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Abstract—Darknets are IP addresses that function as passive
probes, recording all received packets without hosting services.
The traffic they capture, being unsolicited, makes darknets akin
to “network telescopes”. Traces collected on darknets aggregate
multiple events useful for cybersecurity, like network scans and
exploit attempts. Yet, the mix of heterogeneous events observed
from darknets poses significant challenges to those who must
understand darknet traffic.

Here we face the question of whether new darknet deployments
provide novel and useful information when compared to public
blocklists. Multiple Cyber Threat Intelligence (CTI) sources pub-
lish lists of IP addresses that perform malicious activities, from
simple automated scans to SPAM and phishing campaigns. They
represent a valuable resource for network administrators, helping
to block cyberattacks. Built with a combination of multiple
sensors — including darknets and honeypots — these lists could
explain the traffic seen on other darknets, thus simplifying the
search for relevant events in independent darknet deployments.

We thus investigate to what extent open blocklists explain
darknet traffic. By crawling hundreds of CTI sources providing
blocklists, we first notice how these lists are often incomplete
or slowly updated. Traffic seen in our darknet deployment is
hardly explained by the blocklists, even when considering only
the most prominent scan attempts, and ignoring events such as
backscattering. Our preliminary results suggest that blocklists
can be of great use for seeding the explanation of darknet traffic,
by giving context for the activity of a few IP addresses. Yet, more
addresses with similar behaviour are observed in the darknet and
could be used to enrich and complement the blocklists.

Index Terms—Darknets; Blocklists; cybersecurity

I. INTRODUCTION

Darknets (or network telescopes) consist of IP addresses
publicly announced on the Internet routing, yet hosting no
services [1], [2]. Darknets receive a mixture of traffic com-
posed of network scans, backscattering, and the outcomes
of misconfigured hosts. The intrinsic unsolicited nature of
such traffic makes Darknets useful for providing insights into
cybersecurity events. Yet, analyzing darknet traffic proves to
be a daunting task. The diverse range of events and the
huge numbers of sources observed within darknets complicate
efforts to put the traffic into useful perspectives. Moreover,
whereas it has been shown that different darknets observe
complementary events [3], the deployments of new darknets
require the allocation of (perhaps scarce) IP addresses to the
tasks.

These challenges raise questions about whether new darknet
deployments observe novel events that are worth the costs
of their deployments. In particular, Cyber Threat Intelligence
(CTI) companies and public entities release multiple open lists

of IP addresses performing malicious activities. These lists
are populated using a variety of complementary approaches.
Examples include lists composed of IP addresses sending out
SPAM emails, IP addresses hosting and distributing malware
software, as well as IP addresses observed in large darknet and
honeypot deployments run by security companies. These lists
are then consolidated and distributed as blocklists [4], which
network administrators employ to block malicious traffic, thus
preventing or slowing down cyberattacks.

We here face the question of whether public blocklists
can be used to explain darknet traffic. A positive answer to
this question would mean that novel darknet deployments are
superfluous, providing information already available on CTI
sources. To answer this question, we rely on data collected
from a darknet deployed in an academic network for a full
month. We then crawl hundreds of public blocklists released
in the same period. We first evaluate the IP addresses observed
in the public lists. Here we confirm and reappraise findings of
previous works [4], [5]: These lists are very heterogeneous,
and their update policies and frequency vary greatly across
providers.

We then select a subset of 28 lists and compare the reported
IP addresses with the traffic observed in our darknet. To filter
out sporadic events, we focus only on the most active IP ad-
dresses observed in the darknet. Our initial results show some
intersection between the darknet and IP addresses reported in
blocklists as expected. However, the majority of IP addresses
seen in the darknet are never reported in the blocklists. When
considering only IP addresses sending at least 5 packets to the
darknet, around 3% of the IP addresses observed in the darknet
are reported. The overlap between darknet and blocklists is
proportional to the list sizes, but a single blocklist can only
explain an insignificant portion of the darknet traffic.

These are the initial results of our effort to automate the
analysis of darknet traffic. They show that new darknet de-
ployments do have the potential to provide novel insights into
malicious traffic, which are not yet visible on public blocklists.
For that, we believe the blocklists provide valuable seeds to
start the analysis, giving hints that explain the traffic of IP
addresses contacting the darknet. Our plan for future work
is to combine blocklists with approaches to cluster darknet
traffic, such as [6], [1], thus building methods to augment
and complement blocklists automatically.978-3-903176-64-5 ©2024 IFIP



TABLE I: Darknet dataset overview.

Volume 9.5GB

Packets 117 778 528
TCP 94.4%
UDP 5.5%

IP Addresses 670 754
IP Addresses (Filtered) 257 855

II. DATASET

A. Darknet

We rely on data from a darknet composed of IPv4 addresses
allocated to a university in Italy. It is formed by two /24
networks, with non-continuous addresses. The IPv4 ranges
are kept private following requests of the research institutions
running the networks. We set up a network probe to capture
the traffic arriving at the allocated addresses, recording the full
packets. The probe obfuscates IPv4 prefixes of the darknets
(i.e., destination IP addresses). We perform analyses using data
collected during 1 month, from the 1st of March to the 1st of
April 2024. In Table I, we report the most salient features of
the dataset.

We filter packets to focus on the most salient events seen in
the darknet. First, we discard TCP packets which are not pure
SYNs packets. Indeed, packets with the ACK, RST or FIN
flag set are typically backscattering traffic — i.e., traffic sent
by a victim in response to packets received with a spoofed
source IP address (spoofed source belonging to the darknet
range). Second, as done in previous work [6], [1], we filter
out IP addresses sending less than 5 packets. The resulting
dataset includes 257 855 IP address, which we seek in the
public blocklists.

B. Blocklists

We use various publicly available blocklists sourced from
the FilterLists online aggregator [7]. This platform hosts
over 300 public lists spanning diverse fields, encompassing
malware or phishing websites, popular ad- and tracker-blocker
lists, and notably, several lists containing sets of malicious IP
addresses associated with suspicious traffic, scans, or attacks
on specific web services. FilterLists categorizes these
lists based on their syntax (such as IP set or URL list) and the
type of content they specialize in.

For our analyses, we focus on lists containing IP addresses
or IP ranges (IPv4 only) associated with malware distribution.
These lists are typically formatted as “host files”, where each
row represents an IP address. In this initial analysis, we have
selected 28 blocklists from various maintainers. The full list
of these blocklists is provided in the Appendix.

III. INITIAL RESULTS

We now present our initial findings. First, we quantify how
many darknet addresses are found in the lists, and, then,
we measure the visibility a darknet offers on the addresses

0 2 4 6 8 10
Number of Lists

10−5

10−4

10−3

10−2

10−1

1

E
C

C
D

F
(I

P
A

dd
re

ss
es

)

Fig. 1: Number of lists in which IP addresses are found.

contained in specific lists. Finally, we provide a more detailed
analysis of the intersection between the darknet and the
blocklists, in particular evaluating the type of traffic seen in
the darknet for IP addresses of each blocklist.

A. How many darknet addresses do appear in a list?

In Figure 1, we plot the Empirical Cumulative Distribution
Function (ECDF) of the number of lists each IP address
observed in the darknet appears in. We use the log scale on
the y-axis to emphasize the tail of the distribution — i.e.,
addresses appearing in many lists. Indeed, 36 addresses appear
in 8 or more lists. The vast majority of IP addresses are
not seen in any list. Specifically, among the total of 257 855
filtered IP addresses, 250 199 addresses are not found in any
list. This result indicates that the perspective given by these
lists does not provide a comprehensive representation of traffic
captured in the darknets.

Only 2.96% of the unique addresses seen in the darknet can
be found in the blocklists. Of these, 5040 can be found in one
list, 1545 in two lists and 1071 in more than two lists. Our
analysis also confirms that the overlap among some blocklists
is not negligible, as pointed out by previous studies [4]. Indeed,
not shown for the sake of space, we observe that lists are very
heterogeneous across providers.

The low percentage of IP addresses in the blocklists can
be partly explained by the fact that darknets observe a large
number of non-malicious scanners [6], [1]. Blocklists are not
expected to report these IP addresses. Yet, the percentage of
traffic explained by the blocklists remains small even when
filtering out traffic from well-known scanners.

B. Darknet visibility

We now quantify to what extent the darknet allows observ-
ing the traffic originating from the set of known malicious
actors included in different blocklists. Figure 2 reports on the
x-axis the size of each list and, on the y-axis, the size of the
overlap with addresses observed in the darknet. Both x- and y-
axes use logarithmic scales, given the great differences in list
size. The top three largest lists are respectively “BlockConvert
(IPs)” (160 278 addresses), “gnX Threat Intelligence” (115 101
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Fig. 2: List size and overlap with addresses seen in the darknet.

addresses) and “Inversion DNSBL” (78 811 addresses). Sur-
prisingly, the absolute overlap with the darknet for the first
and last of these lists is quite low, at 653 and 468 addresses,
respectively. Conversely, the list “gnX Threat Intelligence”
exhibits the highest overlap, with 4475 addresses seen in the
darknet. Beyond “gnX Threat Intelligence”, the lists with the
highest overlap are “CINS Army Bad Guys” (2141 addresses
out of 14 231) and “Firehol Level 3” (1376 addresses out of
17 616). These lists that present the highest overlap are also
the lists that generate the most traffic in terms of the number
of packets. Furthermore, “BlockConvert (IPs)” and “Inversion
DNSBL”, despite the very low overlap, fall into the lists that
generate a lot of traffic. This suggests that lists report mostly
top-talkers.

C. Most targeted destination ports

Darknet traffic can be used to study the traffic monitored by
these lists. To offer an example in this direction, we investigate
the most targeted destination TCP and UDP ports. Figure
3 breaks down the traffic of the five lists discussed in the
previous section by the top six contacted ports (they are all
TCP ports). Each column of the heatmap refers to a list and
a cell reports the percentage of packets to the given port
over the total traffic of the list. The last column reports the
overall darknet traffic to the top six ports. All of them are
well-known or registered, but (not shown in the figure) we
notice that some lists generate a lot of traffic to ephemeral
ports. Overall, the most contacted port is 23 (Telnet), but
each list exhibits different behaviour. Interestingly, among
the most contacted ports, we find 2000 (Cisco Skinny Client
Control Protocol), which is especially targeted by hosts in the
“gnX Threat Intelligence” list, containing nodes likely to be
compromised/infected. Differently, IP addresses listed in the
“Inversion DNSBL” list (servers hosting malware according
to the Safe Browsing API) perform scans on port 22 (Secure
Shell). Finally, addresses in the “Firehol Level 3” list (which
tracks attacks, spyware, and viruses) target especially port
3389 (Windows Remote Desktop).

In sum, the darknet allows observing the different behaviour
of addresses from each list. As the addresses observed in the
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Fig. 3: Top-six TCP ports, separately for five lists and overall.

darknet are different from those in the blocklist, we believe
the blocklist can be used as seeds to tag darknet traffic.

IV. NEXT STEPS

Our initial results show that public lists can be successfully
used to gain insights into a fraction of IP addresses contacting
a darknet. Although we used a non-exhaustive set of blocklists,
we find ≈ 3% of the darknet addresses. Our current efforts
include the collection of a larger set of lists and extending the
temporal scope of the analyses.

Our ultimate goals are twofold. Firstly, we seek to inves-
tigate whether new and distributed darknets provide a means
to increase the reliability of blocklists. If proven effective, we
can use new darknets to systematically identify and remove
obsolete entries from these lists. This process would help to
refine blocklists and increase their applicability. Secondly, we
aim to characterize addresses seen in darknets but which are
not listed in any blocklist and automatically gain insights into
their behaviour and intentions. In this scenario, blocklists serve
as an important source of knowledge, guiding the identifica-
tion of potentially malicious addresses that may have been
overlooked currently.
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APPENDIX

For the sake of completeness, the following table reports the
set of 28 public lists that we use in our study (downloaded
using the FilterLists online API [7]).

Binary Defense IPsum Level 6
BlockConvert ISX Solutions Blocklist
Blocklist.DE Inversion DNSBL
CINS Army Bad Guys Maltrail - Parking sites
Nordic Filters Mirai Tracker
DangerRulezSK Brute Force Blocker MyIP Blacklist
EmergingThreats Block IPs SecLists (Careto IPs by Kaspersky)
EmergingThreats Compromised IPs gnX Threat Intelligence
Firehol Level 1 hpHosts EMD (IPs)
Firehol Level 2 hpHosts EXP (IPs)
Firehol Level 3 hpHosts FSA (IPs)
Greensnow Blocklist pfBlockerNG - MS-1
IPsum Level 4 pfBlockerNG - MS-3
IPsum Level 5 Urlhaus-filter


