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Abstract—We consider the multicast routing problem under
operational communication constraints, such as in practical
deployment scenarios, e.g., multi-domain ad hoc networks where
two or more teams form a coalition, or in tactical networks where
information flows need to adhere to specified policies regardless of
the physical connectivity of nodes. First, we consider the problem
of minimum-cost multicast routing on a multi-domain network by
constructing a node-weighted Steiner tree (for mesh networks)
and a Steiner connected dominating set (for wireless broadcast
networks) that is subject to a non-additive cost constraint. This
is because the multi-domain multicast cost is not just the sum of
node costs of a Steiner tree, but it instead depends on the domains
of the connected neighbors. We give an efficient algorithm that
provides an O(log k) approximation guarantee, where k is the
number of terminal (or sink) nodes in the network. Taking multi-
domain cost constraints into account can help reduce the cost of
a multicast tree by up to 40%. We also consider a constraint
imposed due to hierarchy compliance. We show that the overall
multicast can be decomposed into several smaller multicasts, each
of which might be efficiently solvable. We find that necessary
hierarchical constraints could cause a significant increase in the
total cost of multicast – up to 25%, as per our simulations based
on a realistic deployment scenario.

I. INTRODUCTION

Multicast networks are effective infrastructures for one-to-
many and many-to-many communications, which can reduce
the overhead of maintaining multiple one-to-one (i.e., unicast)
communications, particularly in wireless networks. Typical
multicast algorithms only provide basic connectivity to a given
set of “terminals” in the network with minimum cost (on nodes
and/or edges) while potentially using non-terminal nodes for
relaying. In point-to-point connection networks such as mesh
networks, the optimization problem is equivalent to finding a
minimum cost Steiner tree (ST) that connects all the termi-
nals [1]. On the other hand, in wireless broadcast networks,
where a node could reach multiple neighbors simultaneously
with a single broadcast, the problem is slightly different –
it is equivalent to finding a minimum cost Steiner connected
dominating set (StCDS) that connects all the terminals [2].
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Both ST [2], [3] and StCDS [2], [4] are well-studied in
literature in the context of basic multicast. In this paper,
however, we introduce two novel multicast network models
where the constraints are imposed by (a) the heterogeneous
multi-domain nature of the network, or (b) by hierarchical
policy-driven communications.

In multi-domain multicast networks, the goal is to connect
terminals belonging to multiple heterogeneous domains [5],
which refer to logically or physically distinct groups of nodes.
The presence of heterogeneous domains influences (and in
fact constrains) connectivity among nodes. In particular, nodes
can have heterogeneous transmission or forwarding costs that
depend on the local connectivity to other nodes of different
domains. Multicast forwarding in these networks typically
involves higher-cost inter-domain gateway nodes, whose costs
cannot be simply added to compute the total cost of the
multicast subgraph (for both mesh and wireless broadcast
network scenarios) – instead the total cost may depend on
the particular configuration of domains at each node in the
multicast subgraph. We aim to find optimal multicast sub-
graphs and associated domain configurations that minimize
the transmission/forwarding costs across multiple domains.

A second type of constraint that affects multicast com-
munication is that pertaining to information flow through
hierarchies. For many operations and missions in practice,
mere topological proximity to certain recipients of a mes-
sage does not warrant direct delivery of the message to
the latter. Instead, certain hierarchical policies that define
different roles and ranks of network nodes may constrain the
message flow through the network. For example, in military
networks, communications between various nodes may need
to be observed and then cleared by individuals located higher
in the chain-of-command hierarchy. It is often the case that a
subset of nodes in the hierarchy are interested in participating
together in a multicast session. Therefore, we are motivated
to construct multicast “routes” that connect these nodes while
being constrained by the hierarchy of information flow.

The aforementioned constraints can significantly impact the
routes chosen through multicast networks. In this paper, we
study the underlying optimization problems that are applicable
to constrained multicast in wireless networks both with and
without wireless multicast advantage (WMA). We show that
subtly different techniques can be applied to find guaranteed
approximation algorithms for both the scenarios. Our contri-



butions in this paper are as follows: (1) Optimization problem
formulation of the multi-domain multicast problem with non-
additive costs; (2) O(log n)-approximation algorithms based
on a node-weighted Steiner tree approximation algorithm and
a Steiner CDS approximation algorithm for multi-domain
costs; (3) Optimization problem formulation for multicasting
under hierarchical constraints, and optimal and approxima-
tion algorithms for the same; (4) Extensive simulation based
performance evaluation for both wireless mesh and broadcast
networks. We show that taking multi-domain cost constraints
into account can help reduce the cost of a multicast tree by up
to 40%. We also show that necessary hierarchical constraints
could cause a significant increase in the cost of multicast (up
to 25% when measured in terms of total cost in our simulations
that are based on a realistic deployment scenario).

II. PRELIMINARIES AND RELATED WORK

Given a graph G = (V,E), there is a set of terminals
(or sinks) M ✓ V and M 6= ?, which are required to
participate in multicast communication. Let |M | = k. We
typically denote T = (V (T ), E(T )) as a subgraph of G, where
V (T ) ✓ V and E(T ) ✓ E.

We now describe below variants of the unconstrained multi-
cast network optimization problem for both mesh and wireless
broadcast networks.

A. Unconstrained Multicast Network Problems

Edge-weighted mesh network multicast Each edge e 2 E
has an associated cost c(e). V \M are called Steiner nodes,
which may participate in multicast communication if their
involvement can enable connectivity between terminals in M .

Definition 1: Edge-weighted multicast problem:
minT

P
e2E(T )

c(e), subject to:
1) T is a connected subgraph of G, and
2) each pair of nodes u, v 2M are connected via T .
The above problem (also known edge-weighted Steiner

problem whose solution yields a tree T ) has been studied
extensively in the past. The problem is NP-hard not only for
the general graph setting [6] but also for the special cases
of Euclidean (L

2

) norm [1] and Manhattan (L
1

) norm [7]. It
is well-known that many variants of edge-weighted multicast
network (as known as Steiner network problems) have constant
approximation algorithms [8], [9], based on LP relaxation and
randomized rounding techniques.
Node-weighted mesh network multicast Each node v 2 V
has an associated cost c(v). Using previously defined notation,
we define the following problem1:

Definition 2: Node-weighted multicast problem:
minT

P
v2V (T )

c(v), subject to:
1) T is a connected subgraph of G, and
2) each pair of nodes u, v 2M are connected via T .

1This is the node-weighted Steiner tree problem, which is a generalization
of the edge-weighted Steiner problem since any instance of the latter can be
converted to an instance of the former by a simple transformation that involves
adding intermediate nodes to the graph for each edge.

Similarly, a Steiner tree problem for a graph with both node
and edge weights (but additive) can be transformed to a purely
node-weighted version.

For wireless networks with available Wireless Multicast
Advantage (WMA), a node can reach all its 1-hop neighbors
by a single broadcast under ideal channel conditions.
Node-weighted wireless broadcast This is equivalent to
computing the minimum Connected dominating set (CDS) of
G, which is a minimum node-cost connected subgraph such
that every node is either in the subgraph or is a neighbor of
some node in the subgraph [2], thus only those nodes in the
CDS need to broadcast the message to their neighbors. Weights
of “dominated” nodes not in the subgraph are not counted.
Node-weighted wireless multicast This is equivalent to
computing the minimum Steiner connected dominating set
(StCDS) of (G, M), which is a minimum node-cost connected
subgraph such that every terminal is in the subgraph or is
a neighbor of some node in the subgraph [2], thus only
those nodes in the StCDS need to broadcast the message
to their neighbors. Weights of “dominated” nodes (including
terminals) in the subgraph are counted.

Figure 1 illustrates how ST and StCDS could yield signifi-
cantly different results on the same input graph.

B. Approximation Algorithm for Node-weighted Steiner Trees

Klein and Ravi gave the first approximation algorithm for
this problem with polynomial time complexity [3] – this
yields a cost within a constant factor of the best-possible
approximation algorithm, and has an approximation guarantee
of a factor of 2(log |M |) [3]. Note that it well known that
the set-cover problem can be reduced to the node-weighted
Steiner tree problem in an approximation-preserving manner,
thus showing that the node-weighted Steiner tree problem is
⌦(log |M |)-approximable.

To devise a tree construction algorithm for constrained
multicast, we first discuss the Klein-Ravi algorithm for con-
structing a node-weighted Steiner tree [3], which forms a
building block of our constrained multicast algorithms. The
Klein-Ravi algorithm greedily and iteratively merges a set of
subtrees to form a multicast tree. Initially, the set of subtrees
consists of singleton sets of terminals T

(0)

= {{v} | v 2M}.
At step t, the algorithm finds a node v 2 V and a subset
of subtrees F ✓ T

(t�1)

such that the following distance
metric is minimized: gdist(v, F ) , c(v)+

P
T2F dist(v,T )

|F | . where
dist(v, T ) is the total node-weighted cost of a shortest path
from v to reach the nodes in T , excluding the costs of the
two end-nodes. Then, the subtrees in F will be merged with
v using shortest paths to form one single subtree in T

(t). We
summarize the Klein-Ravi algorithm below:

The running time of KleinRavi Alg algorithm is
O(|V |3 log |V |), because finding the minimum g

dist(v, F )

among all F can be achieved by first sorting the set of
shortest paths of every node to v in a decreasing order, and
then inserting each subtree incrementally into F to determine
the minimum g

dist(v, F ) (see [3]).



Algorithm 1 KleinRavi Alg[G, M, c(·)]
1: Set T

(t) = {{v} | v 2M}
2: t = 0

3: while |T
(0)

| > 1 do
4: t t + 1

5: Find v 2 V and F ✓ T
(t�1)

such that g
dist(v, F ) is minimized

6: T 0  subtree by merging F with v using shortest paths from v
7: T

(t)  (T
(t�1)

\F ) [ {T 0}
8: Output T

(t)

Fig. 1. Node-weighted Steiner Trees and Steiner connected dominating sets
(“terminal” nodes are denoted by unfilled circles)

Since it is possible to transform a graph with both node and
edge costs to one with only node costs, we only consider the
purely node-weighted version of the problem in this paper2.

III. PROBLEM FORMULATION

In the following subsections, we present the mathematical
formulations for two constrained multicast network problems.

A. Multi-Domain Multicast
We first consider a set of domains D. We define 8v2V Dv ✓

D as the set of possible domains for v. Each node may
configure its associated domains as any subset of Dv .

We next define a network-wide feasible configuration of
domains that is subject to the constraint that a pair of nodes
can directly communicate with one another if the nodes are
configured with certain common domains. Given a subgraph
T , we define a feasible configuration of domains w.r.t. T as
(xT (v) ✓ Dv)v2T , such that if (u, v) 2 E(T ) then xT (u) \
xT (v) 6= ?. Given a feasible configuration of domains xT ,
each node v 2 V has an associated cost c(v, xT (v)), which is
a function of the configured domains xT (v).

Definition 3: Multi-domain multicast problem:
minxT ,T

P
v2V (T )

c(v, xT (v)) subject to:
1) T is a connected subgraph of G, and
2) each pair of nodes u, v 2M are connected via T , and
3) xT is a feasible configuration of domains w.r.t. T .

We note that the set of Steiner (or non-terminal) nodes can
be regarded as “gateways” to bridge the connectivity across
multiple domains using appropriate domain configurations. We
have to optimize the selection of Steiner nodes as well as their
domain configurations for constructing a multicast network.

Further, we assume the following monotonicity and submod-
ularity3 constraints on c(v, ·) for all v 2 V and any D ✓ Dv:

max

d2D
c(v, d)  c(v,D) 

X

d2D

c(v, d) (1)

2While there are more recent algorithms that improve upon O(log |M |)
approximation by a constant factor, e.g., [2], we decided to use the Klein-
Ravi algorithm for our investigations, as the latter is simpler.

3Note that this is similar to, but not the same as the full definition of
submodularity in combinatorics.

Fig. 2. An example of multi-domain multicast network (squares are sinks)

This is a natural constraint because c(v, ·) should be greater
than the maximum cost of individual domains, and should not
exceed the total cost of individual domains. Indeed, in several
realistic application scenarios, the marginal cost associated
with a larger set diminishes with set size.

Figure 2 illustrates the above with a simple example.
Consider a multi-channel network (e.g., radio or optical),
where each node is equipped with transceivers tuned to one
of more frequencies. These frequencies can be considered as
domains. Suppose D = {R,B}, where R and B indicate
red and blue domains. The possible domains for the one-
frequency nodes Ri’s and Bi’s are Dv = {R} and Dv = {B},
respectively, whereas the possible set of domains for the two-
frequency nodes Pi’s is given by Dv 2 {{R}, {B}, {R,B}}.
Analogously, we refer to the domain {R,B} as the “purple”
(P ) domain in this example. The cost of the purple domain
c(P ) = c({R,B}) characterizes the cost to process data
encoded in input red (or blue) frequency and output data in
both red and blue frequencies. Also, c(R) denotes the cost to
process “red” data alone (and similarly for c(B)).

Figure 2 shows two “domain configurations” at purple
nodes P

1

, P
2

and a Steiner tree which connects the sink
nodes (marked in squares). In the first configuration, DP1 =

{{R,B}}, whereas DP2 = {{R}}. Therefore, c(P
1

) = c(P )

and c(P
2

) = c(R). Similarly, in the second configuration,
DP1 = {{B}}, whereas DP2 = {{R,B}}. Therefore the costs
of the two topologically isomorphic Steiner trees are different,
i.e., 2c(R)+c(B)+c(P ) and c(R)+2c(B)+c(P ), respectively.
In contrast, a standard node-weighted Steiner tree would have
a higher cost, c(R) + c(B) + 2c(P ). Our goal is to find the
lowest cost tree and the corresponding configuration efficiently
(since in general, there are an exponentially large number of
configurations for a tree).
Multi-domain wireless multicast: The wireless network sce-
nario has a natural analog to the multi-domain multicast
problem. Instead of finding a Steiner tree, the problem here is
to find an appropriate Steiner connected dominating set with
a suitable domain configuration that minimizes the total cost
of the StCDS.

Let �T (v) be the degree of node v in a subgraph T .
Definition 4: Multi-domain Steiner CDS:

minxT ,T

P
v2V (T ):�T (v)>1

c(v, xT (v)) subject to:
1) T is a connected subgraph of G, and
2) each pair of nodes u, v 2M are connected via T , and
3) xT is a feasible configuration of domains w.r.t. T .

B. Hierarchy-Compliant Multicast
For the second problem, we consider a hierarchy of roles

of network nodes that can be captured by an acyclic graph
H = (VH , EH), and a mapping h(·) : V 7! VH .



Fig. 3. An example of multicast under a hierarchical constraint.

A path in graph can be regarded as a sequence of nodes in
the order it traverses. Given a path P in G, we write h(P ) as
the sequence of the corresponding roles in H . A sequence Q
is said to be a subsequence of Q0, if removing some elements
in Q0 can create Q.

A subgraph T is said to be H-compliant, if any pair of
nodes in M are connected in T , then there exist a path P in
T and a path Q in H , such that Q is a subsequence of h(P ).

Definition 5: Hierarchy-compliant multicast problem:
minT

P
v2V (T )

c(v), subject to
1) T is an H-compliant connected subgraph of G, and
2) each pair of nodes u, v 2M are connected via T .
Figure 3 illustrates this class of constrained multicast net-

works with an example. An organizational hierarchy is shown
on the left, and the corresponding physical deployment topol-
ogy is shown on the right. Node 1 (root of the hierarchy) wants
to multicast data to a set of nodes {4, 5, 7, 9} (circles). How-
ever, the hierarchical constraints constrain the flow of the data
as the “supervisors” of these aforementioned nodes must act
as intermediaries (nodes {2, 3} here). This may be necessary
as the latter have better context about the subordinates than the
root of the organization and they may want to even modify or
embellish the message. Therefore, not only does the multicast
sink set have to expand to include these intermediaries, the
order in which the message is delivered to the sinks must
obey the hierarchy. This may cause the information flow to
get “stretched”, and hence we need efficient algorithms for
finding low cost multicast structures that strike the balance
between hierarchical constraints and exploit the properties of
the physical network.
Hierarchy compliant wireless multicast: This is a natural
analog for the wireless case where WMA can be leveraged.

Definition 6: H-compliant wireless multicast problem:
minT

P
v2V (T )

c(v), subject to
1) T is an H-compliant connected subgraph of G, and
2) u 2M is either in T or is a neighbor of a node in T .
Although our formulation captures general hierarchies,

most practical policy-driven hierarchies are tree based (e.g.,
command-and-control hierarchy). Hence, in this paper, we will
focus on the construction of hierarchy-compliant multicast
networks with respect to tree hierarchy.

IV. MULTI-DOMAIN MULTICAST ALGORITHMS

In this section, we present approximation algorithms for the
multi-domain multicast problem. We first consider the mesh
network case and then the wireless broadcast network case.

Fig. 4. Graph transformation to support non-additive multicast costs: (Left)
Original graph, G. (Right) Augmented graph, G0. Multicast terminal nodes
are denoted by green squares. New black nodes (PS

2

) correspond to multi-
domain nodes that are terminals. New edges (shown as dashed or in dark color)
are drawn according to the graph augmentation rules. Trivial augmentations
of single-domain terminals (R

1

, B
1

) are not shown for the sake of reducing
clutter.

A. Mesh Networks: Multi-domain Steiner Tree
We rely on a gadget called augmented graph. Given a graph

G = (V,E) and (Dv)v2V , we define an augmented graph
Gaug(M) = (Vaug, Eaug) as follows:

1) Vaug ,
�
vD | v 2 V,D 2 Dv

 
[M

2) Eaug , Edom

S
Eprxy

S
Eter, where

Edom =

�
(uD, vD0

) | (u, v) 2 E,

D 2 Du, D0 2 Dv, D \D0 6= ?
 

Eprxy =

�
(vD, vD0

) | v 2 V,D 2 Dv, D0 2 Dv

 

Eter =

�
(v, vD) | v 2M,D 2 Dv

 

In the above steps, we replicate the connectivity in the
original graph G and augment the connectivity considering
every possibility of domain configurations between a pair
of neighboring nodes. Also, we duplicate every terminal in
Gaug(M) as a unaltered terminal and a set of proxy nodes
with all possibilities of domain configurations. We present an
example of augmented graph generation in Figure 4.

We present our approximation algorithm in Algorithm 2.
Our algorithm first applies KleinRavi Alg to the augmented
graph Gaug. Then, we project the output from KleinRavi Alg
to a valid Steiner tree in the original graph G.

Algorithm 2 MDMN Alg[G, M,
�
Dv, c(v, ·)

�
v2V

]

1: Construct Gaug(M) from G, M and (Dv)v2V

2: for all vD 2 Vaug\M do
3: Set c0(vD) = c(v, D)

4: for all v 2M do
5: Set c0(v) = 0

6: T 0  KleinRavi Alg[Gaug, M, c0(·)] . Apply Klein-Ravi algorithm
. Now, map to a feasible configuration in G

7: Set T =

`
V (T ) = ?, E(T ) = ?

´

8: for all vD 2 V (T 0
) do

9: V (T ) V (T ) [ {v}
10: for all (uD, vD0 ) 2 E(T 0

) do
11: E(T ) E(T ) [ {(u, v)}
12: for all v 2 V (T ) do
13: Set xT (v) =

S

vD2V (T 0)
D

14: Output (T, xT )

Since the augmentation steps are meant to produce a graph
Gaug(M) that duplicates the connectivity of neighboring nodes
for every feasible configuration of domain, the optimal Steiner
tree on Gaug(M) naturally corresponds to the optimal Steiner
tree on multi-domain G. However, this is not trivial, because



the mapping between a Steiner tree on Gaug(M) and the one
on G is not always bijective.

Theorem 1: An optimal node-weighted Steiner tree on the
augmented graph Gaug(M) (i.e. the output of running the exact
Steiner tree construction on it) has the same cost as an optimal
Steiner tree on G considering multi-domain constraints.

Proof: We first define a mapping f(T 0
) 7! (T, xT ), where

T 0 is a Steiner tree on Gaug(M) and T is a Steiner tree on G
with configuration of domains xT , such that

• If vD 2 V (T 0
), then we have v 2 V (T ).

• If (vD, uD0
) 2 E(T 0

), then we have (u, v) 2 E(T ).
• Set xT (v) =

S
vD2V (T 0

)

D

Note that the definition of mapping f(·) is the same as the
corresponding mapping in MDMN Alg.

Step 1: We first show that f(·) produces a feasible con-
figuration xT w.r.t. T . Otherwise, there exists a violated edge
(u, v) such that xT (v)\xT (u) = ?. Note that the construction
of Gaug(M) requires that any (uD, vD0

) 2 Gaug(M) satisfies
D \ D0 6= ?. Hence, (u, v) will not be an edge in T . This
generates a contradiction.

Step 2: Suppose T 0 is an optimal Steiner tree on Gaug(M).
We then show that the total node-weighted cost of T 0 is
equivalent to that of T . Note that by f(·), vD 2 V (T 0

) iff
v 2 V (T ). We prove by contradiction. Suppose that the total
node-weighted cost of T is not equivalent to that of T 0. Then
there exists a collection {Di ✓ Dv} such that vDi

2 V (T 0
)

and
S

i Di = xT (v) and c(v, xT (v)) 6=
P

i c(v,Di). Also, by
submodularity constraint (Eqn. (1)), we obtain

c(v, xT (v)) 
X

d2xT (v)

c(v, d) 
X

i

c(v,Di) (2)

Hence, c(v, xT (v)) <
P

i c(v,Di). Since vxT (v)

has the same
connectivity as the the union of {vDi}. Replacing {vDi} by
a single node vxT (v)

in T 0 will not change the connectivity,
however can give a strictly lower cost. This generates a
contradiction that T 0 is an optimal Steiner tree on Gaug(M).

Step 3: Suppose T 0 is an optimal Steiner tree on Gaug(M).
We show that T is an optimal Steiner tree on G considering
multi-domain constraint. Suppose T is not optimal Steiner tree,
and there exists ˆT on G, which has a lower node-weighted
cost. We create an augmented graph ˆTaug by ˆT . Note that ˆTaug

is a subgraph of Gaug(M). The cost is preserved in augmented
graph. Hence, the node-weighted cost of ˆTaug is the same
as that of ˆT , but is lower than that of T 0. This generates a
contradiction that T 0 is an optimal Steiner tree on Gaug(M).

Finally, we note that every terminal has a corresponding
unaltered terminal and a set of proxy nodes with all possi-
bilities of domain configurations in Gaug(M). The unaltered
terminal carries zero cost. Hence, this will not increase the
cost of optimal Steiner tree on Gaug(M).

Therefore, by Steps 1-3 we conclude that an optimal node-
weighted Steiner tree on the augmented graph Gaug(M) has
the same cost as an optimal Steiner tree on G.

Theorem 2: Algorithm MDMN Alg produces an
O(log |M |)-approximation to an optimal Steiner tree on
G considering multi-domain constraint.

Proof: By Theorem 1, if we replace KleinRavi Alg in
MDMN Alg by exact construction of Steiner tree, then we
can obtain an optimal Steiner tree on G considering multi-
domain constraint. Since KleinRavi Alg is an O(log |M |)-
approximation to an Optimal Steiner on a unconstrained
graph, and by Theorem 1 Step 1, we show that MDMN Alg
produces a feasible configuration xT w.r.t T . Hence, Algo-
rithm MDMN Alg produces an O(log |M |)-approximation to
an Optimal Steiner on G compliant with the multi-domain
constraint.

Note that since we assume |D| is a constant independent of
|V |, MDMN Alg still runs in polynomial time.

B. Wireless Broadcast Networks: Multi-domain Steiner CDS
We now present an algorithm for approximating multi-

domain CDS. The graph augmentation technique of Sec. IV-A
is unsuitable since only the cost of leaf terminals is not
counted while finding an StCDS, thus prompting another
approach. First, greedily pick nodes that cover more than
one of the previously uncovered terminals. For those covered
elements, pick a representative terminal out of each greedy
cover together with uncovered terminals (B). Next construct
a (uniform) min-edge Steiner tree over B. Finally, greedily
configure domains over these nodes in the Steiner tree.

First, define set cover problem as a set U of N items, and
a family of subsets (called covers) S ✓ 2

U . We aim to pick
the a subset of covers ˜S ✓ S such that min

˜S✓S | ˜S|, subject to
the constraint of covering all items

S
C2 ˜S S = U . We present

a modified greedy set cover algorithm in Algorithm 3, which
stops when no more than one uncovered item can be covered.

Algorithm 3 GreedySetCover[U ,S, c(·)]
1: ˜S  ?, C  ?, A ?, S U
2: repeat
3: Choose S 2 S with minimal

P
i2S\C c(i) . break ties arbitrarily

4: if |S \ C| > 1 then
5: A A [ {u} for some u 2 S \ C
6: C  C [ S, ˜S  ˜S [ {S} . Update set of covered elements
7: until |S \ C|  1 or C = U
8: return (

˜S, A)

Define N (v) ⇢ V as the set of neighbors of v 2 V .

Algorithm 4 MStCDS Alg[G, M, c(·)]
1: for v 2 V do
2: Create Sv  M \N (v)

3: (

˜S, A) GreedySetCover[M, {Sv | v 2 V }, c(·)]
4: U  M\(

S
˜S)

5: Construct edge-minimizing Steiner tree T over terminal set U [A
6: B  {v | Sv 2 ˜S}
7: Set StCDS as T  T [B
8: for v 2 T traversing from leaf nodes to upstream do
9: if v is a leaf node then

10: Set xT (v) Dv \Du, where u parent of(v)

11: else
12: Set xT (v) [w is child of v xT (w)

13: Output (T, xT )

Theorem 3: MStCDS Alg (Algorithm 4) yields an approx-
imation factor O(

maxv2V,D✓Dv c(v,D)

minv2V,d2Dv c(v,d)

log(|V |)).



Proof: We extend the proof of Guha-Khuller [2] to the
multi-domain setting. First, we note that |B| = |Opt| log |V |,
where Opt is the optimal set of CDS without considering
multi-domain constraint. Also, note that |U |  |Opt| be-
cause no more than one node in U can be covered by one
node in CDS (otherwise, such nodes cannot be in U ). Then
there exists a Steiner tree connecting U [ A using at least
|U |+|A|+|Opt|�1 edges (i.e. |U |+|A| edges for connecting to
U[A , while |Opt|�1 edges connecting to the nodes in tree of
size |Opt|). We note that there exists a constant approximation
algorithm for edge-minimizing Steiner tree (See [2]). Hence,
we obtain an approximate edge-minimizing Steiner tree of at
most size c · (|U | + |A| + |Opt|� 1). This gives a CDS with
at most c · (|U | + |A| + |Opt|� 1) + |B|. Therefore, the size
of CDS is upper bounded by O(log |V | · |Opt|).

Finally, we configure the domains to satisfy the multi-
domain constraint by xT (v)  [w is child of v xT (w). The
optimal CDS considering multi-domain constraint will have
at least |Opt| nodes. The worst case of multi-domain configu-
ration will incur at most a cost of a factor maxv2V,D✓Dv c(v,D)

minv2V,d2Dv
.

Hence, this completes the proof.

V. HIERARCHY-COMPLIANT MULTICAST ALGORITHMS

In this section, we give efficient algorithms for multicasting
under constraints imposed by a logical hierarchy in which the
network users are embedded. In this model, a node can read
the message content only if it is signed by its parent node in
the hierarchy. Nodes can, however, freely route messages in
the network without reading their contents.

We consider the special case where the acyclic graph H =

(VH , EH) mentioned in Section III-B is in fact a tree and the
function h(·) is bijective. An edge (u, v) 2 EH means that
node v can receive a message from node u only after it is
signed (or authenticated) by u. Without such authentication,
the message can be neither read nor modified by v, although
it can be forwarded along.

As mentioned in Section III-B, the Hierarchy Compliant
Multicast (HCM) problem involves augmenting the set of
terminal nodes M by their ancestors in H . In particular,
M 0

= M [ {u | 8s 2 M,u = ancestor(s,H)}. We consider
two models here.

We first consider the caching-friendly version of the prob-
lem (CFM) which is more straightforward. If caching the
message is allowed and the message is not modifiable, it may
be distributed via Node-weighted Steiner multicast and cached
before the authentication/authorization occurs. The latter can
happen in hierarchical precedence order starting from the root
node R towards the respective leaves in M along the edges of
the tree H . The control overhead of the authentication process
is typically negligible compared to that of the overhead of
distribution of the actual data.

In the strict-precedence version of the problem, ancestor
nodes cannot receive the message before their subordinates
receive it. This phenomena could indeed occur if we flat out
ran KleinRavi Alg (Algorithm 1) on (G, M 0

). We also observe
that in order to adhere to the strict precedence constraints,

a message may have to traverse certain vertices and edges
more than once. For example, if (u � v � w) is a fragment
of communication graph G and the message m currently
resides at u and v, and the precedence constraints demand that
{(h(v), h(u)), (h(u), h(w))} ✓ EH , then after receiving m
from v, u will transmit a copy of m toward w, thus traversing
the edge (u, v) again. This may be unavoidable if u desires to
make modifications to m before forwarding it to w.

HCM cannot be directly mapped to a Steiner tree problem.
In fact the lowest cost topological structure need not necessar-
ily be a tree. The steps to compute optimal and approximate
HCM structures are listed in Algorithm 5.

Algorithm 5 BFSteiner Alg[G, M, H,R 2 V, c(·)]
1: M 0

= M [ {u | 8s 2M, u = ancestor(s, H)}
2: H0

= induced subtree(M 0, H)

3: C  {c | c 2 children(R, H0
)} . breadth-first traverse H0 from R

4: SR  Steiner Alg[G, {R} [ C, c(·)] . Solve mini-Steiner tree
problem. Steiner Alg could be Optimal Steiner or KleinRavi Alg

5: while C 6= ? do . BFS and solve mini-Steiner tree problems
6: c popfront(C)

7: Sc  Steiner Alg[G, {c} [ children(c, H0
), c(·)]

8: pushback(C, children(c, H0
))

9: SubG 
S

u2H0 Su . Union of Steiner trees

Note that it is possible for solve HCM optimally in a rea-
sonable amount of time (unlike CFM or even MDMN) when
the degree of H is constant and does not grow with |V | or
|M |. This is because the overall optimization problem can be
decomposed into multiple smaller sized Steiner tree problems,
each of which can be solved optimally (and independently)
using an Integer Programming formulation (Optimal Steiner).
At lines 4 and 7 in Algorithm 5, although the number of nodes
in the graph is |V |, the number of terminals is typically much
smaller than |M 0| and is bounded by the out-degree of H 0,
which is in turn bounded by the out-degree of H .

Theorem 4: BFSteiner Alg[G, M, H,R, c(·)] returns the
optimal subgraph T of G when Optimal Steiner is used.

Proof: We use notation defined in Section III-B. H 0 is
the tree rooted at R induced on H by the multicast terminal
set M 0. Consider an arbitrary subtree T 0 of H 0 which is
rooted at node r 2 VH . Let CH0

(r) be the direct children
of r in H 0. Any optimal subgraph SubG that connected all
terminals in M in an H-compliant manner must contain a
subgraph Su of G that connects node u 2 VG (such that
h(u) = r) with certain nodes v

1

, v
2

, . . . , v|CH0 (r)| 2 VG

such that {h(v
1

), h(v
2

), . . . , h(v|CH0 (r)|)} = CH0
(r). Now, Su

can be computed independently of other such subgraphs that
are computed during the execution of BFSteiner Alg because
none of the portions of the previously computed subgraphs can
be reused during the computation of S, for if these portions are
reused, there will be a violation of H-compliance. Moreover,
there will be violation of H-compliance if one or more of
nodes in set {u, v

1

, v
2

, . . . , v|CH0 (r)|} do not get included in
T . This follows from the fact that h(·) is bijective. Since
Su can be computed independently, if an optimal Steiner tree
algorithm is used to compute it, then SubG =

S
u2M 0 Su.

Corollary 5: If H has maximum degree k,
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Fig. 5. Scaling of multicast tree costs: (a) Grid networks – optimal curves plotted for N  196; (b) RGG – optimal (dotted) and Klein-Ravi approximation
(solid); (c) vs. number of terminals (for N = 625) – base graph (dotted); augmented graph (solid)

BFSteiner Alg[G,M,H,R, c(·)] returns a subgraph T
with cost within 2 log (k + 1) of that of the optimal subgraph
T , when KleinRavi Alg is used.

Proof: Since the maximum number of terminals in each
“mini” Steiner tree computation is k + 1, according to Klein-
Ravi’s approximation guarantee of 2 log (k + 1), the cost of
each mini-Steiner tree is within at most 2 log (k + 1) factor of
the optimal. Therefore the total cost obeys the same bound.
H-compliant wireless multicast BFSteiner Alg can be nat-
urally extended to the wireless network setting. Essentially,
instead of repeatedly computing Steiner trees that connect H-
compliant nodes at consecutive levels in H , one needs to
repeatedly compute Steiner CDSes that can connect the H-
compliant nodes at consecutive levels in H . In particular, Lines
4 and 7 in Algorithm 5 need to be replaced by a call to either
the Optimal Steiner CDS algorithm or to Guha and Khuller’s
approximation algorithm for computing Steiner CDS [2].

HCM is significantly different from overlay multicast [10].
In the latter, the overlay network is used to perform point-to-
point unicast to achieve multicast, mainly because multicast
is not widely supported in the underlay network. In contrast,
in our setting, multicast is available as a primitive and the
precedence constraints impose an overlay structure on top of
the multicast-capable network substrate. Hence the solution
space for our algorithms is likely to be richer.

VI. PERFORMANCE EVALUATION AND DISCUSSION

Multi-domain multicast We first evaluate the performance of
the multi-domain multicast algorithm by extensive simulations
on both grids and random geometric graphs (RGG). Each node
is assumed to belong to R or B domains with probabilities
pr and pb, respectively, thus a node is a (purple) gateway
node with probability pp = 1 � pr � pb. Then, edges are
created between adjacent nodes, with the only forbidden pair
being red-blue. Finally, nodes act as multicast terminals with
probability f . For each instance of a randomly generated grid
graph (base G), we apply the augmentation rules given in
Section IV to generate the augmented graph Gaug, and then
run Optimal Steiner as well as Algorithm 1 on both G and
Gaug. The objective is to characterize the gain achieved by
exploiting the fact that a purple node may be charged only cb

(cr) if it is only communicating with blue (red) nodes.
Initially, we vary the network size N = n2 for fixed

parameters (p = 1.0, pr = 0.2, pb = 0.3, f = 0.1, cr =

2, cb = 3, cp = 4). We first observe in Fig. 5(a) (all error
bars indicate 95% confidence intervals) that it is feasible to
run the Optimal algorithm only up to k ⇡ 14 terminals;
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Fig. 6. Fractional difference in multicast tree costs on 2D grids for Optimal
(solid curve) and Klein-Ravi (dotted curve).

beyond that, we experience exponentially large running times.
However, we observe that KleinRavi Alg is able to return
very good approximations of the Optimal, much lower than
the worse case approximation factor of 2 ln k for both base
and augmented graphs. We also observe that the average
multicast tree cost increases linearly with N – this is because
the terminals are uniformly randomly distributed across the
network (therefore, the number of nodes in ST scales linearly
with N ), and node costs cr, cb, cp are not very different.
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Fig. 7. Multicasting with WMA: (a) wireless grid network; (b) 100 node
RGG. Cost is that of StCDS + leaf nodes.

A significant finding is that the Steiner tree costs on G are
higher than those on Gaug because in the latter, it is possible
to find paths that pass through purple gateway nodes (P )
but with no R $ B conversions. Interestingly, the fractional
decrease in costs hovers between 20 � 30% over the entire
range of N for the case of Optimal and stabilizes around
25% for the case of the Klein-Ravi. Figure 5(b) illustrates
the relative performance on RGGs. We observe that as the
connectivity range is increased, the Steiner tree cost decreases
since a fewer number of non-terminal nodes are needed to
connect the terminals. However, we observe that the gains
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due to augmentation hold steady for both Optimal and Klein-
Ravi. If f is varied while keeping N fixed, we observe a
roughly linear scaling trend (In Figure 5(c)). The terminals are
distributed uniformly randomly which results in the number
of nodes in the Steiner tree growing almost linearly. We also
obtain over 25% cost savings due to augmentation.

In Figure 6, we examine the impact of varying the fraction
of multi-domain nodes on the fractional difference between
the multicast tree costs on base and augmented graphs. As
pp is increased, for N = 100, f = 0.1, we observe that the
fractional difference increases significantly (up to 40%). This
confirms our hypothesis that classic multicast (which sums
the cost of multi-domain nodes, irrespective of whether they
are performing inter-domain message conversions) is unable
to exploit the opportunities to find low cost multicast trees;
and thus the proposed graph augmentation is necessary.

Figure 7 shows the performance of Algorithm 4 when WMA
is available. We observe a similar trends of cost vs. network
size or Tx range as in the case with no WMA. The StCDS
costs in Fig. 7 are higher than corresponding ST costs in Fig.
5 (both include terminal costs). A likely explanation is that
while ST minimizes the total number of nodes in the tree
connecting the terminals, StCDS minimizes only the number
of non-leaf nodes in the CDS connecting the terminals.
Hierarchy-compliant multicast We use a 91 node synthetic
data set based on a historical military deployment scenario
where nodes in the network were tagged with geolocation
and hierarchy labels4. Figure 8(a) illustrates the locations of
various troop units and their relative positions in the military
hierarchy. We simulated random sets of multicast terminals
M in this network and calculated the cost of H-compliant
multicast. The node costs were also chosen randomly 2 (0, 1].
Obviously, the requirement of H-compliance results in a
significant increase in the number of terminals (the new ones
are ancestors of M in H). We observe from Figure 8(b) that
as |M | grows, the cost of the Steiner subgraph begins to get
dominated by the costs of the terminal nodes themselves. This
is because, if there are many terminals, most terminals do
not need help from non-terminals to get connected to each

4This data set was generated from sources in the public domain:
British Army website: http://www.army.mod.uk; Ministry Of Defense website:
http://www.mod.uk; T. F. Mills, “Land Forces of Britain, the Empire, and the
Commonwealth”. http://www.regiments.org; Kenneth Macksey, “First Clash,
Combat Close-Up in World War Three,” (Royal Tank Regiment), Berkley
Books, First edition, March 1, 1988; Carl Schulze, “The British Army of the
Rhine (Europa Militaria)”, No. 19, Crowood Press, 64 pp., June 1995.

other. Also, the costs yielded by both Optimal and Klein-Ravi
versions of Algorithm 5 are very close to each other, and since
Optimal does not take longer than Klein-Ravi to run when
executed at each level of H (and thus with a bounded number
of terminals), either algorithm is a reasonable candidate to be
used within Algorithm 5.

Finally, we illustrate the overhead of H-compliance on
multicast in Figure 8(c). We executed Algorithm 5 (with both
Optimal and Klein-Ravi variants) as well as flat Klein-Ravi
Steiner tree algorithm without H-compliance (for the CFM
algorithm mentioned in Section V) on the 91 node network.
The latter obviously yields significantly lower costs since
the flows do not have to be H-compliant. However, if H-
compliance is a requirement, then one must be willing to pay
a 25% overhead in total costs. If only non-terminal costs are
measured, then the relative overhead is much more significant.

Although hierarchical constraints on multicast can result
in significant stretch of information flows thus resulting in
significant increase in costs of Steiner structures connecting
the terminals, the good news is that approximation algorithms
(with worst case guarantees) can perform close to their optimal
counterparts, while executing in low polynomial time.
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