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Abstract. In this position paper we outline an approach to relate what
the verifying compiler veri�es to the de�nition and analysis (experimen-
tal validation and mathematical veri�cation) of the application-content
of programs. The underlying Abstract State Machines (ASM) method
for high-level system design and analysis bridges the gap between in-
formal requirements and detailed code by combining application-centric
experimentally validatable system modeling with mathematically veri�-
able re�nements of abstract models to compiler-veri�able code.

By de�nition in [37], the program veri�er challenge is focussed on the cor-
rectness of programs: software representations of computer-based systems, to-be-
compiled by the verifying compiler. As a consequence, \the criterion of correct-
ness is speci�ed by types, assertions and other redundant annotations associated
with the code of the program", where \the compiler will work in combination
with other program development and testing tools, to achieve any desired degree
of con�dence in the structural soundness of the system and the total correctness
of its more critical components." [37] Compilable code however is the result of
two program development activities, which have to be checked too:

{ turning the requirements into ground models, accurate \blueprints" of the
to-be-implemented piece of \real world", which de�ne the application-centric
meaning of programs in an abstract and precise form, prior to coding,

{ linking ground models to compilable code by a series of re�nements, which
introduce step by step the details resulting from the design decisions for the
implementation.

We propose to broaden the program veri�er challenge by relating the veri�-
cation of the correctness for compilable programs to the experimental validation
of the application-domain-based semantical correctness for ground models and
to the mathematical veri�cation of their re�nements to compilable code, using
Abstract State Machine (ASM) ground models [9] and ASM re�nements [10].

1 ASM Ground Models (System Blueprints): A
Semantical Foundation for Program Veri�cation

Compilable programs, though often considered as the true de�nition of the sys-
tem they represent, in many complex applications do however not \ground the



design in reality", since they provide no correspondence between the extra-logical
theoretical terms appearing in the code and their empirical interpretation, as re-
quested by a basic principle of Carnap's analysis of scienti�c theories [21]. By
ground models for software systems I mean mathematical application-centric
models, which de�ne what Brooks [20] calls \the conceptual construct" or the
\essence" of code for a computer-based system and thus \ground the design in
reality". Ground models are the result of the notoriously di�cult and error prone
elicitation of requirements (see [36, 38]), largely a formalization and clari�cation
task realizing the transition from mostly natural-language problem descriptions
to a su�ciently precise, unambiguous, consistent, complete and minimal formu-
lation, which represents the algorithmic content of the software contract.

By its epistemological role of relating some piece of \reality" to a linguistic
description, the fundamental concept of ground model has no purely mathemat-
ical de�nition, though it can be given a scienti�c de�nition in terms of basic
epistemological concepts which have been elaborated for empirical sciences by
analytic philosophers, see for example [34, 35]. We limit ourselves here to cite
from [9] the essential properties which characterize the notion of ground models
and can all be satis�ed by ASM ground models. Ground models must be:

{ precise at the appropriate level of detailing yet exible, to satisfy the required
accuracy exactly, without adding unnecessary precision;

{ simple and concise to be understandable and acceptable as contract by both
domain experts and system designers. ASM ground models allow one to
achieve this property mainly by avoiding any extraneous encoding and by
reecting \directly", through the abstractions, the structure of the real-world
problem. This makes ground models manageable for inspection and analysis,
helps designers to resolve the \lack of scienti�c understanding on the part of
their customers (and themselves)" [37, p.66] and enables experts to \clearly
explain why : : : systems indeed work correctly" [3];

{ abstract (minimal) yet complete. Completeness means that every semanti-
cally relevant feature is present, that all contract bene�ts and obligations
are mentioned and that there are no hidden clauses. In particular, a ground
model must contain as interface all semantically relevant parameters con-
cerning the interaction with the environment, and where appropriate also the
basic architectural system structure. The completeness property \forces" the
requirements engineer, as much as this is possible, to produce a model which
is \closed" modulo some \holes", which are however explicitly delineated, in-
cluding a statement of the assumptions made for them at the abstract level
and to be realized through the detailed speci�cation left for later re�nements.
Model closure implies that no gap in the understanding of \what to build"
is left, that every relevant portion of implicit domain knowledge has been
made explicit and that there is no missing requirement|avoiding a typical
type of software errors that are hard to detect at the level of compilable
code [42, Fact 25]. Minimality means that the model abstracts from details
that are relevant either only for the further design or only for a portion of
the application domain which does not inuence the system to be built;



{ validatable (see [36])and thus in principle falsi�able by experiment and rig-
orous analysis, satisfying the basic Popperian criterion for scienti�c mod-
els [41];

{ equipped with a simple yet precise semantical foundation as a prerequisite
for rigorous analysis and reliable tool support.

2 ASM Re�nements: Management of Design Decisions
(Documentation and Veri�cation)

The ASM re�nement notion I have proposed (for a recent survey see [10]) gener-
alizes Wirth's and Dijkstra's classical re�nement method [56, 24]. Using stepwise
ASM re�nements o�ers the practitioner a technique to cope with the \explo-
sion of `derived requirements' (the requirements for a particular design solu-
tion) caused by the complexity of the solution process" and encountered \when
moving from requirements to design" [42, Fact 26], a process that precedes the
de�nition of compilable code. The ASM re�nement method supports practical
system validation and veri�cation techniques that split checking complex de-
tailed properties into a series of simpler checks of more abstract properties and
their correct re�nement, following the path the designer has chosen to rigorously
link through various levels of abstraction the system architect's view (at the ab-
straction level of a blueprint) to the programmer's view (at the level of detail
of compilable code). Successive ASM re�nements also provide a systematic code
development documentation, including behavioral information by state-based
abstractions and leading to \further improvements to quality and functionality
of the code : : : by good documentation of the internal interfaces" [37, p.66].

In choosing how to re�ne an ASM M to an ASM M �, one has the freedom
to de�ne the following items, as illustrated by Fig. 1:

{ a notion (signature and intended meaning) of re�ned state,
{ a notion of states of interest and of correspondence between M -states S and

M �-states S� of interest, i.e. the pairs of states in the runs one wants to relate
through the re�nement, including usually the correspondence of initial and
(if there are any) of �nal states,

{ a notion of abstract computation segments �1; : : : ; �m , where each �i repre-
sents a single M -step, and of corresponding re�ned computation segments
�1; : : : ; �n , of single M �-steps �j , which in given runs lead from correspond-
ing states of interest to (usually the next) corresponding states of inter-
est (the resulting diagrams are called (m;n)-diagrams and the re�nements
(m;n)-re�nements),

{ a notion of locations of interest and of corresponding locations, i.e. pairs of
(possibly sets of) locations one wants to relate in corresponding states,

{ a notion of equivalence � of the data in the locations of interest; these local
data equivalences usually accumulate to a notion of equivalence of corre-
sponding states of interest.
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Fig. 1. The ASM re�nement scheme

Once the notions of corresponding states and of their equivalence have been
determined, one can de�ne that M � is a correct re�nement of M if and only if
every (in�nite) re�ned run simulates an (in�nite) abstract run with equivalent
corresponding states. More precisely: �x any notions � of equivalence of states
and of initial and �nal states. An ASM M � is called a correct re�nement of an
ASM M if and only if for each M �-run S�

0 ;S�
1 ; : : : there are an M -run S0;S1; : : :

and sequences i0 < i1 < : : : ; j0 < j1 < : : : such that i0 = j0 = 0 and Sik � S�
jk

for each k and either

{ both runs terminate and their �nal states are the last pair of equivalent
states, or

{ both runs and both sequences i0 < i1 < : : :, j0 < j1 < : : : are in�nite.

The M �-run S�
0 ;S�

1 ; : : : is said to simulate the M -run S0;S1; : : :. The states
Sik ;S�

jk are the corresponding states of interest. They represent the end points of
the corresponding computation segments (those of interest) in Fig. 1, for which
the equivalence is de�ned in terms of a relation between their corresponding
locations (those of interest). The scheme shows that an ASM re�nement allows
one to combine in a natural way a change of the signature (through the de�ni-
tion of states and of their correspondence, of corresponding locations and of the
equivalence of data) with a change of the control (de�ning the \ow of opera-
tions" appearing in the corresponding computation segments), thus integrating
declarative and operational techniques and classical modularization concepts.

The survey in [8] refers to numerous successful practical applications of the
above de�nition, which generalizes other more restricted re�nements notions in



the literature [43, 44] and scales to the controlled and well documented develop-
ment of large systems. In particular it supports modularizing ASM re�nement
correctness proofs aimed at mechanizable proof support, see [43, 51, 14, 18].

3 Summary of Work Done Using the ASM Method

The ASM method to high-level system design and analysis, which is explained
in the AsmBook [19], is characterized by the three notions of ASM, ASM ground
model and ASM re�nement.

ASMs are naturally de�ned as extension of Finite State Machines [11]: just re-
place the two �xed FSM locations in and out , used for reading input and writing
output symbols, by any set of readable and/or writable, possibly parameterized,
locations (l ; (p1; : : : ; pn)) that may assume values of whatever types. Such sets
of updatable locations represent arbitrarily complex abstract memory or states,
what logicians call Tarski structures. Otherwise stated, ASMs are FSMs with
generalized instructions of form If Condition Then Updates, where the FSM-
input-event in = a is extended to an arbitrary �rst-order expression Condition
and the FSM-output-operation out := b to an arbitrary set Updates of assign-
ments l(t1; : : : ; tn) := t . This de�nition supports the intuitive understanding of
ASMs as pseudo-code operating on abstract data structures.

Using ASMs as precise mathematical form of ground models [9] that are
linked to compilable programs by ASM re�nements [10], allows one to address the
two sides of the software correctness problem in one framework, namely whether
the ground model (read: the speci�cation) faithfully reects the intentions of
the requirements and whether the code satis�es the ground model. Furthermore
the ASM framework allows one to apply assertion-based techniques to abstract
state-based run-time models, thus combining so-called declarative (static logical)
and operational (run-time state-based) methods and avoiding the straitjacket of
purely axiomatic descriptions. As a consequence, the ASM method supports
practical program design and analysis by the following four activities:

{ formulate relevant ground model properties (\assertions as speci�cations in
advance of code" [37, p.66]) in traditional mathematical terms, still free
from any further burden and restriction that typically derive from additional
concerns about a formalization in a speci�c logic language underlying a proof
calculus one may want to use for logical deduction purposes,

{ experimentally validate ground model properties by mental or mechanical
simulation, performing experiments with the ground model as systematic
attempts a) to \falsify" the model in the Popperian sense [41] against the
to-be-encoded piece of reality, and b) to \validate" characteristic sets of sce-
narios, where \testing gives adequate assurance of serviceability" [37, p.69],

{ mathematically verify desired ground model properties (e.g. their consis-
tency), using traditional mathematical or (semi-) automated techniques,

{ link ground models in a mathematically veri�able way to compilable code
via ASM re�nements.



In fact the mathematical character of ASMs and ASM runs allows one to
use both inspection { for checking the model correctness and completeness with
respect to the problem to be solved {1 and scienti�c reasoning to analyze model
behavior and properties, using whatever mathematical reasoning means are ap-
propriate, not restricted by the intrinsic limitations of every speci�c logic cal-
culus. The standard mathematical framework used with ASMs does not limit
the veri�cation space, e.g. by G�odel incompleteness or state explosion or similar
insu�cient-computing-power phenomena.

The proposal to use Abstract State Machines a) as precise mathematical form
of ground models and b) for a generalization of Wirth's and Dijkstra's classical
re�nement method [56, 24]|to a practical framework supporting a systematic
separation, structuring and documentation of orthogonal design decisions|goes
back to [5{7] where it was used to de�ne what became the ISO standard of Pro-
log [13]. Since then numerous successful case studies provided ground models
for various industrial standards, e.g. for the forthcoming standard of the Busi-
ness Process Execution Language for Web Services [54], for the ITU-T standard
for SDL-2000 [31], for the de facto standard for Java and the Java Virtual Ma-
chine [51], the ECMA standard for C# and the .NET CLR [15, 49], the IEEE-
VHDL93 standard [16]. The ASM re�nement method has been used in numerous
ASM-based design and veri�cation projects surveyed in [8].

The ASM method has been linked to a multitude of analysis methods, in
terms of both experimental validation of models and mathematical veri�cation
of their properties. The validation (testing) of ASM models can be obtained by
their simulation, which corresponds naturally to the notion of ASM run and
is supported by numerous tools to mechanically execute ASMs (ASM Work-
bench [22], AsmGofer [46], an Asm2C++ compiler [47], C-based XASM [4],
.NET-executable AsmL engine [28], CoreASM Execution Engine [27]). The ver-
i�cation of model properties is possible due to the mathematical character of
ASMs, which means precision at the desired level of rigour. As a consequence
any justi�cation technique can be used, from proof sketches over traditional or
formalized mathematical proofs [50, 40] to tool supported proof checking or inter-
active or automatic theorem proving, e.g. by model checkers [55, 23, 30], KIV [45]
or PVS [25, 29]. As needed for a comprehensive development and analysis envi-
ronment, various combinations of such veri�cation and validation methods have
been supported and have been used also for the correctness analysis of compil-
ers [26, 39] and hardware [53, 52, 48, 33].

For a survey of applications of the ASMmethod to the design and the analysis
of complex computer-based systems and their veri�ed re�nement from ground
models to compilable code, including industrial system development and re-
engineering case studies that show the method to scale to large systems, see
http://www.eecs.umich.edu/gasm and the AsmBook [19].

1 The need of \inspection" to establish the necessary \evidence" for the correctness of
a ground model can be related to Aristotle's observation in the Analytica Posteriora,
that to provide a foundation for a scienti�c theory no in�nite regress is possible and
that the �rst one of every chain of theories has to be justi�ed by \evident" axioms.



4 A Research Challenge and Some Milestones Ahead

The main goal is to de�ne and to provide tool support for hierarchies of me-
chanically veri�able ASM re�nement patterns, which link in a provably correct
way the application-content of systems, as de�ned by ground models, to to-be-
veri�ed compilable programs. This implies an enhancement of the current tool
support for the simulation of ASMs and for the veri�cation of their properties.

A re�nement method milestone consists in de�ning practical model re�ne-
ment schemes to turn model properties into software interface assertions com-
prising behavioral component aspects, to be used where run-time features are
crucial for a satisfactory semantically founded correctness notion for code.

A re�nement veri�cation method milestone is to enhance leading mechanical
veri�cation systems by means to prove the correctness of ASM re�nement steps.
A subgoal consists in linking ASMs to Event-B [1, 2] along the lines of [12], so
that the B veri�cation tool set can be exploited to verify model properties and
in particular the correctness of re�nement steps.

A re�nement validation method milestone consists in linking the re�nement
of ground models to ASM execution tools to make the generation and systematic
comparison of corresponding test runs of abstract and re�ned machines possible.
In particular relating system and unit level test results should be supported by
this enhancement of ASM execution tools.

A runtime veri�cation method milestone consists in instrumenting current
ASM execution tools to monitor the truth of selected properties at runtime,
enabling in particular the exploration of ground models to detect undesired or
hidden e�ects or missing behavior.

A re-engineering method milestone is to de�ne methods to extract ground
models from legacy code as basis for analysis (and re-implementation where
possible), as done for a middle-size industrial case study in [17].

A compiler veri�cation milestone is to verify the verifying compiler itself by
extending the work of the Veri�x [32] project, where ASM ground models were
used to describe the underlying real-life machines to run compilers.

5 Concluding Remark

One reviewer asks what the advantages of the ASM method are over other ap-
proaches, whether it is \just a di�erence of notation" or whether there are \fun-
damental advantages". The conceptual simplicity of ASMs as FSMs updating
arbitrary locations (read: general states), coupled to the use of standard algo-
rithmic notation, constitutes a practical advantage: it makes ASMs understand-
able for application-domain experts and familiar to every software practitioner,
thus supporting the mediation role ground models play for linking in an objec-
tively checkable way informal requirements (read: natural-language descriptions
of real-world phenomena) to mathematical models preceding compilable code.
A further practical advantage of the ASM method is that it allows designers,
programmers, veri�ers and testers a) to exploit the abstraction/re�nement pair,



within one coherent mathematical framework, for a systematic separation of
di�erent concerns and b) to use any fruitful combination of whatever precise
techniques are available|whether or not formalized within a speci�c logic or
programming language or tool|to de�ne, experimentally validate and mathe-
matically verify a series of accurate system models leading to compilable code.
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