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Abstract—We assume a space-time Poisson process of call
arrivals on the infinite plane, independently marked by data
volumes and served by a cellular network modeled by an infinite
ergodic point process of base stations. Each point of this point
process represents the location of a base station that applies a
processor sharing policy to serve users arriving in its vicinity,
modeled by the Voronoi cell, possibly perturbed by some random
signal propagation effects. User service rates depend on their
signal-to-interference-and-noise ratios with respect to the serving
station.

Little’s law allows to express the mean user throughput in any
region of this network model as the ratio of the mean traffic
demand to the steady-state mean number of users in this region.
Using ergodic arguments and the Palm theoretic formalism, we
define a global mean user throughput in the cellular network and
prove that it is equal to the ratio of mean traffic demand to the
mean number of users in the steady state of the “typical cell” of
the network. Here, both means account for double averaging: over
time and network geometry, and can be related to the per-surface
traffic demand, base-station density and the spatial distribution of
the signal-to-interference-and-noise ratio. This latter accounts for
network irregularities, shadowing and cell dependence via some
cell-load equations.

Inspired by the analysis of the typical cell, we propose also
a simpler, approximate, but fully analytic approach, called the
mean cell approach. The key quantity explicitly calculated in
this approach is the cell load. In analogy to the load factor of
the (classical) M/G/1 processor sharing queue, it characterizes
the stability condition, mean number of users and the mean
user throughput. We validate our approach comparing analytical
and simulation results for Poisson network model to real-network
measurements.

Index Terms—user-througput, traffic demand, cell-load, Little’s
law, cellular network, typical cell, point process, ergodicity, Palm
theory, measurements

I. INTRODUCTION

Mean user throughput is a key quality-of-service metric in
cellular data networks. It describes the average “speed” of data
transfer during a typical data connection. It is usually defined
as the ratio of the average number of bits sent (or received)
per data request to the average duration of the data transfer.
Since coexisting connections in a given network cell share some
given cell transmission capacity, mean user throughput depends
inherently on the requested data traffic. It also depends on
the network architecture (positioning of the base stations) and
in fact may significantly vary across different network cells.
Moreover, extra-cell interference makes performance of differ-
ent cells interdependent. Predicting the mean user throughput
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in function of the mean traffic demand locally (for each cell)
and globally in the network (which involves appropriate spatial
averaging in conjunction with the temporal one, already present
in the classical definition of the throughput) is a key engineering
task in cellular communications. In this paper we propose an
analytic approach to the evaluation of the mean user throughput
in large irregular cellular networks, validated by real-network
measurements performed in operational networks.

Little’s law allows to calculate the mean user throughput as
the ratio of the mean traffic demand (number of bits requested
per unit of time) to the mean number of users in the steady state
of the network. This argument can be used to express mean
user throughput locally in any region of the network. Statistics
usually collected in operational networks allow to estimate the
mean traffic demand and the mean number of users for each cell
and hour of the day. Even if they carry important information
about the local network performance, they exhibit important
variability over time (24 hours) and network cells; cf. Figure 1.
This can be explained by the fact that mean user throughput
in a particular cell does not depend only on the traffic in
this cell, but also on the neighbouring cells. Moreover, the
geometry of different cells in a real network may significantly
differ. For these two reasons, the family of local (established
for each cell) throughput-versus-traffic laws usually exhibits a
lot of variability both in real data and in network simulations,
and hence does not explain well the macroscopic (network-
level) relation between the mean traffic demand and mean user
throughput. Finding such a macroscopic relation is an important
task for network dimensioning. It is clear that an appropriate
spatial averaging is necessary to discover such a macroscopic
law.

Spatial averages of point patterns, modeling in our case the
geographic locations of base stations, can be studied using the
formalism of Palm distributions naturally related to the ergodic
results for point processes. Within this setting one considers a
typical base station with its typical cell (zone of service) whose
probabilistic characteristics correspond to the aforementioned
spatial averages of the characteristics for all base stations in
the network. Adopting this formalism, we define the mean
user throughput in the infinite ergodic network as the limit
of the ratio of the mean volume of the data request to the
mean service duration in a large, increasing to the whole plane,
network window. As the main result, we prove that such defined
(macroscopic) throughput characteristic is equal to the ratio of
the mean traffic demand to the mean number of users in the
typical cell of the network. Both these means account for double
averaging: over time and network geometry.

A key element of the analysis of the cellular network is the
spatial distribution of the signal-to-interference-and-noise ratio
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(SINR). We show how this distribution enters into the macro-
scopic characterization of the throughput. When considering
SINR we are able to account for the fact that the base stations
that are idling, i.e., have no users to serve, do not contribute
to the interference. This makes the performance of different
cells interdependent and we take it into account via a system
of cell-load equations.

Finally, we show how to amend the model letting it account
for the shadowing in the path loss. The latter is known to
impact the geometry of the network, in the sense that the serving
base station is not necessarily the closest one. It also alters the
distribution of the SINR.

A. Related work

The evaluation of user QoS metrics in cellular networks is a
hard problem, but crucial for network operators and equipment
manufacturers. It motivates a lot of engineering and research
studies. The complexity of this problem made many actors
develop complex and time consuming simulation tools such as
those developed by the industrial contributors to 3GPP (3rd
Generation Partnership Project) [1]. There are many other
simulation tools such as TelematicsLab LTE-Sim [2], University
of Vien LTE simulator [3, 4] and LENA tool [5, 6] of CTTC,
which are not necessarily compliant with 3GPP.

A possible analytical approach to this problem is based on
the information theoretic characterization of the individual link
performance; cf e.g. [7, 8], in conjunction with a queueing the-
oretic modeling and analysis of the user traffic; cf. e.g. [9–14].
All these works consider some particular aspects of the network
and none of them considers a large, irregular multi-cell network.
Such a scenario is studied in our approach by using stochastic-
geometric tools combined with the two aforementioned theories.
As a result, we propose a global, macroscopic approach to
the evaluation of the user QoS metrics in cellular networks,
which we compare and validate with respect to real network
measurements.

Stochastic geometry has already been shown to give ana-
lytically tractable models of cellular networks, see e.g. [15].
However, to the best of our knowledge, the prior works in this
context usually do not consider any dynamic user traffic.

B. Paper organization

We describe our general cellular network model, comprising
the geometry of base stations, path loss model, space-time
traffic demand process, and the service policy in Section II.
In Section III we develop two approaches, called respectively
typical and mean cell approach, allowing to study the depen-
dence of the mean user throughput in the network and other
macroscopic network characteristics on the traffic demand and
other model parameters. In Section IV we apply these ap-
proaches studying some particular network model and compare
the obtained numerical results to real field measurements.

II. MODEL DESCRIPTION AND LOCAL
CHARACTERISTICS

We shall now describe our model.

A. Network model

We consider locations {X1, X2, . . .} of base stations (BS)
on the plane R2 as a realisation of a point process, which we
denote by Φ. 1 We assume that Φ is stationary and ergodic
with positive, finite intensity (mean number of BS per unit of
surface) λBS. 2

In order to simplify the presentation, we shall make first
the following two assumptions, which will be relaxed in Sec-
tions III-E and III-D, respectively.

1) There is no shadowing. The (time-averaged over fading)
propagation loss depends only on the distance r between
the emitter and the receiver through a path-loss function
l(r), which we assume increasing.

2) Full interference. Each base station is always transmitting
at some fixed power P , common for all stations.

We will also assume throughout the whole paper that each
user is served by the BS which he or she receives with the
strongest signal power. The consequence of the assumption 1
above is that each BS X ∈ Φ serves users in a geographic
zone V (X) = {y ∈ R2 : |y−X| ≤ minZ∈Φ |y−Z|} which is
called Voronoi cell of X in Φ. Both the above assumptions 1
and 2 allow to represent the signal to interference and noise
ratio (SINR) at location y ∈ V (X), X ∈ Φ as

SINR (y,Φ) :=
P/l (|y −X|)

N + P
∑
Z∈Φ\{X} 1/l (|y − Z|)

, (1)

where N is the noise power. Note that this represents the SINR
in the down-link (BS to user) channel. Note also, that we assume
that each interfering base station always transmits (even if, for
example, it has no user to serve). This model, which we call
full interference model, will be improved in Section III-D.

We assume that the peak bit-rate at location y, defined as the
bit-rate of a user located at y when served alone by its BS, is
some function R (SINR), of the SINR. 3

We consider variable bit-rate (VBR) traffic; i.e., users arrive
to the network and require to transmit some volume of data at
a bit-rate decided by the network. Specifically, we assume that
user channels are intra-cell orthogonal and inter-cell indepen-
dent: if BS X serves n users located at y1, y2, . . . , yn ∈ V (X)
then the bit-rate of the user located at yj equals to 1/n th of its
peak bit-rate 1

nR (SINR (yj ,Φ)), j ∈ {1, 2, . . . , n}. 4

The pattern of BS Φ does not evolve in time. We describe
now the space-time process of user arrivals (and departures).

1According to the formalism of the theory of point processes (cf e.g. [16]), a
point process is a random measure Φ =

∑
j δXj

, where δx denotes the Dirac
measure at x.

2Stationarity means that the distribution of the process is translation invariant,
while ergodicity allows to interpret some mathematical expectations as spatial
averages of some network characteristics.

3 The theoretical upper-bound of such function characterizing the link level
performance is typically given by information theory. For example, in the
case of AWGN channel, R (SINR) = W log2 (1 + SINR) where W is
the bandwidth. We shall assume that the fading is already averaged out by
considering the so-called ergodic capacity. For example, in the case of flat
fading, R (SINR) = WE

[
log2

(
1 + |H|2 SINR

)]
where H is a random

variable representing the fading and E [·] is the expectation with respect to H .
4This can be achieved using various multiple access schemes, e.g. time

division.
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B. Traffic demand

Users arrive uniformly on the plane and require to transmit
a random (arbitrarily distributed) volume of data of mean 1/µ
bits. The duration between the arrivals of two successive users
in each geographic zone S of surface |S| is an exponential
random variable of parameter λ× |S| . This means that on av-
erage there are λ arrivals per surface unit. The arrival locations,
inter-arrival durations as well as the data volumes are assumed
independent across users. The above description corresponds to
a space-time Poisson process of arrivals, independently marked
by data volumes.

We assume that the users don’t move considerably during
their calls. 5 Each user stays in the system for the time
necessary to download his data. This takes a random (service)
time because the bit-rate with which he is served depends
on the configuration of other users served by the same base
station. Users depart from the system immediately after having
downloaded their data.

The traffic demand per surface unit is then equal to ρ = λ
µ ,

which will be expressed in bit/s/km2. The traffic demand in a
given cell equals

ρ (X) = ρ |V (X)| , X ∈ Φ. (2)

C. Local quality of service characteristics

For a fixed configuration of BS Φ, the service of users arriv-
ing to the cell V (X) of a given BS X ∈ Φ can be modeled by an
appropriate (spatial) multi-class processor sharing queue, with
classes corresponding to different peak bit-rates characterized
by user locations y ∈ V (X). Note also that a consequence
of our model assumptions (in particular the full interference
assumption 2, inter-cell channel independence and space-time
Poisson arrivals) the service processes of different queues are
independent.

We consider now the steady-state of users served in each cell
V (X). 6 The following expressions follow from the queueing-
theoretic analysis of the processor sharing systems of each BS
X ∈ Φ, cf [10, 14] for the details.
• The service process of BS X ∈ Φ is stable if and only if

its traffic demand does not exceed the critical value that is
the harmonic mean of the peak bit-rate over the cell:

ρc (X) :=
|V (X)|∫

V (X)
1/R (SINR (y,Φ)) dy

. (3)

Note that ρc(X) depends on X and on Φ. The same
observation is valid for the subsequent cell characteristics.

• The mean user throughput in the given cell, defined as the
ratio of the mean volume of the data request 1/µ to the
average service time of users in this cell, can be expressed
as follows

r (X) = max(ρc (X)− ρ (X) , 0) . (4)

• The mean number of users in the steady state of the given
cell equals to

N (X) =
ρ (X)

r (X)
. (5)

5Small user movements are reflected in channel fading; cf. the remark in
footnote 3.

6Note that the (mean) QoS characteristics of users in this state correspond
to time-averages of user characteristics.

Note that N(X) =∞ if ρ(X) ≥ ρc(X).
• The probability that the given BS is not idling in the steady

state (has at least one user to serve) equals
p (X) = min (θ (X) , 1) , (6)

where θ(X), which we call cell load, is defined as

θ (X) :=
ρ (X)

ρc (X)
. (7)

Note that the cell is stable if and only if θ(X) < 1 and

θ(X) = ρ

∫
V (X)

1/R (SINR (y,Φ)) dy . (8)

Moreover,

N(X) =
θ(X)

1− θ(X)
, (9)

r(X) = ρ(X)(1/θ(X)− 1) (10)

provided θ(X) < 1.
The above expressions allow to express all other character-

istics in terms of the traffic demand per cell ρ(X) and the cell
load θ(X).

Remark 1: All the above characteristics are local network
characteristics in the sense that they characterize the service
at each BS X and vary over X ∈ Φ. Real data analysis
and simulations for Poisson network models exhibit a lot of
variability among these characteristics. In particular, plotting
the mean user throughput r(X) as function of the mean traffic
demand ρ(X) for different X ∈ Φ does not reveal any apparent
systematic relation between these two local characteristics; cf.
Figure 1.

III. GLOBAL NETWORK CHARACTERISTICS

In this section we propose some global characteristics of the
network allowing to characterize its macroscopic performance.
We are particularly interested in finding such a relation between
the (per surface) traffic demand ρ and the (global) mean user
throughput in the network, with this latter characteristic yet to
be properly defined.

A. Typical cell of the network

A first, natural idea in this regard is to consider spatial
averages of the local characteristics in an increasing network
window A, say a ball centered at the origin and the radius
increasing to infinity. Assuming ergodicity of the point process
Φ of the BS, these averages can be expressed and calculated
as Palm-expectations of the respective characteristics of the so
called “typical cell” V (0). For example

lim
|A|→∞

1/Φ(A)
∑
X∈A

ρ(X) = E0[ρ(0)] = ρE0[|V (0)|] . (11)

The typical cell V (0) is the cell of the BS located at the origin
X = 0 and being part of the network Φ distributed according
to the Palm distribution P0 associated to the original stationary
distribution P of Φ. In the case of Poisson process, the relation
between the Palm and stationary distribution is particularly
simple and (according to Slivnyak’s theorem) consists just in
adding the point X = 0 to the stationary pattern Φ.

The convergence analogue to (11) holds for each of the
previously considered local characteristics E0[ρc(0)], E0[r(0)],
E0[N(0)], E0[p(0)] and E0[θ(0)]. The convergence is P almost
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sure and follows from the ergodic theorem for point processes
(see [17, Theorem 4.2.1], [16, Theorem 13.4.III]). However, as
we will explain in what follows, not all of these mean-typical
cell characteristics have natural interpretations as macroscopic
network characteristics.

First, note that the existence of some (even arbitrarily small)
fraction of BS X which are not stable (with ρ(X) ≥ ρc(X),
hence N(X) =∞) makes E0[N(0)] =∞.

Remark 2: For a well dimensioned network one does not
expect unstable cells. For a perfect hexagonal network model
Φ all cells are stable or unstable depending on the value of
the per-surface traffic demand ρ. An artifact of an infinite,
homogeneous, Poisson model Φ is that for arbitrarily small ρ
there exists a non-zero fraction of BS X ∈ Φ, which are non-
stable. This fraction is very small for reasonable ρ, allowing to
use Poisson to study QoS metrics which, unlike E0[N(0)], are
not “sensitive” to this artifact.

We will also show in the next section that it is not natural
to interpret E0[r(0)] (which is not sensitive to the existence of
a small fraction of unstable cells) as the mean user throughput
in the network; see Remark 7. Before we give an alternative
definition of this latter QoS, let us state the following result,
which will be useful in what follows.

Proposition 3: We have

E0[ρ(0)] =
ρ

λBS
, (12)

E0[θ(0)] =
ρ

λBS
E[1/R (SINR (0,Φ))] . (13)

Proof: The first equation is quite intuitive: the average cell
surface is equal to the inverse of the average number of BS per
unit of surface. Formally, both equations follow from the inverse
formula of Palm calculus [17, Theorem 4.2.1]. In particular,
for (13) one uses representation (8) in conjunction with the
inverse formula.

Remark 4: Note that the expectation in the right-hand-side
of (13) is taken with respect to the stationary distribution
of the BS process Φ. It corresponds to the spatial average
of the inverse of the peak bit-rate calculated throughout the
network. The (only) random variable in this expression is the
SINR experienced by the typical user. This distribution is
usually known in operational networks (estimated from user
measurements). It can be also well approximated using Poisson
network model for which its distribution function admits an
explicit expression; cf [18, 19].

B. Mean user throughput in the network

Faithful to the usual definition of the mean user throughput
as the ratio of the mean volume of the data request to the mean
service duration (which we retained at the local, cell level) we
aim to define now the mean user throughput in the (whole)
network as the ratio of these two quantities taken for increasing
network window A. However in order to “filter out” the impact
of cells which are not stable and avoid undesired degeneration
of this characteristic (e.g. for Poisson process; cf. Remark 2)
let us consider the union of all stable cells

S :=
⋃

X∈Φ:ρ(X)<ρc(X)

V (X) .

Note that the stationarity of Φ implies the same for the random
set S. We denote by πS = E[1(0 ∈ S)] the volume fraction
of S and call it the stable fraction of the network. It is equal
to the average fraction of the plane covered by the stable cells;
cf. [17, Definition 3.4 and the subsequent Remark]. Denote also

N0 := E0[N(0)1(N(0) <∞)] . (14)

We are ready now to define the mean user throughput in the
network r0 as the ratio of the average number of bits per data
request to the average duration of the data transfer in the stable
part of the network

r0 := lim
|A|→∞

1/µ

(temporal-)mean service time in A ∩ S
. (15)

Here is the key result of the typical cell approach. Its proof is
given at the end of this section.

Theorem 5: For ergodic network Φ we have

r0 =
ρ πS
λBSN0

. (16)

Remark 6: Equation (16) provides a macroscopic relation
between the traffic demand and the mean user throughput in
the network, which we are primarily looking for in this paper.
It will be validated by comparison to real data measurements.
Quantities N0 and πS do not have explicit analytic expressions
analogous to (13). Nevertheless they can be estimated from
simulations of a given network model Φ. Note that these are
static simulations of the network model. No simulation of the
traffic demand process is necessary, which greatly simplifies
the task. For small and moderate values of the traffic demand
(observed in real networks) one obtains πS ' 1. Moreover, in
Section III-C we will propose some more explicit approxima-
tion of N0.

Remark 7: Assume that there are no unstable cells in the
network. This is the case e.g. for lattice (say hexagonal) network
models with traffic demand ρ < ρc(X) = ρc, where the value
of the critical traffic is the same for all cells. Then πS = 1,
N0 = E0[N(0)] and the relation (16) takes form

r0 =
ρ

λBSE0[N(0)]
=

E0[ρ(0)]

E0[N(0)]
. (17)

Thus, in general r0 6= E0[r(0)] = E0[ρ(0)/N(0)]. We want to
emphasize that this is not merely a theoretical detail resulting
from our (and common) definition of the mean throughput (15).
The expression E0[r(0)] = E0[ρ(0)/N(0)], which in principle
can be considered as another global QoS metric, is in practice
difficult to estimate. Indeed, when estimating E0[r(0)] as the
average of the ratio “traffic demand to the number of users”
from real data measurements, one needs to give a special
treatment to observations which correspond to cells during
their idling hours (i.e., with no user, and such observations are
not rare in operational networks). Neither skipping nor literal
acceptance of these observations captures the right dependence
of the mean user throughput on the traffic demand.

Proof of Theorem 5: By Little’s law [20, eq. (3.1.14)] the
temporal mean service time TW of users in any region of the
network W , say the union of stable cells with BS in some
region A, W =

⋃
X∈A∩S V (X), is related to the mean number

NW of the users served in this region W in the steady state
by the equation NW = λ|W |TW . Consequently, the mean user
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throughput in this region W can be expressed as 1/(µTW ) =
ρ|W |/NW . Using
|W |
NW

=
|W |∑

X∈A∩S N(X)
(18)

=

∑
X∈A |V (X)|1(N(X) <∞)

|A|
|A|∑

X∈A∩S N(X)
(19)

and again the ergodic theorem for point yprocess Φ, we
obtain the that limit in (15) is P-almost surely equal to
ρE0[|V (0)|1(N(0) < ∞)]/E0[N(0)1(N(0) < ∞)]. By the
aforementioned inverse formula of Palm calculus we conclude
E0[|V (0)|1(N(0) <∞)] = E[1(0 ∈ S)]/λBS.

C. Mean cell

It is tempting to look for a synthetic model which would
allow to relate main parameters and QoS metrics of a large
irregular cellular network in a simple, yet not simplistic way.
The typical cell approach described up to now offers such
possibility. In this section we will go a little bit further and
propose an even simpler model. It consists in considering a
virtual cell, to which we will assign the parameters and QoS
metrics inspired by the analysis of the typical cell. In contrast to
the typical cell, our virtual cell is not random and this is why we
call it the mean cell. Specifically, we define it as a (virtual) cell
having the same traffic demand ρ̄ and load θ̄ as the typical cell.
Note that these two characteristics admit explicit expressions;
cf. Proposition 3 and Remark 4.

ρ̄ := E0 [ρ (0)] =
ρ

λBS
, (20)

θ̄ := E0 [θ (0)] =
ρ

λBS
E[1/R (SINR (0,Φ))] . (21)

For the remaining characteristics, we assume that they are
related to the above two via the relations presented in Sec-
tion II-C. Specifically, following (2) we define the surface of
the mean cell by V̄ = ρ̄/ρ and in analogy to (7) we define the
critical load of the mean cell as

ρ̄c :=
ρ̄

θ̄
. (22)

We say that the mean cell is stable if ρ̄ < ρ̄c. Inspired by (4)
we define the user’s throughput in the mean cell by

r̄ := max (ρ̄c − ρ̄, 0)

and, as in (5), the mean number of users in the mean cell is
defined as

N̄ :=
ρ̄

r̄
.

We observe the following immediate relations.
Corollary 8: The mean cell is stable if and only if θ̄ < 1. In

this case

N̄ =
θ̄

1− θ̄
, (23)

r̄ = ρ̄(1/θ̄ − 1) , (24)

which are analogous to (9) and (10), respectively.
Remark 9: The equation (24) provides an alternative macro-

scopic relation between the traffic demand and the mean user
throughput in the network. It is purely analytic; no simulations
are required provided one knows the distribution of the SINR of
the typical user in (21). It will be validated by comparison to

real data measurements. We consider it as an approximation
of (16). It consists in assuming N̄ ' N0/πS . This latter
hypothesis will be also separately validated numerically.

Remark 10: Note that the key characteristic of the mean cell
is its load θ̄. In analogy to the load factor of the (classical)
M/G/1 processor sharing queue, it characterizes the stability
condition, mean number of users and the mean user throughput.

D. Cell-load equations

We have to revoke now the full interference assumption 2
made in Section II-A. An amendment is necessary in this matter
for the model to be able to predict the real network data; cf
numerical examples in Section IV. Recall that the consequence
of this assumption is that in the expression (1) of the SINR all
the interfering BS are always transmitting at a given power P .
In real networks BS transmit only when they serve at least one
user. 7 Taking this fact into account in an exact way requires
introducing in the denominator of (1) the indicators that a
given station Z ∈ Φ at a given time is not idling. This, in
consequence, would lead to the probabilistic dependence of the
service process at different cells and result in a non-tractable
model. In particular, we are not aware of any result regarding
the stability of such a family of dependent queues. For this
reason, we take into account whether Z is idling or not in a
simpler way, multiplying its powers P by the probability p(Z)
that it is not idle in the steady state. In other words we modify
the expression of the SINR as follows

SINR (y,Φ) :=
P/l (|y −X|)

N + P
∑

Z∈Φ\{X}
p (Z) /l (|y − Z|)

, (25)

for y ∈ V (X), X ∈ Φ where p(Z) are cell non-idling
probabilities given by (6). We will see in Section IV that this
model, called (load-)weighted interference model, fits better to
real field measurements than the full interference model. The
above modification of the model preserves the independence
of the processor-sharing queues at different cells given the
realization Φ of the network (thus allowing for the explicit
analysis of Section II-C). However the cell loads θ(X) are no
longer functions of the traffic demand and the SINR experienced
in the respective cells, but are related to each other by the
following equations that replace (8)

θ (X) = ρ

∫
V (X)

1

R

(
P/l(|y−X|)

N+P
∑

Z∈Φ\{X}
min(θ(Z),1)/l(|y−Z|)

) dy .

(26)
We call this system of equations in the unknown cell loads
{θ (X)}X∈Φ the cell-load equations.

Remark 11: [Spatial stability] The weighted interference
model introduces more “spatial” dependence between the pro-
cessor sharing queues of different cells, while preserving their
“temporal” (conditionally, given Φ) independence. A natural
question regarding the existence and uniqueness of the solution
of the fixed point problem (26) arises. Note that the mapping
in the right-hand-side of (26) is increasing in all θ(Z), Z ∈ Φ
provided function R is increasing. Using this property it is

7Analysis of more sophisticated power control schemes is beyond the scope
of this paper.

10th International Workshop on Spatial Stochastic Models for Wireless Networks 2014

615



easy to see that successive iterations of this mapping started
off θ(Z) ≡ 0 on one hand side and off θ(Z) as in (8) (full
interference model) on the other side, converge to a minimal
and maximal solution of (26), respectively. An interesting
theoretical question regards the uniqueness of the solution
of (26), in particular for a random, say Poisson, point process
Φ. Answering this question, which we call “spatial stability”
of the model, is unfortunately beyond the scope of this paper.8

The simulation study of the typical cell model, presented in
Section IV (where we use Matlab to find a solution of (26) for
any given finite pattern of base stations Φ) is less stable for
larger values of the traffic demand ρ.

In the mean cell approach (cf Section III-C) we take into
account the weighted interference model by the following
(single) equation in the mean-cell load θ̄

θ̄ =
ρ

λBS
E

[
1/R

(
P/l (|X∗|)

N + P
∑
Z∈Φ\{X∗} θ̄/l (|y − Z|)

)]
,

(27)
where X∗ is the location of the BS whose cell covers the origin.
We solve the above equation with θ̄ as unknown. We will show
in the numerical section that the solution of this equation gives a
good estimate of the empirical average of the loads {θ (X)}X∈Φ

obtained by solving the system of cell-load equations (26) for
the simulated model.

Remark 12: [Pilot channel] The cells which are not idle
might still emit some power (e.g. in the pilot channel). This
can be taken into account by replacing p(Z) = min(θ(Z), 1)
in (26) by p(Z)(1− ε) + ε, where ε is the fraction of the power
emitted all the time. Similar modification concerns θ̄ in the
right-hand-side of (27).

E. Shadowing

Until now we were assuming that the propagation loss is
only induced by the distance between the transmitter and the
receiver. In this section we will briefly explain how the effect
of shadowing can be taken into account.

Assume that the shadowing between a given station X ∈ Φ
and all locations y ∈ R2 is modeled by some random field
SX (y −X). That is, we assume the propagation loss between
X and y LX (y) = l(|y−X|)

SX(y−X) . We assume that, given Φ,
the random fields SX(·) are independent across X ∈ Φ and
identically distributed. In general, we do not need to assume
any particular distribution for SX(·) (neither independence nor
the same distribution of SX(y) across y).

The assumption that each user is served by the BS received
with the smallest path-loss results in the following modification
of the geographic service zone of X , which we keep calling
“cell”

V (X) = {y ∈ R2 : LX (y) ≤ min
Z∈Φ

LZ (y)} . (28)

For mathematical consistence we shall assume that, almost
surely, the origin belongs to a unique cell (i.e., is not located
on any cell boundary).

The SINR at location y can be expressed by (1) or (25) with
l(|y − Y |) replaced by LY (y) for Y ∈ Φ, depending whether

8Existence and uniqueness of the solution of a very similar problem (with
finite number of stations and a discrete traffic demand) is proved in [21].

we consider the full interference or the weighted interference
model, for y ∈ V (X), with V (X) defined by (28). The same
modification regards the cell-load equations (26) and (27).

All the previous results involving the typical cell remain valid
for this modification of the model. In particular, the results of
Proposition 3 can be extended to the model with shadowing
(where the cell associated to each base station is not necessarily
the Voronoi cell) provided the origin 0 belongs to a unique cell
almost surely.

Note that the mean cell surface E0[|V (0)|] = 1/λBS, and
hence the mean traffic demand per cell E0[ρ(0)] = ρ/λBS,
do not depend at all on the shadowing. The values of other
characteristics of the typical and the mean cell will change
depending on the distribution of the random shadowing field
SX(y) (both the marginal distributions and the correlation
across y). An interesting remark in this regard is as follows.

In the full interference model, the mean load of the typical
cell and the load of the mean cell (which are by the definition
equal E0[θ(0)] = θ̄) depend only on the stationary marginal
distribution of SINR(0,Φ), cf. (21). Hence, it does not depend
on the (spatial) correlation of SX(y) across y. Moreover, this
distribution is known in the case of the Poisson network and
identically distributed marginal shadowing SX(y) ∼ S. As
explained in [19], in this case SINR(0,Φ) in the model with
shadowing has the same distribution as in the model without
shadowing and the density of stations equal to λBS ×E[S2/β ].
In particular, a specific distribution of S and the correlation of
SX(y) across y play no role. This equivalence of the two models
(with and without shadowing) is more general, as explained
in [19, 22], and applies also to the mean-cell-load equation (27).

Remark 13: The impact of the shadowing on the mean cell
model, both in full and weighted interference scenario in the
above Poisson model with SX(y) ∼ S can be summarized as
follows. It modifies only the cell load θ̄ and not the traffic
demand ρ̄. Moreover, multiplying λBS by E[S2/β ] and dividing
ρ by the same moment one obtains an equivalent (in terms of
all considered characteristics) mean cell without shadowing.

IV. NUMERICAL RESULTS

To illustrate the motivation of this work, we present first on
Figure 1 non-averaged data obtained from the measurements
performed in an operational network in some zone of some big
city in Europe. 9

Different points in this figure correspond to the measurements
of the traffic demand and the estimation of the user throughput
made by different cells during different hours of the day. No
apparent relation between these two quantities can be observed
in this way.

In order to uderstand and predict the performance of the net-
work for which we have presented the above data, we will now

9More precisely, a dense urban network zone consisting of 382 base
stations was selected in a big European city, whose locations loosely satisfy
homogeneous spatial Poisson assumption. Ripley’s L-function, cf [23, page 50],
plotted on Figure 9, was used to verify this latter assumption. The density of
base stations in this dense urban zone is about 4.62 base stations per km2. Later,
we will consider also a urban zone of a different European city, where the spatial
homogeneous Poissonianity of the base station locations can also be retained;
cf. Figure 9, with roughly four times smaller density of base stations, more
precisely 1.15 stations per km2. In both cases the network operates HSDPA
system with MMSE coding.
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Fig. 1: Local user throughput versus local traffic demand for some zone (selected to satisfy
a spatial homogeneity of the base stations) of an operational cellular network deployed
in a big city in Europe. 9288 different points correspond to the measurements made by
different sectors of different base stations during 24 different hours of some given day.

specify correspondingly our general model and study it using
the proposed approach. The obtained results will be compared
to the appropriately averaged real field measurements.

A. Model specification

Consider the following numerical setup. Assume Poisson
process of BS with intenisty λBS = 4.62km−2 (which cor-
responds to an average distance between two neighbouring BS
of 0.5km). We assume the path-loss function l(r) = (Kr)β ,
with K = 7117km−1, and the path loss exponent β = 3.8. The
propagation model comprises the log-normal shadowing with
the logarithmic standard deviation 10dB; cf [18], and the mean
spatial correlation distance 0.05km.

The transmision power is P = 58dBm, with the fraction ε =
10% used in the pilot channel. The antenna pattern is described
in [1, Table A.2.1.1-2]. The noise power is N = −96dBm.

We assume the peak bit-rate equal to 30% of the ergodic
capacity of the AWGN channel; cf. Footnote 3, with the
frequency bandwidth W = 5MHz and the Rayleigh fading with
mean power E[|H|2] = 1.

Estimations of the typical cell are performed by the simu-
lation of 30 realizations of the Poisson model within a finite
observation window, which is taken to be the disc of radius
2.63km. We first average over all BS in this window and then
over the model realizations. The empirical standard deviation
form the obtained averages will be presented via error-bars.

We shall study now our model using the typical and mean
cell approach, assuming first the full interference model and
then the weighted one.

B. Full interference

We consider first the full interference model (i.e. all BS emit
the signal all the time, regardless of whether or not they serve
users). Figure 2 shows the mean cell load of the typical cell
E0[θ(0)] and the stable fraction of the network πS obtained
from simulations, as well as the analytically calculated load of
the mean cell θ̄, versus mean traffic demand per cell ρ/λBS. We
confirm that the typical cell and the mean cell models have the
same load. Note that for the traffic demand up to 500kbps per
cell we do not observe unstable cells in our simulation window
(πS = 1).

Figure 3 shows the mean number of users per cell in the
stable part of the network N0/πS (obtained from simulations)
and the analytically calculated number of users in the mean cell
N̄ versus mean traffic demand per cell. We have two remarks.
For the traffic demand smaller than 500kbps per cell (for which
all the simulated cells are stable; πS = 1, cf. Figure 2), both
models predict the same mean number of users per cell. Beyond
this value of the traffic demand per cell the estimators of the
number of users in the typical cell become not accurate due very
rapidly increasing fraction of the unstable region. (Error bars
on all figures represent the standard deviation in the averaging
over 30 realizations of the Poisson network).

Finally, Figure 4 presents the dependence of the mean user
throughput in the network on the mean traffic demand per cell
obtained using the two approaches: r0 and for the typical cell
and r̄ for the mean cell. Again, both models predict the same
performance up to roughly 500kbps.

C. Weighted interference

We consider now the load-weighted interference model tak-
ing into account idling cells. We see in Figures 5, 6 and 7
that the consequence of this (more realistic) assumption is that
the cell loads are smaller, a larger fraction πS of the network
remains stable, and the two approaches (by the typical cell and
by the mean cell) predict similar values of the QoS metrics
up to a larger value of the traffic demand per cell, roughly
700kbps. Note that it is in this region that the real network
operates for which we present the measurements, and that its
performance coincides with the performance metrics calculated
using the typical and mean cell approach. More precisely, the
field measurements on Figures 5, 6 and 7 correspond to the
same day and network zone considered on Figure 1.

Remark 14: [Measurement methodology] Measurement
points on Figure 5 show the fraction of time, within a given
hour, when the considered base stations were idle, averaged
over the base stations, as function of the average traffic
demand during this hour. Similarly, measurement points on
Figure 6 show the spatial average of the mean number of users
reported by the considered base stations within a given hour,
as function of the average traffic demand during this hour.
Finally, measurements on Figure 7 give the ratio of the total
number of bits transmitted by all the base stations during a
given hour, to the total number of users they served during
this hour in function of the average traffic demand during this
hour.

Remark that Figure 7 makes evident a macroscopic relation
between the traffic demand and the mean user throughput in the
network zone already considered on Figure 1. This relation, we
are primarily looking for in this paper, is not visible without
the spatial averaging of the network measurements described in
Remark 14. In order to ensure the reader that a relatively good
matching between the measurements and the analytic prediction
is not a coincidence we present on Figure 8 similar results for
a urban zone of a different European city, where the spatial
homogeneous Poissonianity of the base station locations can
also be retained; cf. Figure 9. The only engineering difference
of this network zone with respect to the previously considered
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Fig. 2: Cell load and the stable fraction of the network versus traffic demand per cell in
the full interference model.
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Fig. 3: Number of users per cell versus traffic demand per cell in the full interference
model.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  200  400  600  800  1000  1200

U
s
e
r 

th
ro

u
g
h
p
u
t 

[k
b
p
s
]

Traffic demand per cell [kbps]

Typical cell
Mean cell

Fig. 4: Mean user throughput in the network versus traffic demand per cell in the full
interference model.

dense urban zone is roughly four times smaller density of base
stations, more precisely 1.15 stations per km2.

Remark 15: [Day and night hours] Let us make a final
remark regarding the empirical relation between the mean user
throughput on the mean traffic demand revealed on Figures 7
and 8. Recall that different points on these plots correspond to
different hours of some given day. In fact, the points laying
below the mean curve correspond to day hours while the points
laying above the mean curve correspond to night hours. This
“circulation” of the measured values around the theoretical
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Fig. 5: Load and the stable fraction of the network versus traffic demand in the weighted
interference model. Also, load estimated from real field measurements.
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Fig. 6: Number of users versus traffic demand per cell in the weighted interference model.
Also, the same characteristic estimated from the real field measurements.
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Fig. 7: Mean user throughput in the network versus traffic demand per cell in the
weighted interference model. Also, the same characteristic estimated from the real field
measurements.

mean curve, indicated on Figure 8 and visible on both presented
plots of the throughput, seems to be a more general rule,
which escapes from the analysis presented in this paper and
remains an open question. A possible explanation can lay in a
different space-time structure of the traffic during the day and
night, with the former one being much more clustered (fewer
users, requesting larger volumes, generating less interference
and overhead traffic).
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night

day

Fig. 8: Mean user throughput in the network versus traffic demand per surface for an urban
zone of a big city in Europe. (The density of base stations is 4 times smaller than in the
dense urban zone considered on Figure 7).

Fig. 9: Ripley’s L-function calculated for the considered dense urban and urban network
zones. (L function is the square root of the sample-based estimator of the expected number
of neigbours of the typical point within a given distance, normalized by mean number of
points in the disk of the same radius. Slinvyak’s theorem allows to calculate the theoretical
value of this function for a homogeneous Poisson process, which is L(r) = r.) In fact, in
large cities spatial, homogeneous “Poissonianity” of base-station locations is often satisfied
“per zone” (city center, residential zone, suburbs, etc.). Moreover, log-normal shadowing
further justifies Poisson assumption, cf. [18, 24].

V. CONCLUSION

In order to evaluate user’s QoS metrics, in particular the mean
user throughput, in large irregular multi-cellular networks, two
approaches based on stochastic geometry in conjunction with
queueing and information theory are developed. The typical
cell approach consists in considering true spatial averages of
local network characteristics and thus capturing the global
network performance. A simpler, approximate but fully analytic
approach, called the mean cell approach, is inspired by the anal-
ysis of the typical cell. The key quantity explicitly calculated in
this approach is the cell load. In analogy to the load factor of
the (classical) M/G/1 processor sharing queue, it characterizes
the stability condition, mean number of users and the mean
user throughput. Considering some real field measurement, we
validate the proposed approach by showing that it allows to
predict the performance of a real network.

The present work raised open theoretical questions regarding
the stability of spatially and, more difficult, space-time depen-
dent processor sharing queues modeling the performance of
individual network cells (cf Section III-D). More work is also
required to figure out the problem of different performance of
the network during day and night hours (cf Figure 8).
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