
Distributed Online Submodular Maximization in
Resource-Constrained Networks

Andrew Clark, Basel Alomair, Linda Bushnell, and Radha Poovendran

Abstract—Maximization of submodular set functions arises in
wireless applications such as scheduling, caching, and leader
selection. For a centralized entity with oracle access to the
submodular function, submodular maximization can be approxi-
mated up to a constant factor using polynomial-time algorithms;
such an entity, however, may be unavailable in decentralized
wireless networks. In this paper, we consider maximization of
a time-varying submodular function by distributed, resource-
constrained nodes. We present algorithms for unconstrained
distributed submodular maximization, as well as monotone sub-
modular maximization subject to cardinality constraints. For the
unconstrained submodular maximization problem, our algorithm
achieves an expected optimality gap of 1/3. For cardinality-
constrained submodular maximization, our algorithm achieves
an expected optimality gap of 1/2, while reducing the storage
and communication overhead, as well as the computation re-
quirements of the nodes, compared to existing techniques. We
evaluate our approach through an experimental study using
sensor scheduling data, and find that our approach is within
ten percent of the best achievable utility in the unconstrained
case and within five percent in the constrained case.

I. INTRODUCTION

A variety of network design problems can be formulated
as selecting a subset of network nodes to perform a shared
task in order to optimize a global objective function. Ex-
amples include multi-carrier wireless scheduling [1], wireless
content delivery through distributed caching [2], sleep-wake
scheduling of sensors [3], data forwarding [4], and leader
selection [5]. Since selecting an optimal subset of nodes is
a combinatorial problem, and hence is intractable in gen-
eral, additional properties of the objective function must be
identified for scalable network design. One such property
that is inherent in many applications [1], [2], [3], [4], [5]
is submodularity, a diminishing returns property analogous
to concavity of continuous functions. Submodularity leads to
polynomial-time algorithms for approximating combinatorial
problems up to a provable O(1) optimality gap [6].

Existing algorithms for submodular function maximization
[7], [8] typically assume the existence of a centralized entity
that has global knowledge of the network and can compute
the value of the submodular function at any arbitrary set.
Wireless networks, however, often operate in the absence of
any centralized authority, leading to the following constraints
that are not satisfied by the existing algorithms. First, due to
bandwidth and connectivity constraints, wireless nodes have
limited network information, and hence cannot evaluate the

A. Clark, L. Bushnell, and R. Poovendran are with the Department of
Electrical Engineering, University of Washington, Seattle, WA 98195 USA.
awclark@uw.edu, lb2@uw.edu, rp3@uw.edu

B. Alomair is with the Center for Cybersecurity, King Abdulaziz City for
Science and Technology, Riyadh, Saudi Arabia. alomair@uw.edu

global objective function for any arbitrary set. Second, changes
in network topology due to mobility, as well as environmental
factors, lead to time-varying objective functions and hence
require online algorithms. Finally, the computation and storage
constraints of each node limit the set of feasible algorithms.

Distributed, online submodular maximization algorithms
that satisfy these constraints would enable decentralized net-
work design with certifiable optimality guarantees. Currently,
however, no such distributed algorithms exist.

In this paper, we study distributed submodular maximization
under the computational assumptions described above. Our
distributed submodular maximization approach is based on two
basic insights. First, when the objective function is submodu-
lar, locally optimal solutions, in which node follows an optimal
strategy given the actions of the other nodes, are within a
provable bound of the global optimum [9]. Second, even when
the objective function is time-varying and unknown, each node
can approximate the optimal strategy over time via prediction
and learning algorithms [10].

We formulate algorithms for both constrained and un-
constrained distributed submodular maximization. Under our
approach, a subset of nodes (e.g., a set of nodes to act
as caches [2], leaders [5], or active sensors [3]) is selected
by each node deciding, in a distributed fashion, whether to
join the set based on the current and previous values of the
objective function. In the case of unconstrained optimization,
we introduce a probabilistic algorithm in which each node
decides, at each tick of its internal clock, whether to join or
exit the set based on the previously observed utility. We prove
that, over a sufficiently long period of time, the expected utility
of our algorithm is within a factor of 1/3 of the optimum.

In the case of constrained optimization of a monotone
submodular function, we propose a probabilistic algorithm in
which, at each tick of its internal clock, each node decides
whether or not to join the set by exchanging with a uniformly
randomly chosen member of the set, based on the previously
observed utility. The expected utility of our algorithm for
the constrained case converges to within a factor of 1/2 of
the optimum, without requiring time synchronization, node
broadcast, or global information. Through experiments, we
evaluate both the unconstrained and constrained algorithms in
the application of sensor selection using real-world data [11],
and find that the utility achieved by our approach is within ten
percent of the best centralized algorithms.

The paper is organized as follows. Section II reviews
the related work. Section III states our network model and
gives relevant background. Sections IV and V present our
distributed algorithms for unconstrained and constrained sub-
modular maximization, respectively. Section VI analyzes the

978-3-901882-63-0/2014 - Copyright is with IFIP

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

397

complexity of our proposed algorithms. Section VII evaluates
our approach through numerical case study. Section VIII
concludes the paper and describes open problems.

II. RELATED WORK

In the seminal work on submodular maximization with
cardinality constraints, the authors derived worst-case bounds
of (1−1/e) for the greedy algorithm and 1/2 for the exchange
algorithm for centralized submodular maximization [9]. The
bound of (1− 1/e) was later shown to be the best achievable
unless P = NP [12]. Subsequently, centralized submodular
maximization algorithms with provable performance guaran-
tees, based on convex optimization of a relaxed problem, have
been proposed [8]. Unconstrained submodular maximization
has also been considered, with the best known randomized
algorithm achieving an expected optimality gap of 1/2 [13].

Recently, algorithms have been proposed for submodular
maximization in an online setting [14], [15]. In this case,
instead of selecting a fixed set in order to maximize a given
submodular objective function, a set St is chosen at time t
without any information on the objective function ft. The
set is instead chosen based on the past objective functions
f1, f2, It has been shown that, using experts algorithms,
the average optimality gap between current online submodular
maximization algorithms and the utility of the best fixed set
converges to (1− 1/e) for t sufficiently large [14].

Our approach differs from the current online submodular
maximization algorithms, in that we do not assume a central-
ized entity with knowledge of the past objective functions.
Moreover, the centralized algorithms of [14] are based on
online implementation of the greedy heuristic of [9], while
our algorithms are based on local exchanges, which are a
fundamentally different class of algorithms.

In a submodular game, each player chooses its actions
from a feasible set in a noncooperative manner in order to
maximize its submodular utility function [16]. Network design
problems such as multi-sensor allocation in sensor networks
have been approached within the submodular game framework
[17]. Our work differs from these related works in two ways.
First, while the actions of a player in a submodular game
are only constrained by that player’s feasible set, we consider
networks where the constraints on the actions of different
nodes are coupled. Second, the analysis of [16], [17] assumes
that each node can compute the impact of each of its actions
on the objective function at each time instant. Since the
computation of many common objective functions requires
global knowledge of the network topology and current value
of the set [2], [3], [5], we do not make this assumption.

To the best of our knowledge, the only existing work on
distributed submodular maximization in either the online or
offline case is in the context of distributed online sensor
selection [18]. This approach is based on a stronger com-
putational model, which assumes time synchronization and
requires each node to compute the incremental benefit of being
included in the set St, which we do not assume. Moreover,
unconstrained submodular maximization is not considered in
[18]. A more detailed comparison of our approach to that of
[18] is presented in Section VI.

III. NETWORK MODEL AND BACKGROUND

In this section, we state our assumptions on the compu-
tation capabilities of the distributed nodes and give needed
background on multi-armed bandit prediction algorithms.

A. Network Model

We consider a set of n nodes indexed in the set V =
{1, . . . , n}. The nodes form a connected communication net-
work in order to exchange information. The total number of
nodes n is unknown to each individual node, although each
node has knowledge of its one-hop neighbors. Each node is
assumed to be capable of executing probabilistic polynomial-
time algorithms, and can choose to join or leave the set S at
any time. We let St denote the set at time t ≥ 0. Each node
is assumed to have an independent Poisson clock with rate 1,
so that the expected number of clock ticks in [0, T] is O(T).
The Poisson assumption is used to analyze our algorithm in
Lemma 2 of Section V.

The objective function ft : 2V → R≥0 quantifies the overall
utility of the group of nodes at time t. The function ft is
assumed to be nonnegative and submodular at each time t
(in Section V, we make the additional assumption that ft is
monotone); a function is submodular if for any A ⊆ B ⊆ V
with v /∈ B,

ft(A ∪ {v})− ft(A) ≥ ft(B ∪ {v})− ft(B).

Furthermore, we assume that there exists K > 0 such that
ft(U) ≤ K for all t and U ⊆ V .

Each node is assumed to have knowledge of the current
value of ft(St) (a distributed algorithm for computing the
objective function used in our numerical case study is given
in Section VII). The nodes do not have knowledge of the
set St itself, including the cardinality of St, or the value of
ft(A) for any A 6= St. We assume that the nodes have a
distributed protocol that enables any node to send a message
to a uniformly random node in St. This can be achieved
by having the nodes in St maintain a distributed hash table,
which would require each node in St to store the identities
of O(log |St|) other nodes in St, and would incur a routing
overhead of O(log |St|) [19].

B. Background on Multi-Armed Bandit Algorithms

A multi-armed bandit algorithm is defined as follows [10].
Let A represent a set of actions. Define `1, `2, . . . , to be a
sequence of benefit functions `j : A → R≥0. The functions
`j can be arbitrary; in particular, they can depend on the prior
actions {am ∈ A : m < j}.

Definition 1: A multi-armed bandit (MAB) algorithm P is
a probabilistic algorithm that takes as input at time step j a
sequence of past actions a1, a2, . . . , aj−1 and a sequence of
past benefits `1(a1), `2(a2), . . . , `j−1(aj−1), and outputs an
action aj .

An example of a MAB algorithm, denoted Exponential
Weighted Average (EWA) [10], that will be used as a subrou-
tine in our distributed submodular maximization approach is
given as Algorithm 1. The actions chosen by EWA provide

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

398

Algorithm 1 (EWA): Prediction algorithm for computing
an action aj based on previous observed gains
Input: Set of actions A = {1, . . . , N}
Initialization: Set wi,0 = 1, pi = 1

N for all i ∈ A
Choose parameters β, η, γ ∈ [0, 1]
At each round j:

Select action aj ∈ A from distribution p, receive gain `j
for i = 1, . . . , N

if aj = i: `′i = (`j + β)/pi
else: `′i = β/pi
wi = wi exp (η`′i)

p = (1Tw)−1w

higher expected utility over time than choosing any fixed
action at each time step, as described by the following.

Proposition 1 ([10], Theorem 6.10): When the number of
actions |A| = N , the algorithm EWA satisfies

E

 M∑
j=1

`j(aj)

+O
(√

(N lnN)M
)

≥ max
a∈A

E

 M∑
j=1

`j(a)

. (1)

IV. PROPOSED ONLINE ALGORITHM FOR DISTRIBUTED
UNCONSTRAINED SUBMODULAR MAXIMIZATION

In this section, we present distributed algorithms for solving
problems of the form

maximize
∫ T
0
ft(St) dt (2)

If the function ft is monotone for all t, then the solution
is St ≡ V . For the non-monotone case, our approach is
based on the known fact that a locally optimal solution to
max {f(S) : S ⊆ V }, i.e., a solution satisfying f(S ∪{a}) ≤
f(S) for all a /∈ S and f(S − {a}) ≤ f(S) for all a ∈ S, is
within a provable O(1) bound of the global optimum [7]. In
the distributed online setting of (2), the nodes cannot verify
whether local optimality holds. By choosing whether to join
St at each epoch using the EWA algorithm, however, the nodes
can guarantee convergence in expectation to a local optimum
by Proposition 1.

We first define time-varying sets At ⊆ V and Bt , V \At,
as well as a parameter δ ∈ [−1, 1]; we show that δ = 1/3
provides an approximation factor of 1/3. Nodes in At are in
the set St with probability p = 1+δ

2 , while nodes in Bt are in
the set with probability q = 1−δ

2 . Each node i implements the
EWA algorithm discussed in Section III.

The algorithm, which we denote Distributed-
Unconstrained-Optimization (DUO), is as follows. At
the j-th tick of its Poisson clock, node i runs the algorithm
EWA, with input (a

(i)
1 , `1), . . . , (a

(i)
j−1, `j−1), where a

(i)
m is

the action taken by node i at time m, `m =
∫ Tm

Tm−1
ft(St) dt

and Tm is the time of the m-th clock tick. If the algorithm
returns 1, then i joins St with probability p = 1+δ

2 . If EWA
returns 0, then i joins St with probability q = 1− p.

Algorithm 2 (DUO): Algorithm for node i ∈ V to decide
membership in St
Input: Poisson clock with rate 1
Parameter δ ∈ [−1, 1], p = 1+δ

2 .
Output: Time-varying set St
At each clock tick, do
`j ←

∫ Tij

Ti(j−1)
ft(St) dt

aj ← EWA((a1, `1), . . . , (aj−1, `j−1))
if aj = 1

STij ←
{
STij
∪ {i} with probability p

STij \ {i} with probability (1− p)
else

STij
←
{
STij
∪ {i} with probability (1− p)

STij
\ {i} with probability p

end
end

The following results, which are proved in the appendix,
describe the local optimality of DUO.

Proposition 2: For any δ ∈ [−1, 1], the sets {St : t ∈ [0, T]}
chosen by DUO satisfy

E

∫ T

0

ft(St) dt+O(
√

2T ln 2)

≥ max

{
E

∫ T

0

ft(R(At − {i}, δ)) dt,

E

∫ T

0

ft(R(At ∪ {i}, δ)) dt

}
for each i ∈ V .

The local optimality of the set St follows as a corollary to
Proposition 2.

Corollary 1: Let v ∈ V , and define T := {t ∈ [0, T] : v ∈
At}. For any v ∈ V , δ ∈ [−1, 1], the sets {St : t ∈ [0, T]}
chosen by DUO satisfy

max

{
E

∫
T c

ft(St ∪ {v})− ft(St − {v}) dt,

E

∫
T
ft(St − {v})− ft(St ∪ {v}) dt

}
≤ O

(√
2T ln 2

δ

)
.

(3)

Based on the local optimality of our approach, the overall
optimality gap of DUO is given as follows. The proof is
omitted due to space constraints.

Theorem 1: Let C = arg max {
∫ T
0
ft(S) dt : S ⊆ V }.

When δ = 1
3 , the sets {St : t ∈ [0, T]} selected by DUO

satisfy

E

∫ T

0

ft(St) dt+O(3n
√

2T ln 2) ≥ 1

3

∫ T

0

ft(C) dt.

Theorem 1 implies that the algorithm DUO achieves an O(1)
optimality gap in expectation, for the case where there is no
constraint on the set St. The case where there is a constraint
on the size of St is discussed in the following section.

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

399

V. PROPOSED ONLINE ALGORITHM FOR DISTRIBUTED
CONSTRAINED SUBMODULAR MAXIMIZATION

In this section, we present our distributed online algorithm
for approximating the solution to

maximize
∫ T
0
ft(St) dt

s.t. |St| ≤ k
(4)

which represents maximization of the time-varying submod-
ular functions ft(St) subject to a cardinality constraint. We
make the additional assumption that ft is nondecreasing for
all t, i.e., that ft(A) ≤ ft(B) for all A ⊆ B.

Our algorithm is a distributed implementation of the ex-
change heuristic [9]. In the offline, centralized version of the
algorithm, if there exist nodes u ∈ V \ S and v ∈ S with
f(S) ≤ f(S ∪ {u} − {v}), then the set S is updated to
S ∪{u}− {v} and we say that nodes u and v are exchanged.
In our distributed version, at each tick of its internal Poisson
clock, each node u probabilistically decides, using the EWA
algorithm, whether to exchange with a node in St. If so, node
u chooses a random node v ∈ St using a distributed protocol
and requests an exchange. Node v decides whether to accept
the exchange using the EWA algorithm, and if v chooses to
accept, then the set is updated to St ∪ {u} − {v}.

In what follows, we first describe the algorithm, de-
noted Distributed-Constrained-Optimization (DCO), used
by each node to perform the decentralized optimization. We
then analyze the optimality gap. Proofs are in the appendix.

At each tick of its Poisson clock, node u chooses an action
based on whether u ∈ St, where t is the current time. If
u ∈ St, then u takes no further action. If u /∈ St, then u
decides to either join St or remain in V \ St. In the case
where join is chosen, node u chooses a node v uniformly at
random from St, as discussed in Section III-A, and requests
an exchange. If v accepts, then St is updated to St−{v}∪{u}.
Otherwise, St remains unchanged.

Nodes decide whether to join St, and whether to accept
an exchange, based on EWA. The four actions at each
time are (join, accept), (join, refuse), (stay, accept), and
(stay, refuse). If u /∈ St and the action chosen by the algo-
rithm is (join, accept) or (join, refuse), then u will attempt
to join St. Otherwise, u will not attempt to join. If u ∈ St and
another node requests an exchange, then u will accept if the
algorithm outputs (join, accept) or (stay, accept), and refuse
otherwise. If a node makes a decision at time T and the next
decision is at time T ′, then the payoff for the decision at time
T is given by

∫ T ′
T
ft(St) dt.

The structure of the optimality gap analysis is as follows.
We first prove a sequence of lemmas, which imply that∫ T

0

ft(St) dt+ o(T) ≥
∫ T

0

1

k

∑
v∈St

ft(St − {v} ∪ {u}) (5)

for all u ∈ V . We then use this result to prove that, for any
fixed set C with |C| ≤ k,∫ T

0

ft(St) dt+ o(T) ≥ 1

2

∫ T

0

ft(C) dt.

In order to prove (5), we divide the set St into k slots. At each
time t, slot m contains one node from St, denoted vmt , with

Algorithm 3 (DCO): Algorithm for node u to decide
membership in St under cardinality constraint
Input: Poisson clock with rate 1
Output: Time-varying set St
On each clock tick, do:

if u /∈ St
Update EWA with gain

∫ Tj

Tj−1
ft(St) dt

if EWA outputs join
Send exchange request to randomly chosen v ∈ St
if v accepts exchange: St = St − {v} ∪ {u}

end
if u ∈ St and receive exchange request from u′ /∈ St

Update EWA with gain
∫ Tj

Tj−1
ft(St) dt

if EWA outputs accept: St = St − {u} ∪ {u′}
end

vmt 6= vm
′

t for m 6= m′, and St =
⋃k
m=1 {vmt }. Initially, the

mapping between nodes and slots is arbitrary. If an exchange
takes place at time t, with node u joining St and v exiting St,
then vmt is updated to u, where m satisfies vmt = v. Using
this definition, we have the following lemma.

Lemma 1: For any u ∈ V and m ∈ {1, . . . , k}, define
Tm , min {t : vmt = u}. The sets {St : t ∈ [0, T]} chosen by
DCO satisfy

E

∫ T

Tm

ft(St) dt+O(
√

4T ln 4)

≥ E

∫ T

Tm

ft(St − vmt + u) dt. (6)

Lemma 1 implies that, for any node, the algorithm DCO
provides higher overall utility than occupying slot m in the
interval [Tm, T]. We next show that the result of Lemma 1
can be extended to [0, T], due to the fact that E(Tm) <∞.

Lemma 2: For any u ∈ V , m ∈ {1, . . . , k}, the sets {St :
t ∈ [0, T]} chosen by DCO satisfy

E

∫ T

0

ft(St) dt+O(
√

4T ln 4)

≥ E

∫ T

0

ft(St − {vmt } ∪ {u}) dt.

Lemmas 1 and 2 imply that, for each node, following DCO
provides higher utility than remaining in any slot m for the
entire interval [0, T]. Summing over the slots m = 1, . . . , k
yields (5), as shown in the following proposition.

Proposition 3: For any u ∈ V , the sets {St : t ∈ [0, T]}
chosen by DCO satisfy

E

∫ T

0

ft(St) dt+O(
√

4T ln 4)

≥ 1

k
E

∫ T

0

∑
v∈St

ft(St − {v} ∪ {u}) dt. (7)

By Proposition 3, the utility of the set sequence St chosen
by DCO cannot be improved by replacing a randomly chosen

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

400

node in St with any fixed node u. The following theorem uses
this result to derive the optimality gap of DCO.

Theorem 2: The sets {St : t ∈ [0, T]} chosen by DCO
satisfy

E

∫ T

0

ft(St) dt+O(k
√

4T ln 4) ≥ 1

2

∫ T

0

ft(C) dt

for all C with |C| ≤ k.
Theorem 2 shows that, in expectation, algorithm DCO

achieves the same optimality gap as the offline exchange
heuristic [9]. This is in spite of the fact that, while the offline
exchange heuristic is based on identifying a specific pair of
elements u and v satisfying f(S − {u} ∪ {v}) ≥ f(S),
DCO operates by performing a sequence of random exchanges.
The use of random exchanges therefore reduces the memory,
computation, and information requirements of each node,
without sacrificing worst-case optimality guarantees.

VI. PERFORMANCE EVALUATION AND COMPARISON

In what follows, we evaluate our proposed algorithms
for constrained and unconstrained submodular maximization,
and compare with the constrained submodular maximization
algorithm Distributed-online-greedy (DOG) introduced in
[18]. We consider the following criteria: (a) the computational
assumptions of the nodes specified by the algorithms, (b) the
asymptotic bounds that are achieved, (c) the rate at which the
algorithms must be computed in order to reach a given value ε
from the asymptotic bound, (d) the communication overhead,
and (e) the storage overhead at each node.

Our analysis makes the same assumptions as that of [18]
in order to guarantee consistency of the results, with one
exception. While [18] assumed that the cost of broadcasting a
message to all other nodes is 1, we assume that nodes com-
municate via multi-hop paths, leading to a cost of broadcast
of O(nπ −

√
n) [20]. Similarly, we assume that the cost of

sending a message to a single node is proportional to the
network diameter, i.e., O(

√
n). The comparison results are

summarized below in Table I.

TABLE I
PERFORMANCE COMPARISON OF DISTRIBUTED SUBMODULAR

MAXIMIZATION ALGORITHMS

Criterion DOG [18] DCO DUO
Constraints Cardinality k Cardinality k None

Optimality Gap (1− 1/e) ≈ 0.63 0.5 0.33
Communication O

(
kn2 logn

)
O(2n

√
n) 0

Storage O(k) O(1) O(1)

VII. CASE STUDY: DISTRIBUTED SENSOR SCHEDULING

In this section, we evaluate our approach through a case
study, based on the problem of determining the optimal set
of nodes to activate in a sensor network. We first provide
the details of our experimental setup. We then describe our
approach for distributed computation of the objective function,
followed by the simulation results.

A. Experimental Setup

We evaluate our proposed algorithms using Matlab. In this
study, we consider the problem of deciding which sensors,
out of a set of n = 46 sensors, should be active at a
given time. To perform the study, we use the temperature
monitoring data from the Intel Research Lab [11], which
contains a time series of temperature measurements from a
network of 46 sensors. We assumed that each temperature
measurement corresponded to a sample from an underlying
Gaussian random distribution µi corresponding to the node i.
We then computed the covariance matrix K for the sensors.
We let the utility function f(S), which we assume to be fixed,
be given as f(S) = MMSE(∅)−MMSE(S)

MMSE(∅) , where MMSE(S)
denotes the conditional variance of the measurements of each
sensor, given knowledge of the measurements at locations S.
The analysis considered both unconstrained and cardinality-
constrained distributed optimization. For the EWA algorithm,
we chose γ = 0.01, η = 1/MMSE(∅), and β = 0.03, based
on the discussion of parameter selection in [10].

B. Sensing Model and Objective Function Definition

We assume that each sensor node v ∈ V is capable of
measuring a random variable Xv . The variables X , {Xv :
v ∈ V } are jointly Gaussian with mean 0 and covariance
matrix Σ. The precision matrix Q is defined by Q , Σ−1.
The objective function f(St) can be written as

f(St) ,
∑

v∈V \St

var(Xv|XSt
), (8)

where XSt
, {Xv : v ∈ St} and

var(Xv|XSt) =

∫
x∈R|St|

var(Xv|XSt = x)pXSt
(x) dx.

This objective function measures the uncertainty of estimating
the measurements at the inactive sensors, given the measure-
ments at the active sensors. The function f(St) was shown to
be submodular as a function of St in [21].

To compute the objective function, a random process zv[m],
m = 1, 2, . . . , is simulated at each node v ∈ V St, such that
the variance of zv[m] converges to (Q−1St

)vv . The process is
created by having each node maintain a time-varying state,
which is equal to a linear combination of the states of its
neighbors plus additional Gaussian noise. Each node can then
estimate var(Xv|XSt

) by computing the sample variance.
This approach assumes that nodes are capable of local

synchronization, in which each node v ∈ V \St knows which
messages to expect before its m-th iteration (in this case, the
states {zu[m − 1] : u ∈ N(v) \ St}) [22, Ch. 1.4]. Local
synchronization requires less overhead than global synchro-
nization, which requires all nodes to agree on a common
time index, and hence is a common assumption in sensor
networks [23]. Furthermore, nodes in St do not send state
values at any iteration, and are therefore not incorporated in
state updates. Hence, each node v ∈ V \St does not require any
knowledge of St, since these nodes are automatically excluded
from computation of the algorithm.

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

401

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of algorithm iterations

A
v
er

ag
e

U
ti

li
ty

Average Utility of DUO

DUO

Random

Offline Greedy

0 100 200 300 400 500 600 700 800 900 1000
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time

A
v

er
ag

e
u

ti
li

ty

Distributed Constrained Submodular Maximization with k=5

Proposed DCO

DOG

Offline Greedy

1 2 3 4 5 6 7 8 9 10
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Cardinality of set, k

A
v

er
ag

e
u

ti
li

ty

Effect of k on error gap for constrained optimization

Proposed DCO

DOG

Offline Greedy

(a) (b) (c)
Fig. 1. Numerical evaluation of our proposed algorithms DUO and DCO for distributed online submodular maximization and comparison with DOG algorithm
[18] on a network of 46 nodes [11]. The reduction in mean square error is used as a utility function. (a) Utility as a function of time for the case of unconstrained
optimization. After an initial learning phase, the utility approaches the maximum possible value of 1, consistently outperforming random sensor selection. (b)
Performance in the case where only k = 5 sensors can be active. Performance of the algorithm DCO is within 0.07 of the best achievable value of 1, and is
close to the centralized and distributed greedy algorithms. (c) Increase in utility as a function of the number of sensors k. The increase from the DCO and
DOG algorithms is roughly linear, while the increase of the centralized algorithm is concave.

A Lyapunov function argument shows that the variance σ2
v

of node v converges to var(Xv|XSt
); we omit the proof due

to space constraints. It remains for each node to compute the
average variance f(St) over all the nodes u /∈ St.

C. Experimental Results

For the unconstrained case, the overall utility function was
equal to f(S)− c|S|, where c represents the cost of activating
each sensor; we chose c = 1

n , so that the total cost is equal
to the fraction of sensors activated. For comparison, we also
evaluated the performance of random sensor activation. As
shown in Figure 1(a), the distributed online approach first
experiences a rapid decrease in utility, as multiple nodes
randomly decide to activate, thus increasing the cost. As
the time progresses, these nodes observe the decrease in
their utility and deactivate, eventually approaching a utility
of 0.9. Since 1 is an upper bound on the maximum achievable
utility, DUO is at least 0.9-optimal for this problem. At all
time periods, the algorithm DUO provides higher utility than
random selection, and converges to a comparable utility to the
offline greedy algorithm.

Figure 1(b) shows the utility of the constrained case as a
function of time with k = 5. The algorithm DCO converges
rapidly to a utility of 0.945. As a comparison, a centralized
greedy algorithm provides utility of 0.97, while 1 is an upper
bound on the utility that can be achieved. Moreover, DCO
provides higher utility than the DOG algorithm. The average
utility as a function of the constraint k is shown in Figure 1(c).
Clearly, increasing the number of sensors that can be activated
increases the utility. We observe a concave increase in utility
for centralized greedy approach and a roughly linear increase
for DCO and DOG. The rate of increase for the distributed
algorithm is lower than that of the centralized case; however,
when k = 10, DCO gives utility of 0.95 while the greedy
algorithm gives 0.99.

VIII. CONCLUSIONS AND OPEN PROBLEM

We studied the problem of submodular maximization in a
distributed, online setting, in which each node must decide
whether to join a given set in order to maximize a submodular

objective function. We considered two versions of the dis-
tributed submodular maximization problem. In the first case,
there are no constraints on which nodes can join the set. In the
second case, the number of nodes in the set cannot exceed a
fixed number k and the function to be maximized is assumed
to be monotone.

For both cases, we introduced distributed algorithms for
submodular maximization with O(1) expected optimality gap.
In the unconstrained case, our distributed algorithm achieves
a 0.33 optimality gap, compared to the best centralized algo-
rithm’s 0.5 optimality gap. Our algorithm for maximization in
the constrained case achieves a 0.5 optimality gap, compared
to a (1-1/e) gap for centralized algorithms. Both algorithms
can be computed by nodes with limited computation, com-
munication, and storage capabilities, and without knowledge
of the number of nodes, any cardinality constraint, or access
to a value oracle of the objective function. An experimental
study using sensor network data showed that both algorithms
provide near-optimal empirical performance.

The optimality guarantee of 1/2 achieved by our proposed
algorithm DCO is less than the (1− 1/e) guarantee achieved
by the greedy centralized algorithm. In our future work, we
will investigate additional problem structure that may enhance
the performance of local search algorithms such as DCO.
One possible set of problems arise in facility location, where
exchange-based algorithms are known to provide near-optimal
solutions [24].

ACKNOWLEDGMENT

This work was supported by a grant from the King Abdu-
laziz City for Science and Technology.

REFERENCES

[1] M. Andrews and L. Zhang, “Scheduling algorithms for multi-carrier
wireless data systems,” Proceedings of the 13th annual ACM interna-
tional conference on Mobile computing and networking, pp. 3–14, 2007.

[2] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” Proceedings of IEEE Infocom, pp. 1107–
1115, 2012.

[3] A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin, “Simultaneous
optimization of sensor placements and balanced schedules,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 10, pp. 2390–2405, 2011.

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

402

[4] Z. Zheng and N. B. Shroff, “Maximizing a submodular utility for
deadline constrained data collection in sensor networks,” 10th IEEE
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt), pp. 116–123, 2012.

[5] A. Clark, L. Bushnell, and R. Poovendran, “Leader selection for min-
imizing convergence error in leader-follower systems: A supermodular
optimization approach,” 10th IEEE International Symposium on Model-
ing and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt),
pp. 111–115, 2012.

[6] S. Fujishige, Submodular functions and optimization. Elsevier Science,
2005, vol. 58.

[7] U. Feige, V. Mirrokni, and J. Vondrak, “Maximizing non-monotone
submodular functions,” SIAM Journal on Computing, vol. 40, no. 4,
pp. 1133–1153, 2011.

[8] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrak, “Maximizing a
submodular set function subject to a matroid constraint,” SIAM Journal
on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[9] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approxi-
mations for maximizing submodular set functions - I,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.

[10] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge University Press, 2006.

[11] “Intel Berkeley Sensor Network Dataset,”
http://db.csail.mit.edu/labdata/labdata.html.

[12] U. Feige, “A threshold of ln n for approximating set cover,” Journal of
the ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.

[13] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz, “A tight linear
time (1/2)-approximation for unconstrained submodular maximization,”
IEEE 53rd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 649–658, 2012.

[14] M. Streeter and D. Golovin, “An online algorithm for maximizing
submodular functions,” Advances in Neural Information Processing
Systems (NIPS), pp. 1577–1584, 2008.

[15] V. Gabillon, B. Kveton, Z. Wen, B. Eriksson, and S. Muthukrishnan,
“Adaptive submodular maximization in bandit setting,” Advances in
Neural Information Processing Systems, pp. 2697–2705, 2013.

[16] E. Altman and Z. Altman, “S-modular games and power control in
wireless networks,” IEEE Transactions on Automatic Control, vol. 48,
no. 5, pp. 839–842, 2003.

[17] C. Wu, Y. Xu, Y. Chen, and C. Lu, “Submodular game for distributed
application allocation in shared sensor networks,” Proceedings of IEEE
Infocom, pp. 127–135, 2012.

[18] D. Golovin, M. Faulkner, and A. Krause, “Online distributed sensor
selection,” Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks, pp. 220–231, 2010.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp.
149–160, 2001.

[20] T. Calamoneri, A. Clementi, M. Ianni, M. Lauria, A. Monti, and
R. Silvestri, “Minimum energy broadcast and disk cover in grid wireless
networks,” Theoretical Computer Science, vol. 399, pp. 38–53, 2008.

[21] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in Gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” Journal of Machine Learning Research, vol. 9, pp. 235–284, 2008.

[22] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion. Old Tappan, NJ (USA); Prentice Hall Inc., 1989.

[23] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of
mobile sensor networks: Adaptive gradient climbing in a distributed
environment,” IEEE Transactions on Automatic Control, vol. 49, no. 8,
pp. 1292–1302, 2004.

[24] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and
V. Pandit, “Local search heuristics for k-median and facility location
problems,” SIAM Journal on Computing, vol. 33, no. 3, pp. 544–562,
2004.

APPENDIX

Proof of Proposition 2: Suppose that each node follows the
DUO algorithm. Let St denote the set at time t, and define
Ŝt = St \ {i} (note that St = Ŝt if i /∈ St). Furthermore,
suppose that the Poisson clock ticks of node i occur at times
(T1, . . . , TM). Let âj denote the action of node i at the j-th
clock tick.

Define a related multi-armed bandit problem with M time
steps as follows. The action space A = {0, 1}, while the gain
ˆ̀
j from action aj ∈ A at step j is given by

ˆ̀
j =

{ ∫ Tj+1

Tj
ft(Ŝt ∪ {i}) dt, aj = 1∫ Tj+1

Tj
ft(Ŝt) dt, aj = 0

Suppose that the EWA algorithm is run with this action space
and set of gains, using the same parameters as in the subroutine
of DUO, outputting actions (a∗1, . . . , a

∗
M). First, note that the

expected gain of the algorithm is
M∑
j=1

`j(aj = a∗j) = E

∫ T

0

ft(St) dt, (9)

since a∗j and âj are obtained by running the same randomized
algorithm with the same parameters and inputs. Second, note
that if aj ≡ 1 for j = 1, . . . ,M , then

M∑
j=1

`j(aj = 1) =

M∑
j=1

∫ Tj+1

Tj

ft(Ŝt ∪ {i}) dt

=

∫ T

0

ft(St ∪ {i}) dt. (10)

Similarly, if aj ≡ 0 for j = 1, . . . ,M , then
M∑
j=1

`j(aj = 0) =

M∑
j=1

∫ Tj+1

Tj

ft(Ŝt) dt

=

∫ T

0

ft(St \ {i}) dt. (11)

Combining (9), (10), and (11) and applying Proposition 1
yields the desired result. �

Proof of Corollary 1: By Proposition 2, we have

O(
√

2T ln 2) ≥ E

∫
{t:v/∈At}

ft(R(At ∪ {v}, δ))

−ft(R(At, δ)) dt

= E

∫
{t:v/∈At}

[pft(St ∪ {v}) + qft(St − {v})

−(qft(St ∪ {v}) + pft(St − {v}))] dt

= δE

∫
{t:v/∈At}

ft(St ∪ {v})− ft(St − {v}) dt.

The proof of the second part of Corollary 1 is similar. �
Proof of Lemma 1: Consider a multi-armed bandit problem

from the perspective of node u. Let Ît be a process with
actions (join, accept), (join, refuse), (stay, accept), and
(stay, refuse), which receives payoffs

∫ T ′
T
ft(St) dt. The

outcome of the MAB problem is the random set sequence
{Ŝut : t ∈ [T, T ′]}, which denotes the set chosen by the nodes
other than u based on the actions Ît, along with the current
state of the node u (the current slot of node u).

If u is in slot 0 and a join action is chosen, then the
payoff is E

∫ T ′
T
ft(Ŝ

u
t ∪ {u}) dt. If stay is chosen, then the

payoff is E
∫ T ′
T
ft(Ŝ

u
t) dt. If u is in slot m and accepts an

exchange, then the payoff is E
∫ T ′
T
ft(Ŝ

u
t) dt. Finally, if u

is in slot m and refuses the exchange, then the payoff is
E
∫ T ′
T
ft(Ŝ

u
t − {vmt } ∪ {u}).

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

403

Now, if at each iteration, node u follows EWA, then the
total expected payoff is equivalent to the payoff from choosing
Ît at each iteration, which is E

∫ T
Tm

ft(St) dt. On the other
hand, if node u chooses (join, refuse) at each time slot,
then the expected payoff is E

∫ T
Tm

ft(St − {vtm} ∪ {u}) dt.
Proposition 1 and the fact that there are 4 possible actions
at each time step complete the proof. �

Proof of Lemma 2: By Lemma 1,

E

∫ T

Tm

ft(St) dt+ o(T) ≥ E

∫ T

Tm

ft(St − vmt ∪ {u}) dt.

Hence, it suffices to show that

E

∫ Tm

0

ft(St) dt+ o(T) ≥ E

∫ Tm

0

ft(St − vmt ∪ {u}) dt,

which is equivalent to

E

∫ Tm

0

(ft(St − vmt ∪ {u})− ft(St)) dt ≤ o(T).

Since ft(S) ≤ K for all t and S,

E

∫ Tm

0

(ft(St − vmt ∪ {u})− ft(St)) dt

≤ E

∫ Tm

0

K dt = KE(Tm)

and it therefore suffices to show that E(Tm) = o(T).
Let T̂1, . . . , T̂r, . . . denote the sequence of times when a

clock tick occurs and u /∈ St. Let X = min {r : vm
T̂r

= u}.
Hence E(Tm) = E(T̂X). Let Ai denote the event that node u
chooses join at time T̂i.

This expectation can be written as the summation∑X
i=1 E(T̂i − T̂i−1). We have that E(T̂i − T̂i−1) = E(T̂i −

T̂i−1|Ai)Pr(Ai) + E(T̂i − T̂i−1|Aci)Pr(Aci).
If Ai holds, then the time before the next decision to join

or stay is equal to the time for another node to initiate an
exchange and for node u to accept. Each node chooses to
join or stay according to an independent Poisson process
with unit rate. At each tick, the probability of choosing join
is (by definition of algorithm EWA) bounded below by γ

2 . The
probability of initiating an exchange with node u is 1

k , and so
exchange requests from each other node arrive according to a
Poisson process with rate bounded below by 2

kγ . Furthermore,
since each node has an independent Poisson clock, exchange
requests arrive at u according to a Poisson process with rate
bounded below by 2(n−k)

kγ . By definition of algorithm EWA,
the probability that node u accepts each request is at least
γ
2 . Thus E(T̂i − T̂i−1|Ai) ≤ 4(n−k)

γ2k + 1, where the 1 is the
expected time to wait for the next clock tick after leaving St.

If Ai does not hold, the expected time for the next clock
tick is 1. Hence E(T̂i − T̂i−1) ≤ 1 + 4(n−k)

γ2k , and

E(T̂X) ≤ E

X∑
i=1

(
1 +

4(n− k)

γ2k

)
= E(X)

(
1 +

4(n− k)

γ2k

)
,

which is bounded above by 4k
γ2 + 16(n−k)

γ4k . Since this bound is
independent of T , the O(

√
4T log 4) term dominates asymp-

totically. �

Proof of Proposition 3: By Lemma 2, for each slot m,

E

∫ T

0

ft(St) dt+O(
√

4T log T)

≥ E

∫ T

0

ft(St − vmt ∪ {u}) dt.

Summing both sides over m yields

k

(
E

∫ T

0

ft(St) dt+O(
√

4T log 4)

)

≥ E

k∑
m=1

∫ T

0

ft(St − vmt ∪ {u}) dt

= E

∫ T

0

∑
v∈St

ft(St − {v} ∪ {u}) dt.

Dividing by k gives the desired result. �
Proof of Theorem 2: Monotonicity of ft implies that

E

∫ T

0

ft(C)− ft(St) dt ≤ E

∫ T

0

ft(C ∪ St)− ft(St) dt.

Define a sequence of sets U t0 ⊆ U t1 ⊆ · · · ⊆ U tk, with U t0 = St,
U tk = St ∪C, and U tj −U tj−1 = {ati} for some ati ∈ C. Then
we have

E

∫ T

0

ft(C)− ft(St) dt (12)

≤ E

∫ T

0

k∑
j=1

(ft(U
t
j)− ft(U tj−1))

= E

∫ T

0

k∑
j=1

(ft(U
t
j−1 ∪ {atj})− ft(U tj−1))

≤ E

∫ T

0

k∑
j=1

(ft(St ∪ {atj})− ft(St)) (13)

= E

∫ T

0

∑
a∈C

(ft(St ∪ {a})− ft(St))

≤
∫ T

0

[∑
a∈C

E

(
1

k

∑
v∈St

ft(St ∪ {a} − {v})

−ft(St − {v}))] , (14)

where (13) and (14) follow from submodularity of ft. We now
use Proposition 3 to upper bound (14) as

E

∫ T

0

ft(C)− ft(St) dt (15)

≤
∫ T

0

∑
a∈C

E

(
1

k

∑
v∈St

ft(St)− ft(St − {v})

)
dt (16)

+O(k
√

4T log 4) (17)

≤ E

∫ T

0

ft(St) dt+O(k
√

4T log 4), (18)

where (18) follows from submodularity of ft. The result
follows after rearranging terms. �

2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)

404

