
Towards reusable models in traffic classification
Jan Luxemburk

FIT CTU & CESNET
Prague, Czech Republic

luxemburk@cesnet.cz

Karel Hynek
FIT CTU & CESNET

Prague, Czech Republic
hynekkar@cesnet.cz

Abstract—The machine learning communities, such as those
around computer vision or natural language processing, have
developed numerous supportive tools. In contrast, the network
traffic classification field falls behind, and the lack of standard
datasets and model architectures holds the entire field back. This
paper aims to address this issue. We introduce CESNET Models,
a package comprising pre-trained deep learning models tailored
for traffic classification. The included models are trained on
public datasets for the task of web service classification. Using the
new package, researchers and practitioners can skip model design
from scratch and the collection of large datasets but instead
focus on fine-tuning and adapting the models to their specific
needs, thus accelerating the pace of research and development
in network traffic classification.

Index Terms—Traffic classification, Machine learning, Neural
networks, Pre-trained models, TLS, QUIC

I. INTRODUCTION

Machine learning (ML) is one of the core technologies used
in network traffic classification (TC) for a broad scope of
tasks. Nevertheless, ML use in TC still falls behind established
ML fields such as natural language processing and computer
vision due to a lack of supportive tools, model repositories,
and benchmarks [1]. Therefore, progress in TC is slow since
all experiments, models, and datasets often need to be created
from scratch.

In our previous work [2], we introduced a DataZoo toolset
for streamlining the work with large network traffic datasets.
DataZoo implements configurable dataset processing, such as
train-validation-test split or class selection, which minimizes
the space for potential errors. However, it is limited to data
handling, and support for other time-consuming tasks, such as
model architecture design, is missing.

This paper introduces CESNET Models, a new package con-
taining neural network architectures for traffic classification,
together with their pre-trained weights and data transforma-
tions. The goal is to provide convenient access to pre-trained
models, following a common practice in other ML domains.
Our inspiration was the torchvision project that offers a suite
of standard architectures for computer vision (e.g., ResNet)
with pre-trained weights on popular datasets (e.g., ImageNet).

Using CESNET Models, researchers and practitioners can
reproduce published results or improve the included state-of-

This work was supported by the Ministry of the Interior of the Czech
Republic, grant No. VJ02010024: “Flow-Based Encrypted Traffic Analysis,”
and also by the CTU in Prague, grant No. SGS23/207/OHK3/3T/18.

the-art classifiers without the need for extensive model devel-
opment or training. Furthermore, the inclusion of pre-trained
weights on large networking datasets enables transfer learning
and model customization for specific TC tasks.

We acknowledge that reproducing the success of libraries
such as torchvision is a challenging task, and this work and the
DataZoo toolset are just the first steps in that direction. The
following section discusses some of the challenging obstacles
to more reusable models in TC.

II. OBSTACLES FOR REUSABLE MODELS IN TC

Reusing of ML models in the TC field has been minimal
compared to other fields. One of the reasons is that researchers
often do not publish source code for their experiments and
model definitions, which is more common in other ML fields.
Nevertheless, there are additional difficulties that complicate
model reuse: differences in computer networks and their users,
diverse production environments influencing the requirements
in terms of false positive rates and inference speed, or general
label differences worldwide [3].

However, we consider the lack of standard input feature
format to be one of the main obstacles. In computer vision
tasks, the inputs are images encoded as tensors of floats
representing pixels. Sizes of images can differ, but there are
standard methods for downscaling or upscaling with padding.
In the TC field, there is no such standard format. Of course,
there is full packet capture (PCAP), but it does not scale
for even mid-sized datasets and can leak private information
about network users. We received numerous emails asking for
PCAP versions of our public flow-based datasets since each
researcher would like to use its own toolsets to extract their
feature set out of the original PCAP (which we do not have).
We believe that if the TC community agreed on a standard
set of features, it would bolster data and model sharing and
would allow shifting the focus to more interesting tasks.

Despite the variance of model inputs used across the re-
search works, we have identified three common types of fea-
tures that have to be considered during the design phase of
reusable models: flow statistics, packet sequences, and the first
packet payload.

A. Common model inputs

Flow statistics represent common features describing net-
work connection, such as the number of transmitted bytes and
packets in both communication directions or the time duration978-3-903176-64-5 ©2024 IFIP

of the connection. Apart from those well-known features, there
could be features related to the presence of individual TCP
flags, histograms, or an indication of how the connection ended
(e.g., with TCP FIN termination). An important distinction is
whether flow statistics are computed from the entire connec-
tion, for example, when a TC model is deployed at a flow col-
lector, or from the first N packets when the model is operating
close to the monitored network for early classification.

Packet sequences describe the first N packets of the con-
nection for each packet, including its size, direction, inter-
packet time, and sometimes the size of the TCP window or
the presence of the PUSH flag (these TCP-related fields are
set to zero for UDP). The length of the sequence N is an
important parameter that depends on operational requirements.
Another important choice is whether to include packets with
no payload, such as TCP ACKs, into the sequences.

The payload of the first packet is often used in TC litera-
ture. However, its usefulness is questionable. For unencrypted
traffic, complex models learn to extract informative strings,
which is a task more suitable for pattern-matching algorithms.
For encrypted TLS traffic, models learn to extract fields from
the ClientHello message, such as the Server Name Indication
(SNI) domain. This SNI domain, however, is often used for
labeling and, therefore, should be masked from the input to
prevent ”leaking” label information to the model. Moreover,
the new Encrypted Client Hello extension will make this pro-
cessing of TLS handshakes obsolete.

The variations in implementations of model inputs are sum-
marized in Table I. The next section introduces models pro-
vided in the new package and the motivation for our design
decision about their inputs.

TABLE I: Variations in model inputs across TC proposals.

Flow statistics

Packet size - entire vs. after transport headers
Feature set
Computed from an entire connection vs. the first N
packets
Differences in the flow creation process (timeouts,
hashing, collisions, and more

Packet sequences

Packet size - entire vs. after transport headers
Included vs. excluded TCP SYNs, ACKs
Sequence length
Extra packet features, such as TCP window size or
the presence of the PUSH flag

First packet payload Size and start offset of the payload

III. CESNET MODELS

The goal of the CESNET Models package is to provide
model architectures, pre-trained weights, and data transforma-
tions for encrypted traffic classification. The package is imple-
mented in PyTorch, and the API is similar to the torchvision
project. Each model (e.g., mm-CESNET V2) has a constructor
function (mm_cesnet_v2) that accepts a weights argument
from an enum of all available pre-trained weights for the
given model (MM_CESNET_V2_Weights). Using the model
constructor function without the weights argument will use
random initial weights for training from scratch.

Data transformations are used as a preprocessing step be-
fore putting data into a model. The current version imple-

Sequence of
Packet Metadata Flow Statistics

Concatenate to build
 Shared Representation

PSTATS
Convolutions

 Dropout(0.1)
GeM Global Pooling()
Conv1D (300, 4, 2, 0)
Conv1D (300, 5, 1, 0)
Conv1D (300, 5, 1, 0)

 Conv1D (200, 5, 1, 2)
 Conv1D (200, 5, 1, 2)
 Conv1D (200, 5, 1, 2)

 BatchNorm()
 ReLu()

 Conv1D (200, 7, 1, 3)

FLOWSTATS Linears

Dropout(0.1)
Linear(225)
 Linear(225)
 Linear(225)

 BatchNorm()
 ReLu()

 Linear (225)

Predicted Class K

Shared Layers

Linear(NUM_CLASSES)

Dropout(0.2)
 BatchNorm()

 ReLu()
 Linear(600)

Fig. 1: The mm-CESNET V2 model. The parameters rep-
resent: Conv1D(#filters, kernel_size, stride,
padding), Linear(#out_features). Some layers
are omitted to save space.

ments three transformations—scaling and clipping of packet
sequences and flow statistics, and normalization of packet
histograms. If data scaling transforms were used for training a
model, those transforms are included in the pre-trained weights
(i.e., a loaded pre-trained model will use the same statistics
for scaling the inputs as were used during training).

A. Network architectures

We developed our multi-modal architecture (mm-CESNET)
in previous research focusing on TLS and QUIC traffic clas-
sification. It is similar to networks used in other TC works,
such as MIMETIC [4] or the tripartite model used by Akbari
et al. [5]. These networks have separate chains for processing
input modalities. Outputs of those chains are concatenated to
create a shared representation, which is further processed. An
example of this multi-modal architecture is visualized in Fig-
ure 1. The main differences between the aforementioned net-
works are the input modalities and the types of ”sub-networks”
used for processing them (i.e., convolutional neural network
(CNN), recurrent neural network (RNN), or multilayer percep-
tron (MLP). The selected options for those networks are1:

• MIMETIC [4] - CNN for payload and RNN for packet
sequences. No processing of flow statistics.

• Tripartite model [5] - CNN for payload, RNN for packet
sequences, and MLP for flow statistics.

• mm-CESNET [6], [7] - CNN for packet sequences and
MLP for flow statistics. No processing of packet payload.

1All three networks use MLP for processing the shared representation.

from cesnet_models.models import MM_CESNET_V2_Weights, mm_cesnet_v2

pretrained_weights = MM_CESNET_V2_Weights.CESNET_QUIC22_Week44
model = mm_cesnet_v2(weights=pretrained_weights, model_dir="models/")
transforms = pretrained_weights.transforms

dataloader = load_from_datazoo(# Load data from DataZoo using transforms from the pretrained model
ppi_transform=transforms["ppi_transform"],
flowstats_transform=transforms["flowstats_transform"],
flowstats_phist_transform=transforms["flowstats_phist_transform"],
...

)
Example tasks here
- Fine-tuning
- Reuse the model for some other task, i.e. transfer learning
- Optimize the network with, for example, pruning
- XAI techniques, such as SHAP or visualizations of convolutional filters

test_labels, preds = compute_model_predictions(model, dataloader) # Test the model

Listing 1: Example usage of the cesnet_models package. More complete examples at https://github.com/CESNET/
cesnet-tcexamples/.

Our goal here is not to compare the models but to demon-
strate options used in published research and to provide mo-
tivation for design decisions in our multi-modal architecture.
We (1) opted to ignore packet payload because our focus is
large-scale classification of TLS and QUIC traffic at a central
flow collector. Transmitting the first packet payload of each
connection to the collector could overload monitoring lines,
and the added value is minimal, since we used the SNI do-
main for ground-truth labeling, and therefore, it would have
to be masked from the model input. Moreover, we do not
consider payload processing to be future-proof in the light of
the new Encrypted Client Hello TLS extension. We (2) chose
1D CNN for processing packet sequences because recurrent
networks tend to be slower than convolutional ones, and high
processing speed is one of our main requirements. Also, we
use packet sequences with a maximum length of 30 packets;
thus, we cannot take much advantage of the fact that RNNs
are capable of processing variable-length input (instead, we
pad our sequences with zeroes for CNN processing). Also, we
(3) use flow statistics input with MLP processing, which is the
sensible option given that flow statistics are not sequence-like
and are similar to tabular data. In our previous experiments
on TLS, however, we found that using flow statistics is not
that important. Omitting this input resulted in less than 1%
decrease in performance [6].

B. Available models

The CESNET Models package currently provides two
models with our multi-modal architecture. One older, mm-
CESNET V1, from a TLS classification paper [6] and mm-
CESNET V2 updated for a QUIC classification task [7], which
is visualized in Figure 1. The differences between the two
versions are in layer sizes, dropout rates, and added pooling
operation in the CNN part processing packet sequences. The
mm-CESNET V1 model was trained on the first week of the
CESNET-TLS22 dataset [6], achieving 97% classification ac-
curacy among 192 web service classes. The mm-CESNET V2
model was trained on the first week of the CESNET-QUIC22

dataset [8], achieving 86% test performance among 102 web
service classes. Both test performance measurements were
made using the traffic from a week immediately following the
training period.

C. Usage

A simplified example of how the CESNET Models package
can be used is provided in Listing 1. The package integrates
well with our data handling DataZoo toolset. DataZoo was
used to train the included models and to fit the scaling trans-
formations that are provided together with the weights (the
transforms dict in the example). The expected model input is
in the format tuple(batch ppi, batch flowstats)2, which is the
same format as provided by the DataZoo dataloader interface.
The CESNET Models package is documented3 and can be
installed from PyPI4 or GitHub5

IV. CONCLUSION

In this paper, we presented CESNET Models and discussed
the challenges related to reusing models in the network traffic
classification field. The TC community must address these
challenges to catch up with other ML fields. We recognize
that we cannot solve this task alone. Broader cooperation of
research groups is needed to settle on the model input format
and start sharing and reusing models more.

As future work, we plan to add data augmentations that can
be beneficial for model training and are currently trending in
TC [9], [10]. We plan to implement augmentations as data
transformations in this package and allow their composing,
which is not supported in the current version. We also plan to
implement more TC model architectures.

2ppi stands for per-packet information, which is another name for packet
sequences; flowstats stands for flow statistics. More details in the model
reference https://cesnet.github.io/cesnet-models/reference models/.

3https://cesnet.github.io/cesnet-models/.
4https://pypi.org/project/cesnet-models/.
5https://github.com/CESNET/cesnet-models.

REFERENCES

[1] C. Wang, A. Finamore, L. Yang, K. Fauvel, and D. Rossi, “AppClassNet:
A commercial-grade dataset for application identification research,”
SIGCOMM Comput. Commun. Rev., vol. 52, no. 3, p. 19–27, sep 2022.
[Online]. Available: https://doi.org/10.1145/3561954.3561958

[2] J. Luxemburk and K. Hynek, “DataZoo: Streamlining traffic classifica-
tion experiments,” in Proceedings of the 2023 on Explainable and Safety
Bounded, Fidelitous, Machine Learning for Networking, ser. SAFE ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
3–7. [Online]. Available: https://doi.org/10.1145/3630050.3630176

[3] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “To-
wards the deployment of machine learning solutions in network traffic
classification: A systematic survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1988–2014, 2019.

[4] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “MIMETIC:
Mobile encrypted traffic classification using multimodal deep learning,”
Computer Networks, vol. 165, p. 106944, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128619304669

[5] I. Akbari, M. A. Salahuddin, L. Ven, N. Limam, R. Boutaba,
B. Mathieu, S. Moteau, and S. Tuffin, “A look behind the curtain:
Traffic classification in an increasingly encrypted web,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 5, no. 1, feb 2021. [Online]. Available:
https://doi.org/10.1145/3447382

[6] J. Luxemburk and T. Čejka, “Fine-grained TLS services classification
with reject option,” Computer Networks, vol. 220, p. 109467, Jan. 2023.
[Online]. Available: https://doi.org/10.1016/j.comnet.2022.109467

[7] J. Luxemburk, K. Hynek, and T. Čejka, “Encrypted traffic classification:
the quic case,” in 2023 7th Network Traffic Measurement and Analysis
Conference (TMA), 2023, pp. 1–10.

[8] J. Luxemburk, K. Hynek, T. Čejka, A. Lukačovič, and P. Šiška,
“CESNET-QUIC22: A large one-month QUIC network traffic dataset
from backbone lines,” Data in Brief, vol. 46, p. 108888, Feb. 2023.
[Online]. Available: https://doi.org/10.1016/j.dib.2023.108888

[9] C. Wang, A. Finamore, P. Michiardi, M. Gallo, and D. Rossi, “Data
augmentation for traffic classification,” in International Conference on
Passive and Active Network Measurement. Springer, 2024, pp. 159–186.

[10] R. Xie, J. Cao, E. Dong, M. Xu, K. Sun, Q. Li, L. Shen, and M. Zhang,
“Rosetta: Enabling robust TLS encrypted traffic classification in diverse
network environments with TCP-Aware traffic augmentation,” in 32nd
USENIX Security Symposium (USENIX Security 23). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 625–642. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/xie

