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Abstract—Over the past two decades, network measure-
ment infrastructures have witnessed significant development and
widespread adoption. Internet measurement platforms have be-
come common and have demonstrated their relevance in Internet
understanding and security observation. However, despite their
popularity, those platforms lack of flexibility and reactivity, as
they are usually used for longitudinal measurements. Conse-
quently, critical security and Internet-related events may evade
detection. Concurrently, the evolution of operating systems to-
wards virtual machines (VMs) has been notable, particularly with
the emergence of unikernels—ultra-lightweight VMs tailored for
specific applications by including only the essential components.

This paper advocates for the integration of unikernels into
measurement infrastructures to enhance their flexibility and
efficiency. We introduce υTNT, a proof-of-concept unikernel-
based implementation of TNT, a traceroute extension capable
of discovering MPLS tunnels. This paper documents the full
toolchain for porting TNT into a unikernel and evaluates υTNT’s
performance in comparison to conventional methodologies. Addi-
tionally, we explore a practical use case scenario demonstrating
the utility of υTNT. The source code for υTNT is publicly available
on Gitlab.

I. INTRODUCTION

For more than twenty years now, numerous Internet mea-
surement platforms [1]–[6] have emerged, primarily led by
researchers and using dedicated hardware or distributed in-
frastructures [3], [4], [7]. These platforms collect data for
research purposes and often face challenges like hardware
compatibility and irregular data collection. Unfortunately, none
of these approaches are flexible and easily deployable. As
such, they are not built to quickly react to events, either related
to security, network outages [8], [9], or even Internet topology
dynamicity discovery [10], [11]. By quickly, we mean it should
be instantiated on-demand (loading time must be as quick as
possible), should require the lowest memory footprint, and
shutdown when the measurement is over.

Simultaneously, advances in operating systems have led
to the evolution of virtualization technologies. While vir-
tual machines (VMs) were initially popular, their resource-
heavy nature prompted the shift towards containerization like
Docker [12], which shares the host OS kernel. However,
containers have security concerns due to their large attack
surface [13], [14]. To strike a balance between performance
and isolation, a newer paradigm emerged: unikernels [15].
Unikernels are ultra-lightweight VMs tailored for specific ap-

plications, eliminating the need for a host OS. Including only
essential OS components offers improved performance and a
reduced attack surface, making them a promising alternative to
VMs and containers [16]–[19]. Unikernels can further enhance
their efficiency through memory deduplication [20]–[22]. This
process, essential in virtualized settings, minimizes memory
usage by identifying and consolidating identical memory
pages across various instances. Technologies such as Kernel
Samepage Merging (KSM) [23] within the Linux Kernel play
a significant role in optimizing memory utilization within these
environments.

Although unikernels require manual porting of applications,
frameworks like Unikraft [24], [25] have eased the process,
aiming for small image sizes and quick boot times. The
Unikraft framework combines the modularity of micro-kernels
with the design of monolithic kernels, enabling specialization
through well-defined API boundaries. It relies on micro-
libraries1 and a user-friendly build system to facilitate the
porting of applications to Unikraft.

This paper proposes unikernels as the foundation for ef-
ficient measurement infrastructures and introduces υTNT, a
unikernel-based implementation of TNT, an extension able to
reveal MPLS tunnels [26]–[28]. The paper presents υTNT
as a flexible and efficient solution, demonstrating reduced
CPU and memory consumption compared to traditional im-
plementations. Additionally, it discusses potential use cases
where the flexibility of unikernel-based probing tools could be
advantageous and evaluates its performance in such scenarios.
An extended version of this paper is available on Arxiv [29].

II. υTNT

This section introduces υTNT, the manual porting of TNT
(a modified traceroute [30] driver for scamper [31])
into a unikernel using Unikraft. It provides an overview
of scamper, a modern traceroute implementation, and
describes the implementation of υTNT.

1) Overview: scamper extends traditional traceroute
with additional tools like ping and DNS probing. TNT,
built on scamper, detects MPLS tunnels [32] and identifies
hardware vendors [33]. Initiating scamper involves running
the main program and then executing the specific driver for
desired measurements.

1Micro-libraries (micro-libs, for short) are software components which
implement one of the core Unikraft APIs.978-3-903176-64-5 ©2024 IFIP
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Figure 1. Filesize, memory and CPU usage of TNT ported and run in a Docker image, a Vagrant image, and an unikernel.

2) Implementation: To transform TNT into a unikernel,
denoted as υTNT, we use the Unikraft [18] and its toolsets [24]
for the porting process. In Fig. 2, we outline the 3 general steps
involved to port an application as unikernel: (i) Using a devel-
oper assisting tool [24] to perform the libraries matching and
generating the required configuration files for Unikraft. (ii)
Adapting the given application’s codebase to support Unikraft
paradigm (e.g., single address space and single process). (iii)
Updating external libraries by modifying their codebase to be
compliant with the ported application. These last two steps
can either be skipped (no compilation or linking error) or be
repeated several times until the application is successfully built
using the Unikraft build system.
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Figure 2. High-level overview of the different steps to port an application into
a unikernel. The Unikraft developers tool is used to perform micro-libraries
matching and to generate the required configuration files. After this step, the
application’s codebase has been patched to be compliant with Unikraft.

We made adjustments to scamper and TNT code, con-
verted inter-process communication to multithreading, and
ensured compatibility with Unikraft’s libraries. Minor mod-
ifications were made to lwip [34] and musl [35] libraries
for proper functionality. After completing these steps, υTNT
was successfully compiled and built. We give an overview of
our changes in Table I. To count the lines of code (LoC), we
used CLoc [36] and considered only the C/C++ files with their
associated header files (only code without any comment). The
last column gives the percentage of changes compared to the
original codebase. All the patches containing our code/changes
can be found with our setup in our GitLab repository [37].

Table I
OVERVIEW OF THE CHANGES MADE TO THE DIFFERENT LIBRARIES.

Micro # File(s) # LoC % of
Libraries updated updated changes

core (ukboot, etc) / / /
musl (libc) 1 5 <0.01%

lwip (network) 3 12 0.01%
scamper 5 110 0.2%
TNT 1 70 1.8%
Total 11 197 /

III. PERFORMANCE EVALUATION

In this section, we showcase the experimental results ob-
tained by comparing TNT across three architectures: a De-
bian virtual machine (VM) with Vagrant [38], Docker con-
tainerization, and υTNT as a unikernel using Unikraft with
Firecracker [39] hypervisor support. We aim to assess υTNT’s
performance in terms of memory usage, CPU utilization, file
size, and total execution time. For a fair comparison, we
standardized environments with identical scamper and TNT
versions across all setups. Experiments were conducted on
Debian GNU/Linux 11 with a Linux kernel 5.10.162. The host
machine used for the experiments has 32 GB of RAM and an
Intel (R) Xeon(R) CPU E5-2620v4 @2.10GHz with 16 cores.
In addition, Unikraft Pandora 0.15.0 has been used for the
following experiments.

Results indicate υTNT’s significant advantages. As depicted
in Fig. 1a, the υTNT unikernel has a tiny file size, occupying
less than 1 MB of disk space. This impressive size reduction
can be attributed to Unikraft’s capability to execute Dead Code
Elimination (DCE – i.e., an optimization that removes code
which does not affect the program results). In stark contrast,
the Docker image is 430× larger than υTNT. Similarly, the
Vagrant image proved even more substantial, with an image
1200× larger than υTNT.

As shown in Fig. 1b, memory consumption of υTNT is also
notably lower, around 7.2× less than Docker and 32× less than
Vagrant. When KSM is utilized, υTNT’s memory consumption
drops further being 17× less than Docker and 74× less than
the Vagrant configuration. CPU utilization shown in Fig. 1c
is also lower with υTNT, owing to its minimalist design and
lightweight hypervisor.



In terms of deployment and execution time (creation, exe-
cution of TNT with specific parameters, instance destruction,
and cleanup), υTNT outperforms Docker and Vagrant as can be
observed in Fig. 3. The execution time for υTNT and Docker is
relatively similar, as υTNT involves initiating a unikernel from
scratch, including to initialize essential components such as the
memory, the scheduler, etc. However, the deployment time of
υTNT is the fastest due to its small image size unlike Docker
and Vagrant which have larger images. All in all, deploying
and executing υTNT allows to have a gain of 2.4× compared
to Docker and 13× compared to Vagrant.
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Figure 3. Total time (deployment + execution) to run TNT, compared to
Docker and Vagrant. Using υTNT gives the lower total time.

Moreover, υTNT allows launching more instances within
resource constraints: 1 GB of memory and a 25% CPU usage
limit (4 cores). In this type of experiment, υTNT outperforms
Docker and Vagrant, supporting significantly more instances
while maintaining efficient resource utilization as it can be
observed in Fig 4.
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Figure 4. Maximum #instances running with a fixed memory and CPU budget.

Overall, υTNT demonstrates superior performance across
various dimensions compared to Docker and Vagrant, making
it a compelling choice for network measurement applications.

IV. FLEXIBLE DEPLOYMENT

In this section, we demonstrate the quick deployment of
unikernels for network measurements anywhere on the In-
ternet, orchestrated by a controller. For this experiment, we
provisioned five remote servers across diverse locations using
OVH cloud infrastructure [40]. A Python script acts as the
controller, deploying instances on remote servers for measure-
ment purposes. The controller triggers one deployment of a
TNT instance per second for 60 seconds, records cumulative
time for each node, and can adapt to high-request scenarios
with two distinct behaviours: (i) either it waits for a node to
become available, (ii) it ignores and discards the request if no
node is available.

Results are shown in Table II. For the first behaviour,
they indicate that υTNT exhibits the fastest deployment and
execution time, followed by Docker and Vagrant. Using υTNT
results in deployment speeds 5× faster than Docker and 65×
faster than Vagrant.

Table II
FLEXIBLE DEPLOYMENT STATS REPORTED BY THE CONTROLLER.

Docker υTNT Vagrant
(i) Average time (sec) 17.3 3.5 216

(ii) Successful runs (/60) 18 55 5

In scenario (ii) where the controller ignores and discards
the request, υTNT achieves a 90% deployment success rate,
compared to 28% for Docker and 8% for Vagrant. These
results highlight υTNT’s superior performance and scalabil-
ity, making it an efficient choice for flexible deployment in
network measurement applications.

V. DISCUSSION

In this section, we explore two key aspects: porting to
Unikraft and cloud deployment.

We opted for a manual approach for porting TNT to Unikraft
due to the simplicity of the scamper + TNT codebase.
However, Unikraft also offers binary compatibility, especially
useful for closed-source or complex applications with a lot of
shared libraries, eliminating manual porting but introducing
potential overhead and compatibility issues. The choice be-
tween these two approaches ultimately lies with the developer
and maintainer.

Regarding cloud deployment, our evaluations focused on the
KVM platform and x86_64 architecture. However, Unikraft
supports various platforms and architectures like Xen [41] and
ARM, with expected similar performance results.

VI. CONCLUSION & FUTURE WORK

In this paper, we provided the complete toolchain when
transforming TNT into υTNT. We believe this toolchain
could be the first step towards generalising unikernels in
network infrastructures. Indeed, this paper has demonstrated
the supremacy of υTNT over more traditional approaches.
Further, this paper also discussed a case study in which the
flexibility and responsiveness of υTNT could find a suitable
usage, compared to more traditional approaches once again.

As future work, we are considering to study the implemen-
tation of unikernels in devices with few resources (embedded
systems or IoT) in order to run monitoring/telemetry probing
tools. In addition, we will further assess binary compatibility’s
overhead and compatibility.
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