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Abstract—Opportunistic routing in wireless networks has been
proposed as a method to combat the volatility of wireless links,
by leveraging their broadcast nature and choosing the next hop
for each transmitted packet post-facto, using the actual reception
outcomes at the respective neighbors, rather than based on a
priori information. Much of the research on the topic has focused
on protocol design issues, e.g. coordination mechanisms among
the next-hop candidates; however, the fundamental performance
bounds of the scheme are not yet known. In this paper we study
the theoretical throughput region of opportunistic routing, for
a generic network model with an arbitrary matrix of packet
erasure probabilities between any two nodes, which cannot be
mapped onto any classical model due to the existence of undirected
broadcast from each node. We introduce a generic technique
involving a transformation into a virtual network consisting of
nodes corresponding to packet states in the original network,
and define two different throughput-optimal scheduling policies in
the virtual network, one based on a backpressure-like approach,
and another that uses a dynamic programming algorithm which
finds the minimum time to clear the system from any initial
queued backlog. These policies can support both a unidirectional
(half-duplex) flow between a given source and destination, and a
bidirectional (full-duplex) connection with inter-session network
coding in intermediate nodes.

I. INTRODUCTION

The prevailing approach to network routing, widely used in
various network-layer protocols in wired networks, is based on
modeling the network as a graph of links between pairs of
nodes and calculation of the shortest path in that graph. While
this approach is used in traditional wireless routing protocols
such as AODV and OLSR [1] as well, its success in wireless
networks is limited since it does not take into account the
broadcast nature of the wireless medium, nor the high volatility
of wireless channels, e.g. caused by fading or local interference
from other traffic. Indeed, much of the traditional research on
routing in wireless networks focused predominantly on methods
to overcome the interference and maximize network capacity
for multiple co-existing flows, e.g. using channel assignment
methods based on coloring of the link conflict graph (cf. [2]
and references therein). In recent years, there has been growing
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attention towards methods that embrace the broadcast nature of
wireless communications and aim to exploit the capability of
nodes to overhear their peers’ transmissions, from cooperative
relaying in the physical layer to opportunistic routing and
wireless network coding techniques at higher layers, which are
the focus of this paper.

The term opportunistic routing (OR) is used collectively to
describe routing schemes where the next hop of each packet
is decided in real time, depending on the instantaneous perfor-
mance of wireless links, rather than predetermined in advance.
Some of the early examples of the concept include SDF [3] and
GeRaF [4], which used explicit coordination schemes involving
exchanges of acknowledgments or RTS/CTS frames between
the transmitter and the potential next-hop forwarders. In the
ExOR protocol [5], batches of packets are simply broadcast
without acknowledgments, and after every batch, each neighbor
(in a predetermined priority order) retransmits the packets it
has successfully received, skipping those that it could overhear
being already forwarded by one of the other neighbors. The
demonstration of the significant boost in throughput achievable
by ExOR has led to further more recent extensions, such as
modrate, which optimizes the rate selection jointly with exploit-
ing overhearing opportunities [6], and opportunistic routing in
the presence of correlated links [7].

The idea of network coding (NC), where data packets either
from the same flow (intra-flow coding) or multiple flows (inter-
flow coding) are mixed so that a single transmission holds
different information content for different receivers, has been
applied in a number of proposed wireless network protocols, in
combination with opportunistic routing. Examples of protocols
that use intra-flow coding include MORE, which boosts the
reliability of ExOR by transmitting linear combinations rather
than individual packets in each batch [8], and its further
extensions such as CodeOR and PipelineOR, which allow a
“sliding window” of multiple batches of coded packets [9], [10].
Inter-flow coding in wireless networks was first introduced by
COPE, which uses broadcasting of bitwise-XOR combinations
of packets from different flows (or from opposite directions of
a full-duplex flow between the same endpoints) [11]. COPE
itself does not involve opportunistic routing (the flow routes
are determined by an underlying routing protocol); furthermore,
the decision about transmitting such combinations requires the
knowledge of the set of previously overheard packets in each



neighbor node, which is achieved via explicit periodical “over-
hearing reports”. These shortcomings are addressed in COPR,
where the scheduling and coding decisions are based on an
oblivious backpressure algorithm [12], and NCRAWL, where
such decisions are optimized based on statistical properties of
the links [13].

Unlike the above studies (and most of the other related work
in this space) that focus on improving the performance of spe-
cific protocols, in this paper we focus on a more fundamental
question which has remained outside the scope of existing
research, namely: what is the theoretical throughput limit of
a wireless system with opportunistic routing? Such questions
about the theoretical network capacity or throughput region (i.e.
the maximal region of arrival rates that can be serviced by the
system in a stable manner) date back as far as the seminal
work in [14], which introduced the backpressure algorithm
and established its throughput optimality in general queueing
networks. More recently, a detailed treatment of capacity and
stability in wireless networks, with a focus on cross-layer
design approaches, was provided in [15]. An adaption of back-
pressure routing for wireless networks with opportunistic multi-
receiver capabilities was developed in [16], while the addi-
tional possibilities (and corresponding constraints) arising with
network coding have been studied both for general network
topologies [17] and more specifically in wireless contexts [18],
[19]. Without exception, all of the above studies are limited to
considering only the case of single-copy routing. Indeed, the
classical model of a network of interconnected queues cannot
be directly used with any scheme that involves replication of
packets in multiple nodes, such as opportunistic routing, due to
the inherent dependencies among queue states (e.g., a packet
arriving at the destination automatically disappears from all
queues where its copies are present) that cannot be accounted
for by legacy queueing models.

Motivated by the above, in this work we consider the
maximal stable throughput region in a wireless network where
packets can be overheard by multiple nodes and routed op-
portunistically to their destinations. Specifically, we consider
a model consisting of two endpoints A and B and a number
of intermediate relay nodes, with a known matrix of packet
overhearing (alternatively, erasure) probabilities between every
pair of nodes. We assume two unicast flows in opposite direc-
tions between A and B, fed by stochastic arrivals of packets,
and seek throughput-optimal policies that can be applied by an
omniscient scheduler, which is allowed to utilize information
about which node has overheard which packets at any time.
The control action that the scheduler is allowed to decide at any
time is a transmission of either a native packet or a XOR of two
packets from opposite directions (i.e. inter-flow coding). In this
study, we do not consider coded transmissions of packets from
the same flow, since intra-flow coding is known not to increase
the throughput of a unicast flow, and its practical benefits (such
as lower sensitivity to topology parameters) are irrelevant in the
context of our current study [20]. The extension of the model of
this paper to include scenarios such as multicast, where intra-
flow coding can be beneficial [21], is left for future work.

Our contribution in this paper is twofold. First, we provide a

generic technique of transforming the physical wireless network
to an equivalent virtual one, where each virtual node queue
holds packets overheard by a specific subset of the physical
network nodes, and characterize the throughput region for the
network model of the paper. We then demonstrate how known
throughput-optimal policies from traditional network stability
theory, such as the backpressure or epoch-based evacuation
policies [22], can be adapted to the virtual network and discuss
the impact of the virtual network transformation on some of
the known properties of these policies.

We emphasize that this paper does not aim to propose a
practical protocol to attain the maximal throughput region.
Rather, our discussion of throughput-optimal coding and rout-
ing focuses on centralized policies, with full information about
the state of all nodes and links at all times. While such policies
may not be directly suitable for implementation in a real
network, they (in the same way as the classical backpressure
algorithm) serve as a baseline for future work on practical
distributed heuristics and approximations for networks with
opportunistic routing, and provide a useful upper bound and
benchmark for the performance of any such practical schemes.

The rest of the paper is structured as follows. Section II
formally defines the system model and assumptions. Section III
presents the details of the virtual network transformation and
the equivalence of scheduling policies between the physical and
the virtual network representation. Sections IV and V discusses
the backpressure-based and the epoch-based evacuation policies
and their adaptations to the virtual network. Section VI dis-
cusses the differences between the two policies with respect to
other performance metrics, such as delay and average number
of transmissions per packet, and suggests a hybrid application
of both policies depending on the network load. Finally, the
paper is concluded in Section VII.

II. MODEL DESCRIPTION

We consider a static wireless network consisting of a dis-
tinguished pair of endpoint nodes, A and B, plus K potential
relay nodes Rk (k = 1, . . . ,K). A packet transmission from
any node i can be successfully overheard by any other node j
with a probability Pij , where i, j ∈ {A,B,Rk}; equivalently,
the channel between nodes i, j is a packet erasure channel with
an erasure probability of 1−Pij . The channels are assumed to
be memoryless (thus, the sequence of packet erasures in each
channel over time is i.i.d), and for simplicity of presentation, we
also assume the erasure probabilities to be independent across
channels; however, the subsequent analysis and the throughput-
optimal policies described therein can be extended to allow
correlated channels in a straightforward manner.

We emphasize that the matrix Pij need not necessarily be
symmetrical, and may contain zero elements (corresponding to
pairs of nodes unable to overhear each other at all). Thus, the
model is not limited to a single-hop setting; for example, it is
possible for the shortest path between A and B to consist of at
least H hops, if the relays are partitioned into H − 1 groups,
such that channels with positive probability exist only between
nodes within the same group or adjacent groups. Nevertheless,
we assume that all the nodes are within a common range of



interference; i.e., only one transmission is allowed to take place
anywhere in the network at any one time.

We consider a bidirectional flow consisting of packets that
are generated at each of the endpoints A,B according to some
independent random process, to be delivered to the respective
opposite endpoint. As long as there exist packets not yet arrived
to their destination, a scheduling policy chooses one node at a
time to broadcast either a single packet that it has previously
overheard, or a coded combination of two packets from oppo-
site directions, e.g. a bitwise XOR as in COPE [11]. Clearly,
this model includes a unidirectional flow between a single
source-destination pair as a special case, simply by setting
an empty (zero-rate) packet arrival process in the opposite
direction. For simplicity, throughout the paper we assume that
all packets are of identical size and all nodes transmit at
the same raw bitrate; hence, all transmissions take the same
duration which we call a slot, and we shall use normalized units
of packets per slot for all throughput-related quantities in the
network. However, we emphasize that the methods and policies
described hereafter can be readily extended to include variable
packet sizes and/or heterogeneous transmission bitrates.

III. THE VIRTUAL NETWORK TRANSFORMATION

In an opportunistic network where copies of the same packet
can exist in several nodes, scheduling policies based on queue
occupancy of individual nodes (such as the classical backpres-
sure algorithm and its variations) cannot be directly applied,
since simple counting of packets queued in a node ignores
inherent dependencies that cannot be handled within traditional
models. For example, if a particular packet is overheard by
two relay nodes R1 and R2, and is then broadcast by R1

and successfully received at the destination, it immediately
disappears from the queue of R2 as well. We resolve this
limitation by describing a transformation into a virtual network,
whose nodes consist of all possible subsets of real nodes where
a packet may have been overheard.

Specifically, the virtual network consists of the following
nodes:
• for every subset of relays S ⊆ {R1, . . . , RK} (including

the empty set S = ∅), a node labeled 〈A,S〉 and a node
labeled 〈B,S〉;

• a destination node for packets from A to B, labeled 〈B〉;
• a destination node for packets from B to A, labeled 〈A〉.
Furthermore, the following edges are defined between nodes

in the virtual network:
• for every node 〈A,S〉, an edge from that node to every

other node 〈A,S′〉 such that S ⊆ S′, and to the destination
node 〈B〉;

• for every node 〈B,S〉, an edge from that node to every
other node 〈B,S′〉 such that S ⊆ S′, and to the destination
node 〈A〉.

For brevity, we henceforth refer to the flow of packets from
A to B as the forward flow, and that of packets from B to A
as the reverse flow.

With every virtual node 〈A,S〉 we associate a virtual queue,
which at any point in time consists of all the forward packets

that have been overheard by every relay Rk ∈ S, not overheard
by any Rk /∈ S, and not yet received by B. Thus, each
packet can only be associated with one virtual queue at a time.
Intuitively, when a packet is in the queue of 〈A,S〉 and is
then broadcast (either by A or a relay Rk ∈ S), it can either
remain in the same queue (if not received/overheard by any new
physical nodes), or move to a queue of another virtual node
〈A,S ∪ Snew〉 (corresponding to being successfully received
by new relays in the set Snew, but not by B), or move to
the virtual destination node 〈B〉 and leave the system, if suc-
cessfully received by the destination. The probabilities of these
transitions depend on the channel probability matrix (Pij), as
well as the choice of physical node doing the broadcast. The
same definition of virtual queues applies to nodes 〈B,S〉, for
packets in the reverse direction (from B to A). We now proceed
to formally define the relevant notation.

An action I, chosen by the scheduling policy in the virtual
network in a time slot, is defined as a tuple (N,Va, Vb) where:
• N is a physical node, N ∈ {A,B,R1 . . . RK};
• Va is a node in the virtual half-network corresponding to

the forward flow (i.e. either 〈A,S〉 or 〈B〉);
• Vb is a node in the virtual half-network corresponding to

the reverse flow (i.e. either 〈B,S〉 or 〈A〉);
• if Va is of the form 〈A,S〉 (i.e. it is not the virtual

destination node 〈B〉), then N ∈ {A} ∪ S;
• if Vb is of the form 〈B,S〉, then N ∈ {B} ∪ S .
Generally, an action (N,Va, Vb) corresponds to a transmis-

sion by node N of a coded combination of the packets taken
from the head of the queues of Va and Vb; however, if Va or
Vb is a virtual destination node (which does not have a queue
associated with it by definition), then the action represents a
transmission of a single native packet from the opposite flow.

For completeness, we also define the idle action ∅, repre-
senting a slot in which no transmission is attempted at all. This
is introduced to address the possibility of an empty network,
and avoids some technical complications by allowing us to
assume, without loss of generality, that any non-idle action
always involves transmissions from non-empty queues only.
We denote C to be the set of all possible actions, i.e. tuples
satisfying the above conditions, plus the idle action ∅.

We now consider the transition probabilities in the virtual
network that are induced by a choice of a particular action
I = (N,Va, Vb). We first present the transition probabilities
in the virtual half-network corresponding to the forward flow,
i.e. from virtual node Va to its neighbors. Without loss of
generality, we assume that Va has a non-empty queue.∗ We
denote T I(V ′a) to be the transition probability to the virtual
node V ′a, i.e. the probability that a packet taken from the queue
of Va is transferred to the queue of V ′a (or leaves the network,
if V ′a = 〈B〉).

When node N broadcasts a packet, it is overheard by the
destination with a probability PNB . Accordingly,

T I(B) = PNB , (1)

∗This implies that Va is of the form 〈A,S〉; no transition probabilities are
defined when Va = 〈B〉, i.e. when the action does not involve a packet from
the forward flow at all.
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Fig. 1: A physical network with K = 2 relay nodes and no direct link
between endpoints A,B.

regardless of whether the packet is overheard by any other
relays. For all other transitions, one must distinguish between
a broadcast of a single native packet (i.e. Vb = 〈A〉 in the
opposite virtual half-network), and that of a combined coded
packet. In the former case, the transition probability from
Va = 〈A,S〉 to V ′a = 〈A,S ′〉 is calculated as follows:

T I(V ′a) =


(1− PNB) ·

∏
R∈S′\S

PNR ·
∏
R/∈S′

(1− PNR) S ⊆ S ′

0 S 6⊆ S ′
(2)

Note that this formula includes the case where S′ = S (i.e. the
transmission fails to be received by any new relays), using the
convention that a product over an empty set is defined as 1.

Otherwise, i.e. when a combined coded packet is transmitted,
a transition from 〈A,S〉 to 〈A,S ′〉 requires not only that
all nodes in S ′ \ S overhear the transmitted packet, but,
furthermore, are able to decode it; this is due to our stipulation
that coded packets are not allowed to be stored in the relays and
must be discarded if not decoded immediately. Accordingly, if
Vb = 〈B,Sb〉, then every relay in S ′ \ S must be a member
of Sb, i.e. have already previously overheard the corresponding
packet in the opposite direction. Hence, for this case, we have

T I(V ′a) =


0 if S 6⊆ S ′ or (S ′ \ S) 6⊆ Sb;
(1− PNB) ·

∏
R∈S′\S

PNR ·
∏

R∈Sb\S′

(1− PNR) otherwise.

(3)
The transition probabilities for packets in the reverse flow

T I(V ′b ), i.e. from the virtual node Vb, are defined in the same
manner as above and are omitted for brevity. It should be
noted that, even for coded packet transmissions, the transition
probabilities in the two virtual half-networks are independent,
as they always depend on erasure probabilities in separate (non-
overlapping) sets of links.

To illustrate the virtual network transformation, consider
the example network depicted in Figure 1, with two relay
nodes (K = 2) and no direct link between nodes A,B (i.e.
PAB = PBA = 0). Figure 2 shows the construction of the
corresponding virtual network and the possible transitions for
three different control actions. The virtual network consists of
two halves (the forward and the reverse half); the nodes in the
figure are labeled after the states (i.e. subsets of physical nodes)
they represent respectively, and all possible transitions are

denoted by solid arrows. First, Figure 2a describes the control
action (A, 〈A, ∅〉, 〈A〉), i.e., the physical node A is transmitting
a packet destined to B that has not yet been heard by any other
node, and with no coding with packets from the reverse flow.
The probabilities of the transitions possible with this control
action are shown next to the respective arrows, departing from
node 〈A, ∅〉. Then, Figure 2b shows a different control action,
(R1, 〈B〉, 〈B, {R1}〉), i.e., the physical node R1 is transmitting
a reverse packet destined to A, that was previously overheard
only by node R1 (apart from the source B). Again there is no
mixing with the opposite flow, and the relevant transition arrows
from node 〈B, {R1}〉 are annotated with the corresponding
probabilities. Finally, Figure 2c showcases the control action
(R2, 〈A, {R2}〉, 〈B, {R2}〉), i.e. the physical node R2 transmits
a coded combination of two packets from the forward and
reverse flows, where the forward packet (destined to B) is
previously overheard by nodes A,R2 while the reverse one
(destined to A) is previously overheard by B,R2. In this case, a
transition can occur independently in each virtual half-network,
from the respective node to the destination. Note that the
transitions to virtual nodes 〈A, {R1, R2}〉 and 〈B, {R1, R2}〉
are not possible in this case, since node R1 cannot decode the
transmitted packet.

We conclude this section by noting that the size of the result-
ing virtual network corresponds to the number of distinct node
subsets that a packet can be overheard by. While, in principle,
this can be exponential in the size of the physical network, in
reality the number of peers that can overhear and cooperatively
forward a packet transmitted by a given node is restrained by
practical implementation constraints (e.g. a fixed size of header
fields used for the underlying coordination protocol [3], [5]),
implying that the size of the relevant portion of the virtual
network remains bounded even for a large network.

IV. THE BACKPRESSURE POLICY AND THROUGHPUT
REGION IN THE VIRTUAL NETWORK

The virtual network construction described above ensures
that any scheduling policy based on the state of the physical
system can be emulated by a corresponding policy in the virtual
network. More formally, if the system state (of the physical
network) is generically defined as a vector representing the
number of packets overheard at each node, and the scheduling
policy is defined as a mapping from the system state to a
transmission action to be taken in the time slot, then the space
of all possible policies is in one-to-one correspondence with
the possible mappings in the virtual network from node queue
length vectors to actions.† In addition, since there can be at
most a finite number of physical copies corresponding to any
packet in a queue in the virtual network, any of the common
definitions of stability in queueing networks [23] is equivalent
for the physical and the virtual network. Consequently, the
throughput region of arrival rates is identical in both networks,
which implies that we can henceforth focus exclusively on

†It is implicitly assumed that scheduling policies in the physical network
are allowed the same set of actions as in the virtual network, i.e. either
transmissions of single native packets or of a XOR combination of two packets
from opposing flows.
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Fig. 2: Illustration of the virtual network transformation.

considering scheduling policies and their properties (such as
throughput-optimality) in the virtual network. We point out that
the above equivalence still holds even if non-Markovian policies
are allowed (i.e. policies that consider the entire history of the
system state rather than just the current value), or if packets
within a flow are not all treated equally but rather belong to a
number of priority classes (by defining corresponding priority
queues in the virtual network nodes).

We note that the characterization of the throughput region
for a standard network with constrained actions [14] cannot
be directly applied for the virtual network since it does not
satisfy some of the standard model assumptions; e.g., a control
action involving a transmission of a packet from a virtual node
does not uniquely determine the next hop (queue) to which
the packet arrives, as the transitions take place over random
subsets of links. To that end, we quote a result from [24], where
a similar model of a virtual network with random transitions
was employed for a different problem context. Let N , E denote
the set of virtual nodes and virtual edges, respectively, and
for each virtual node v ∈ N let Ein(v), Eout(v) be the set of
the node’s incoming and outgoing edges, respectively. Also,
let f = {fe : e ∈ E} denote a vector of average service rates in
each edge. For any given action I ∈ C, define Γ(I) to be the set
of rate vectors f satisfying the following property: there exists
some value of 0 ≤ µI ≤ 1 such that, for all e = (v, v′) ∈ E ,

fe =

{
T I(v′)µI if v ∈ {Va, Vb}
0 otherwise.

(4)

Theorem 1 (Throughput region of the virtual network [24]).
The throughput region is the closure of the set of arrival rates
λ = {λv} , v ∈ N for which there exists a vector f in the convex
hull of {Γ (I) : I ∈ C} such that, for any node v ∈ N ,∑

e∈Ein(v)

fe + λv ≤
∑

e∈Eout(v)

fe.

Note that, in our case, by construction, λv > 0 only makes
sense for the origin nodes in each half-network, i.e. v = 〈A, ∅〉
and v = 〈B, ∅〉; for all other nodes λv = 0.

We point out that Theorem 1 defines the throughput region of
the system in a descriptive form. Indeed, any desired maximal
point on the boundary of the throughput region (e.g. maximize
λA subject to a fixed value of λB or vice versa, or maximize
some desired linear combination of λA, λB) can be computed
by assigning a variable of µI to each action I (this is the weight
of the action in the convex hull) and solving the corresponding

linear program that arises from the inequalities of Theorem 1,
together with the additional constraint that

∑
I µI ≤ 1.

We now describe a policy in the virtual network based on
the idea of the well-known backpressure algorithm [14], that
uses queue length differences between respective senders and
receivers. To that end, we first define the backpressure asso-
ciated with an action I = (N,Va, Vb) in the virtual network,
adapted to the fact that packets may transit to a random set of
nodes, and the corresponding queue length differences therefore
need to be taken in expectation.

We denote the vector of virtual queue lengths by
L = 〈L(Va,1), . . . , L(Va,2K ), L(Vb,1), . . . , L(Vb,2K )〉, where
Va,1, . . . , Va,2K is a list (in some order, which is immaterial)
of all the virtual nodes in the forward virtual half-network,
excluding the virtual destination node 〈B〉; Vb,1, . . . , Vb,2K is a
list of all the virtual nodes in the reverse virtual half-network,
excluding the virtual destination node 〈A〉; and L(·) denotes the
queue length of the respective virtual node. The backpressure
is then computed separately in the two virtual half-networks,
as follows. In the forward half-network, the backpressure is

CIa = T I(〈B〉)·L(Va)+

2K∑
i=1

T I(Va,i)·[L(Va)− L(Va,i)] , (5)

i.e., the expected value of the queue length difference between
the virtual node from which the packet departs (Va) and where
it arrives (either 〈B〉 or Va,i). Similarly, the backpressure in the
reverse half-network is

CIb = T I(〈A〉)·L(Vb)+

2K∑
j=1

T I(Vb,j)·[L(Vb)− L(Vb,j)] . (6)

In particular, notice that if action I does not involve a packet
from the forward (or reverse) flow, then the associated back-
pressure in the respective virtual half-network is 0.

Finally, the backpressure-based scheduling policy is defined
as follows. At each time slot,
• compute the backpressures (5)–(6) for every action I that

can be validly applied with the current queue lengths L
(i.e. satisfying the constraints of the definition of an action
and not transmitting a packet from an empty queue);

• choose the action I that attains the highest total backpres-
sure max{CIa , 0}+ max{CIb , 0}.

Theorem 2. The backpressure-based scheduling policy is
throughput-optimal in the virtual network.

Proof: The proof follows the same line as Theorem 2
of [24], as the policy satisfies the same necessary assumptions.



We omit the details due to space constraints.

V. THE EPOCH-BASED EVACUATION POLICY

In this section, we discuss an alternative throughput-optimal
policy, which is based on the idea of epoch-based operation
and the optimal evacuation of packets within each epoch.
Specifically, we consider the evolution of the system to be
divided into a sequence of epochs as follows.
• A new epoch commences with the arrival of a new packet

(or packets) to an empty system;
• An epoch ends as soon as all the packets that were present

in the system at the start of the epoch leave the system;
• If there are packets in the system at the end of an epoch

(which, by definition, must have arrived after the start of
that epoch), a new epoch commences at that point.

A policy is called epoch-based if, within each epoch, it only
processes the packets present at the start of the epoch, while
ignoring all new packets arriving during the current epoch
(these packets thus remain in the queues of the source nodes
at the start of the next epoch).

Our interest in epoch-based policies is motivated by [22],
where it was shown that, under very broad assumptions, an
epoch-based policy achieves the maximal throughput region
if it minimizes the expected evacuation time in each epoch
individually. Consequently, for the rest of this section, we focus
on a virtual network with a given vector L of instantaneous
queue lengths, and describe how to find the fastest evacuation
schedule that clears the system from that point assuming that
the arrival process is “frozen” from that point, i.e. no further
arrivals occur. To that end, for any particular policy, we define
the clearing time of L, denoted by D(L), to be the expected
number of slots until the system is cleared (i.e. all packets are
successfully delivered to their respective destinations) under
that policy. Thus, the clearing time of the zero vector, i.e.
where all queues are empty, is 0. We now proceed to derive
the clearing time expressions for an arbitrary L.

First, suppose that for a particular L, the policy chooses an
action I that transmits a native packet from the forward flow
only, taken from the queue of node Va. The clearing time of
L thus consists of 1 (counting the transmission in this slot)
plus a weighted sum of the clearing times of all the possible
queue length vectors to which the system can transition after
this action. Therefore,

D(L) = 1 + T I(〈B〉) ·D(L− 1Va)+

2K∑
i=1

T I(Va,i) ·D(L− 1Va
+ 1Va,i

), (7)

where 1Va
and 1Va,i

are indicator vectors, i.e. vectors con-
taining a 1 at the position corresponding to the respective
virtual node and 0 elsewhere. Observe that one of the terms
in the sum in the right-hand side of (7) corresponds to L itself
(namely, the term where Va,i = Va); this corresponds to the
outcome when there is no change in the network state, i.e. the
transmitted packet fails to be overheard by any new physical
node. Extracting it out of the sum, we get

D(L) =
1

1− T I(Va)
+

T I(〈B〉)
1− T I(Va)

·D(L− 1Va
)+

2K∑
i=1

Va,i 6=Va

T I(Va,i)

1− T I(Va)
·D(L− 1Va

+ 1Va,i
). (8)

Expression (8) can be intuitively interpreted as follows: the
clearing time is the expected number of transmissions until a
successful transition to any other vector occurs, followed by
a weighted sum of the clearing times of new vectors, where
the weights this time are the respective conditional transition
probabilities given that a transition has occured. For an action
involving a native packet from the reverse flow only, the
clearing time expression is similar and omitted for brevity.

Now, consider the case where the chosen action for a vector
L transmits a coded combination of two packets, taken from
the virtual nodes Va and Vb. The clearing time expression must
now consider the possible transitions in both of the virtual
half-networks; since the respective transition probabilities are
independent, we obtain

D(L) =
1

1− T I(Va)T I(Vb)
+

T I(〈B〉)T I(〈A〉)
1− T I(Va)T I(Vb)

·D(L− 1Va
− 1Vb

)+

2K∑
i=1

T I(Va,i)T
I(〈A〉)

1− T I(Va)T I(Vb)
·D(L− 1Va − 1Vb

+ 1Va,i)+

2K∑
j=1

T I(〈B〉)T I(Vb,j)

1− T I(Va)T I(Vb)
·D(L− 1Va

− 1Vb
+ 1Vb,j

)+

2K∑
i=1

2K∑
j=1

(Va,i,Vb,j)6=(Va,Vb)

T I(Va,i)T
I(Vb,j)

1− T I(Va)T I(Vb)
·

D(L− 1Va
− 1Vb

+ 1Va,i
+ 1Vb,j

). (9)
For two queue length vectors L,L′, we say that L is depen-

dent on L′ if there exists any action I such that D(L′) appears
in the right-hand side of the corresponding expression (8)–(9)
with a non-zero transition probability coefficient. Thus, every
dependency relationship can be associated with a transition of
native packets between virtual nodes (in either one or both
of the half-networks). Therefore, the dependency relationship
is acyclical; a directed cycle of dependency relationships is
not possible since a transition from a virtual node 〈A,S〉 can
happen only to either 〈B〉 or 〈A,S′〉 where S′ is a strict superset
of S (and similarly for transitions from a virtual node 〈B,S〉).

We therefore conclude that the optimal clearing time for
a given vector L can be found by a dynamic programming
algorithm, as follows. Assuming that the optimal clearing times
have already been found for all the vectors L depends on, the
algorithm tries every action I that can be validly applied with L
(i.e. satisfying the constraints of the definition of an action and
not transmitting a packet from an empty queue), calculates the
resulting D(L) using the corresponding expression (8)–(9), and
then records the minimum D(L) as well as the corresponding
action. When used in the context of an epoch-based policy —
to find the optimal evacuation policy for an initial vector of
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Fig. 3: Example of backpressure inefficiency at low arrival rates.
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Fig. 4: The virtual network corresponding to Figure 3.

MA and MB forward and reverse packets, respectively, queued
at the source nodes at the start of the epoch — this dynamic
programming algorithm finds the optimal actions for all queue
vectors with a total size of up to MA and MB .‡ Due to space
constraints, we omit a detailed step-by-step description of the
algorithm (which is similar to, e.g., the well-known Bellman-
Ford algorithm for shortest paths in graphs).

VI. DISCUSSION

Having described two different throughput-optimal policies
for wireless networks with opportunistic routing, we now dis-
cuss their relative merits and provide some insights for deciding
when it is better to apply one or the other.

It is generally known that, in the traditional model of
networks with constrained actions, the backpressure policy —
despite being optimal in a throughput sense — can be subopti-
mal with respect to other metrics, e.g. delay and/or number of
transmissions per packet, when the arrival rate is low and not
close to the capacity limit [15]. We now present an example
which shows that the same phenomenon exists in the context
of virtual networks as well. Consider the network in Figure 3,
featuring a path of high-quality links from each source to R1

and then to R2 which is a “dead end” (no outgoing links
from R2, i.e. zero probability of overhearing its transmissions).
The only path from A to B with a nonzero probability is
A→ R3 → B (and, similarly, in the opposite direction); hence,
clearly, the capacity limit for the corresponding unidirectional

‡This algorithm is an extension of the one presented in [25], which was
designed to optimize the clearing time for exactly one packet in each direction.
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Fig. 5: Average number of transmissions for the backpressure policy.

flow is the reciprocal of the path’s Expected Transmission
Count (ETX) metric (in this case, 1

1
0.5+

1
0.5

= 1
4 packets per

slot). For a bidirectional flow, note that R3 is able to clear
0.25 ·2+0.5 ·1 = 1 packet per slot on average with the help of
network coding, as long as it has packets from both directions
in the queue; thus, assuming a symmetric arrival rate to both
sources, the throughput limit is 1

2
0.5+2·1 = 1

6 packet pairs per
slot, or equivalently 1

3 packets per slot in total.
The corresponding virtual half-network from A to B for this

example is depicted in Figure 4 (the reverse half-network is
identical). Assume that a single packet arrives at A, and after
the first transmission, finds itself in either the virtual node
〈A, {R1}〉 or 〈A, {R1, R3}〉 (each with probability 0.5). In
the former case, it is easily seen that the action achieving the
highest backpressure value (which, for a single packet, is simply
equal to the total outgoing transition probability to any other
node) is a transmission by R1, which has a transition probability
of 1 to the node 〈A, {R1, R2}〉, better than a retransmission
by A which only has a transition probability of 0.5 (to the
node 〈A, {R1, R3}〉). Alternatively, if the packet arrived to
the virtual node 〈A, {R1, R3}〉 after the initial transmission,
then the highest backpressure value in the next slot is again
achieved by a transmission by R1 (transition probability 1 to
the node 〈A, {R1, R2, R3}〉), rather than a transmission by R3

(probability of only 0.5 to the destination 〈B〉).
Thus, we conclude that, as long as only one packet is present

in the network, in either direction (i.e. arrivals occur at a
sufficiently low rate), a wasted transmission by R1 always
takes place, which serves no other purpose than to transmit
the packet to the “dead end” R2, resulting in suboptimal delay
and energy consumption. Figure 5 shows the average number
of transmissions per packet for the backpressure policy as a
function of the arrival rate, assuming that the arrival processes
at both sources are independent and Poisson. We observe a
gradual improvement as the arrival rate approaches the capacity
limit, since the growing queue lengths at the “dead end”
nodes 〈A, {R1, R2}〉 and 〈A, {R1, R2, R3}〉 negate the wasted
transmissions by R1. The figure also shows clearly the benefit
of network coding, with the lowest average transmissions and
highest total throughput limit (i.e., λa + λb) attained when the
packet arrival rates are equal on both sides.

Obviously, this inefficiency does not occur with the epoch-



based policy from section V, which does not myopically maxi-
mize the probability of a packet to advance a step in the virtual
network, but rather “looks ahead” to find the fastest evacuation
path in each epoch and avoids dead ends in the process, lead-
ing to superior delay and energy performance. However, this
advantage comes at a cost of higher computational complexity;
while the backpressure policy only requires a calculation of
backpressure values, which is linear in the number of possible
actions (i.e., roughly, the size of the virtual network), computing
the fastest evacuation policy takes polynomial time in the
number of packets at the start of the epoch, with the degree
of the polynomial determined by the size of the network. This
suggests the possibility of a “best-of-both” combination that
can be achieved by a hybrid policy, which follows the fastest-
evacuation policy as long as the network is lightly loaded
(i.e. the number of packets is small), and falls back to the
backpressure one when the load rises above some threshold.
The exploration of such hybrid policies and the best way to set
the relevant threshold is left as a direction for future work.

VII. CONCLUSION

In this paper, we considered the throughput region in wireless
networks that employ opportunistic routing, where any packet
can be overheard by multiple nodes and forwarded towards
the destination by any of them based on instantaneous chan-
nel conditions, rather than via a single predetermined route.
Traditional models from the theory of network capacity cannot
be directly applied in this context due to the fact that, with
opportunistic routing, multiple copies of the same packet can be
enqueued in multiple nodes, and disappear from all the nodes
as soon as any of the copies is delivered to the destination.
Accordingly, we have described a generic transformation that
works around the above limitation, using a virtual network in
which nodes correspond to subsets of physical nodes that may
overhear a packet, and the transition of a packet between virtual
nodes is probabilistic. We have established the equivalence of
the throughput region in the physical and virtual network and
described two policies that attain the maximal throughput, one
based on a variation of the classical backpressure algorithm,
and another based on minimum-time evacuation of packets
in a sequence of epochs. The virtual network transformation
technique and the associated throughput-optimal policies were
demonstrated for either a unidirectional or bidirectional flow
between a pair of endpoints, in the latter case involving network
coding between packets traveling in opposite directions.

The throughput regions considered in this study are poten-
tially limited by the requirement that every transmission of a
coded packet (e.g. a XOR combination of packets from opposite
directions) must be able to be decoded immediately by the next
hop. It remains an open question whether policies that allow
coded packets to be retained by nodes that are unable to decode
them into individual native packets, and later forwarded or even
combined further with additional packets, can attain a higher
throughput region. The resolution of this question, as well as
a generalization of the model to multiple simultaneous flows
between an arbitrary number of source-destination pairs, are
left for future work.
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