−γc ,

f(r) = P (Ptx ≥ Pth|r) = exp

{
−r

γ + 1

Rγc

}
(38)

For the Rayleigh fading environment the effective area Aeff
over which the sensor is connected to the sensor is equal to

∫ ∞
0

2πrf(r)dr = πR2
cΓ

(
2

γ
+ 1

)
(39)

Since the position of nodes around a given node is random and
independent it can be shown easily that the number of sensors
in each finite sub area Aeff follows a Poisson distribution [18]

P(k sensors in Aeff ) =
(AeffNs)

k

k!
exp{−AeffNs}

and derive the probability that the sensor remains unconnected
with every source, as Punc = exp{−AeffNs}.

APPENDIX B
DERIVATION OF (22)

We can write the two terms sβ and cβ by analyzing them
in a sum of exponential factors, as,

sβ =
∑
k

sµ exp{−βξk} (40)

and
cβ =

∑
k

exp{−βξk}. (41)

where sµ is the sign of each the spin we are interested in,
the exponents −βξk are the exponents in the expression of
the sum in (20). The index k goes over all 2r realizations
of the r = |∂i| sources connected with sensor i. In order to
calculate the quantity β−1 tanh−1 [tβ(H)] in the β →∞ limit
we denote

ξ+ = min
sν∈∂i

εi(sν∈∂i)− ∑
ν∈∂i\µ

hi→ν

 (42)

σµ = arg min
sν∈∂i

εi(sν∈∂i)− ∑
ν∈∂i\µ

hi→ν

 (43)

In the above σµ is the value of sµ in the configuration with the
minimum value of ξk, which is ξ+. Without loss of generality
let us denote this realization as k = 0.
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Thus, we can write the exponential terms as

sβ = σµ exp{−βξ+}+
∑
k 6=0

sµ exp{−βξk}

= exp{−βξ+}

σµ +
∑
k 6=0

sµ exp{−βξk + βξ+}︸ ︷︷ ︸
A


and

cβ = exp{−βξ+}+
∑
k 6=0

exp{−βξk}

= exp{−βξ+}

1 +
∑
k 6=0

exp{−βξk + βξ+}︸ ︷︷ ︸
B


so that tanh−1 [tβ(H)] = tanh−1

(
σ0+A
1+B

)
and after some

algebra we finally get

tanh−1
(
σµ +A
1 + B

)
=

1

2
ln

(
1 + B + σµ +A
1 + B − σµ −A

)
(44)

However, we would like to know the exact next term that
prevails along with ξ+. So, in case where σµ = +1 we see that
the leading term will come from (B−A) in the denominator.
We define ξ− as

ξ− = min
sν∈∂i\µ,sµ=−1

εi(sν∈∂i)− ∑
ν∈∂i\µ

hi→ν

 (45)

For simplicity, let us define

χµ =

{
0, if sµ = −1

1, if sµ = +1
(46)

and we finally get

tanh−1 [tβ(H)] =
β

2

(
ξ+ − ξ−

)
+ ln

(
1 +

∑
k 6=0 χµ exp{β(ξ+ − ξk)}

1 +
∑
k 6=0,ρ χµ exp{β(ξ− − ξk)}

)

where ρ is the index of the respective ξ− term that prevails
along with ξ+. Similarly, for the case of σµ = −1 and

tanh−1 [tβ(H)] =
β

2

(
ξ− − ξ+

)
+ ln

(
1 +

∑
k 6=0,ρ χµ exp{β(ξ− − ξk)}

1 +
∑
k 6=0 χµ exp{β(ξ+ − ξk)}

)
Therefore, in both cases we finally obtain

β−1 tanh−1[tβ(H)] ≈ σµ

2

(
ξ+ − ξ−

)
(47)
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