
HALIDS: a Hardware-Assisted Machine Learning
IDS for in-Network Monitoring

B. Brandino∗†, E. Grampin∗, K. Dietz‡, N. Wehner‡, M. Seufert§, T. Hoßfeld‡, P. Casas†
∗INCO–FING, Universidad de la República, †AIT Austrian Institute of Technology

‡University of Würzburg, §University of Augsburg

Abstract—Early decision-making at the network device level
is crucial for network security. This entails moving beyond tra-
ditional forwarding functions towards more intelligent network
devices. Integrating Machine Learning (ML) models into the data
plane enables quicker processing and reduced reliance on the
control plane. This paper explores the development of a ML-
driven Intrusion Detection System (IDS) where network devices
autonomously make security decisions or defer to an expert
Oracle, relying on in-band and off-band traffic analysis. Pro-
grammable devices, such as those using P4, are essential to enable
these functionalities and allow for network device re-training
to adapt to changing traffic patterns. We introduce HALIDS, a
prototype for in-band ML-IDS using P4, complemented with off-
band Oracles which support in-network ML-driven classification
with more confident classifications, targeting an active learning
logic for more accurate in-band analysis. We implement HALIDS
using the open source software switch BMv2, and show its
operation with real traffic traces publicly available.

Index Terms—In-network machine learning; Programmable
data plane; P4; Active learning; Oracles

I. INTRODUCTION

The ever-growing volume of traffic in modern networks
motivates the utilization of machine learning (ML) in net-
working [1]. When it comes to network monitoring for cy-
bersecurity, a promising idea is to do traffic classification as
early as possible, directly within network devices. Resources
in network devices have been traditionally constrained, encom-
passing limitations in terms of memory, processing capacity,
available operations, and more. Consequently, these devices
are traditionally treated as “dumb” from a traffic monitoring
perspective, performing only the essential functions required
for the network to operate. The emergence of new data plane
architectures raises the hope that network devices will perform
functions beyond simple traffic forwarding. By doing so, the
burden on the control and management planes is alleviated,
and a portion of the processing is decentralized. Additionally,
processing within the network device occurs more expedi-
tiously, reducing the need for offloading to the control plane.
Network programmability entails the ability to specify and
modify algorithms in both the control and the data plane [2].

This paper involves the creation of an Intrusion Detection
System (IDS), wherein the network device can make a de-
cision with an appropriate level of confidence, or delegate
this decision to an expert (oracle). Both the network device
and the oracle employ a machine learning model for traffic
classification. Considering programmable network devices, P4

(Programming protocol-independent packet processors) [3]
stands as the most widely adopted programming language for
the data plane and is the one used. This also provides us with
the ability to re-train the network device, making it adaptable
to changes in traffic patterns.

Within its limited resources, the network device is intended
to make a prompt decision determining whether a flow is
malicious or not. The concept revolves around leveraging the
limited processing capabilities and memory of these devices to
quickly process traffic, identifying packets that are evidently
malicious. In instances where the decision carries a high level
of confidence, actions are taken accordingly. Conversely, when
the confidence in the decision is low, the responsibility is
deferred to an expert (the oracle) for further assessment. The
integration of machine learning into this concept is proposed,
involving a simple model on the network device, reflective of
its constraints, and deploying a more robust machine learning
model on the oracle to make better decisions. In the case of the
device, the model would normally be trained with fewer data
than the oracle’s model due to privacy reasons. It is crucial
to find a ML model for the network device (the switch) that
is not only straightforward but also naturally aligns with the
programmable match-action pipeline. In line with the related
work, Random Forests (RF) easily map to the match-action
pipeline by associating each level of the tree with a table.
Ideally deployed on a server, the oracle’s model can not only
be more complex but also trained with all available data to
enhance the accuracy of its predictions.

Finally, it is proposed to re-train the network device model.
This crucial step allows adaptability to changing network
traffic. Once a designated metric is reached, such as after
offloading a specific number of packets, the network device
will undergo re-training using decisions made by the oracle.
Consequently, as the traffic pattern evolves, the switch is ex-
pected to reach decisions that may not be sufficiently reliable.
By re-training with more accurate decisions from the oracle,
the network device aims to dynamically adapt to the evolving
traffic conditions. Since the match-action pipeline associates
each level of the tree with a table, re-training the switch simply
involves rewriting the tables from the control plane.

II. RELATED WORK

Several papers addressing different parts of the raised issue
have been found, all using P4. Firstly, SwitchTree [4] proposes
the integration of RF into the data plane for abnormal traffic978-3-903176-64-5 ©2024 IFIP

R1,1

R2,1 R3,1 C

R2,2

yes

no

no

yes yes

parser deparsermatch-action pipeline

Fig. 1. An instance embedding of a tree within the Random Forest deployed
in the switch [4]. Ri,j represents the decision rule at node j at depth i.

identification. It extracts flow-level features with early detec-
tion (calculating the features in each packet) and incorporates
RF as tables. pForest [5] introduces a similar idea, but various
RF are trained for different phases of the flow, additionally
proposing a confidence percentage for decision-making. CML-
IDS [6], the work most similar to ours, proposes an RF in
the data plane, and an oracle used to provide more accurate
decisions in case of a lack of confidence in the switch’s
decision. CML-IDS has a strong focus on providing more
powerful algorithms in the oracle but does not involve switch
re-training. The aforementioned solutions are all implemented
in software. MARINA [7] is a hardware-based solution where
the network device extracts the necessary (more complex than
those used in other solutions) features and sends them to an
ML server with a powerful prediction model. Flowrest [8]
proposes a solution designed for hardware implementation,
integrating a RF into the data plane.

III. THE HALIDS SYSTEM

We choose SwitchTree [4] as the basis for HALIDS’ pro-
grammable switch implementation, while the communication
mechanism with the oracle is inspired by CML-IDS [6].
SwitchTree consists of a P4 program responsible for extracting
and calculating features for each packet and processing them
with the previously trained RF. Traffic classification occurs
at flow level, performing early detection, meaning it does
not wait for the flow to complete before classifying it. For
each packet arriving at the switch, a hash is applied using
the standard quintuple IPs/ports/protocol as a key to identify
each flow. For every incoming packet, both stateless (such as
destination port) and stateful features (such as flow duration)
are calculated, and a decision is made for each packet,
based on the flow information obtained up to that moment.
As the flow progresses, more information is gathered (more
packets arrive), and if it is eventually detected as malware, the
remaining packets of the flow are marked accordingly. Most
of the stateful features are approximated since they involve
floating-point operations, not supported by P4.

The classification is done by the RF, which is embedded
in tables within the switch. In Figure 1, a Decision Tree
embedded in a match-action pipeline is illustrated. Each level

in-band
P4 programmable switch

Student AI/ML-driven IDS

pkti

if Pin-switch < DCT :
export Xi to Oracle

Coracle (pkti)

Active Learning Logic Path
periodic re-train with Oracle labels
P4Runtime API

off-band AI/ML server
Oracle AI/ML-driven IDS

1

2

3

Fig. 2. HALIDS architecture for in-band/off-band traffic classification, an
eventual re-training through Active Learning.

of the tree is mapped to a match-action stage, where a feature
is checked at each level. Depending on whether the condition
is satisfied or not, processing proceeds to the next level. This
process continues until reaching a leaf, where a decision is
made, and a class is assigned to the packet. The tables at each
level will match the node and previously evaluated feature
and have two types of action, one that checks the next feature
(providing the necessary values) and one that sets the class.

Figure 2 depicts the HALIDS architecture. We enhance
SwitchTree in several ways. Firstly, the entire switch training
process is automated. Secondly, the concept of oracle is
introduced. The oracle is an ML model - in this case also a RF
- but trained with all the available data and with a higher model
complexity as compared to the switch. The oracle establishes
a connection with the switch via P4Runtime [9] and installs
the P4 program. It also trains the switch for the first time using
a reduced set of available data and a smaller RF. For this, it
trains the model, generates the rules, and writes them into the
switch’s tables. Then, for each packet received by the oracle,
it feeds the received features to the RF model and predicts
the label, sending this value back to the switch. P4Runtime is
utilized for communication between the switch and the oracle,
encompassing packet exchange, configuration, and switch re-
training, all in execution time. The analysis workflow logic of
HALIDS is detailed in Figure 3.

At the switch, the confidence percentage of the decision
made by the RF is incorporated. To achieve this, these
values must be obtained during the training stage. Empir-
ical probabilities are calculated as the number of samples
of the label divided by the number of samples reaching a
leaf. If the classification probability surpasses a pre-defined
Decision Confidence Threshold (DCT), the normal forwarding
is executed, taking into account the class predicted by the
tree. If not, the packet is marked to be sent to the oracle,
allowing for a more confident class assignment. When more
than one tree are present, instead of a simple majority vote,
these probabilities are weighted by the number of trees, and
the classification is determined by the one with the highest
value. To send the packet to the oracle, packet IO support
from the P4Runtime shell [10] is employed. In this context,
the goal is to transmit to the oracle the necessary features
for class determination, along with some data required for
feature approximation. Additionally, the oracle will store all

in-band
P4 programmable switch
Student AI/ML-driven IDS

pkti

❶ get and store flow ID f-ID

▪ if f-ID is already tagged as attack :
o assign pkti to class attack and discard

▪ else:
o update stateless/stateful features Xi from flow f-ID
o apply in-band AI/ML-driven IDS to Xi (cf., Fig. 1)
o get class (benign/attack) and probability {P0 , P1}

▪ pre-label pkti with Cin-switch = class-max {P0 , P1}

▪ if Cin-switch = attack → pre-block pkti

▪ let Pin-switch = max {P0 , P1} be the decision confidence

▪ if Pin-switch < DCT (Decision Confidence Threshold)
o export Xi to oracle for labeling
o get Coracle (pkti)
o assign pkti to class Coracle

▪ if Coracle = benign → release pkti

o else: assign pkti to class attack and discard

▪ move on to pkti+1 → go to 1

Fig. 3. HALIDS traffic analysis workflow.

the classifications it generates (along with the corresponding
feature values) and use this information for re-training the
switch at runtime.

Note that our focus with HALIDS is to provide a closed
loop, where a student ML model deployed at the switch can
make quick decisions with a certain degree of confidence using
a simple machine learning model in the data plane. In cases
where the confidence level is not sufficiently high, the decision
is offloaded to the oracle, which integrates a more powerful
model. The oracle returns the decision made on the packet
to the switch, which acts accordingly. Simultaneously, with
the decisions made by the oracle, the switch is re-trained to
keep it adaptive to changing traffic, therefore closing the loop.
This periodic re-training logic is driven by an Active Learning
Logic Path, which lets the student ML model to select those
samples which require further analysis from the oracle, using
the resulting labels for re-training after a certain number of
queries has been met.

IV. PRELIMINARY RESULTS

We implement and deploy HALIDS using the Sim-
pleSwitchGrpc version of BMv2 [11], employing virtual in-
terfaces. Traffic traces are injected using TCP-replay [12].
Training and validation of the ML models is done using the
UNSW-NB15 dataset1, whereas testing is performed on top
of a small packet trace from the same dataset (1000 packets).
Recall that HALIDS works at the flow-level, but analyzing

1https://research.unsw.edu.au/projects/unsw-nb15-dataset

80 % 90 % 95 %

Decision Confidence Threshold (DCT)

0

20

40

60

80

100

120

D
e
te

c
ti
o
n
 P

e
rf

o
rm

a
n
c
e
 G

a
in

 (
%

)

baseline

Fig. 4. Detection performance gain using HALIDS.

each incoming packet for early flow classification. In all the
the evaluation examples provided next, the detection of the
malware flows is realized with almost perfect accuracy, given
the small size and characteristics of the trace used for testing.
Therefore, we proceed with the classification evaluation at the
packet level, where a better model performance is realized
when the Recall for the packets of the malware flow is higher.

We assess the operation of HALIDS in two different setups:
firstly, we verify that the functioning of the in-switch student
model and the oracle model realize the same performance
when integrating the same model, as a means to verify the
correct implementation of HALIDS. We refer to this scenario
as the baseline. The implementation is validated by processing
all the testing packets through the switch, and alternatively by
processing all these packets through the oracle. In both cases,
student and oracle ML models’ training is done with the all the
training data, using the same DT architecture with a depth of
5-levels. As expected, and as a means for verification, obtained
results are exactly the same at the switch and at the oracle.

Using the baseline detection performance as basis for the
analysis, we then evaluate the operation of HALIDS as a
functional detection system. In this case, we train the student,
in-switch model with only 50% of the training dataset, main-
taining a tree depth of 5, while the oracle is trained with all
the training data, using a significantly more dense architecture,
with 100 trees of depth 15. Using this setup, we test the
detection performance for three different decision confidence
thresholds DCT, taking DCT = 80%, 90%, and 95%. In a
nutshell, the higher DCT, the more packets which are sent for
classification to the oracle. Figure 4 depicts the obtained re-
sults, normalized to the baseline performance. Setting DCT to
80% results in all the packets classified in-band at the switch.
As expected, given that the model is trained in this case with
half of the training data as compared to the baseline, detection
performance significantly degrades, dropping by almost 30%.
When we take higher DCT thresholds, more packets are sent
to the oracle, and detection performance improves with respect
to the baseline, by about 10% for DCT = 90%, and by almost
20% for DCT = 95%.

ACKNOWLEDGMENT

This work has been partially supported by the FWF Austrian
Science Fund, Project I-6653 GRAPHS4SEC, by the Austrian
FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML
for Dynamic Cybersecurity Systems – project ID 887504, as
well as by the Uruguayan Agencia Nacional de Investigación
e Inovación (ANII).

REFERENCES

[1] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and M. Caicedo, “A Comprehensive Survey on Ma-
chine Learning for Networking: Evolution, Applications and Research
Opportunities,” Journal of Internet Services and Applications, 2018.

[2] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A Survey on Data Plane Programming
with P4: Fundamentals, advances, and applied research,” ArXiv, vol.
abs/2101.10632, 2021.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, 2014.

[4] J.-H. Lee and K. Singh, “Switchtree: In-network Computing and Traffic
Analyses with Random Forests,” Neural Computing and Applications,
11 2020.

[5] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever,
“pForest: In-network Inference with Random Forests,” CoRR, vol.
abs/1909.05680, 2019. [Online]. Available: http://arxiv.org/abs/1909.
05680

[6] P. Golchin, C. Zhou, P. Agnihotri, P. Agnihotri, M. Hajizadeh, R. Kundel,
and R. Steinmetz, “CML-IDS: Enhancing Intrusion Detection in SDN
through Collaborative Machine Learning,” in 2023 19th International
Conference on Network and Service Management (CNSM), 2023, pp.
1–9.

[7] M. Seufert, K. Dietz, N. Wehner, S. Geissler, J. Schüler, M. Wolz,
A. Hotho, P. Casas, T. Hossfeld, and A. Feldmann, “MARINA: Realizing
ML-driven Real-time Network Traffic Monitoring at Terabit Scale,”
IEEE Transactions on Network and Service Management, 2024.

[8] A. T.-J. Akem, M. Gucciardo, and M. Fiore, “Flowrest: Practical Flow-
level Inference in Programmable Switches with Random Forests,” IEEE
INFOCOM 2023 - IEEE Conference on Computer Communications, pp.
1–10, 2023.

[9] T. P. A. W. Group, “P4Runtime Specification,” https://p4lang.github.
io/p4runtime/spec/main/P4Runtime-Spec.pdf, [Online; Accessed: April
2024].

[10] P. L. Consortium, “Packet IO,” https://github.com/p4lang/
p4runtime-shell/blob/main/usage/packet\ io.md, [Online; Accessed:
April 2024].

[11] ——, “Simpleswitchgrpc - a version of Simpleswitch with P4Runtime
Support,” https://github.com/p4lang/behavioral-model/blob/main/targets/
simple switch grpc/README.md, [Online; Accessed: April 2024].

[12] A. Turner and F. Klassen, “tcpreplay - pcap Editing and Replaying
Utilities,” https://tcpreplay.appneta.com, [Online; Accessed: April 2024].

