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Abstract—The Internet is shaped by independent actors and
heterogeneous deployments. With the wide adoption of Transport
Layer Security (TLS), a whole ecosystem of intertwined entities
emerged. Acquiring a comprehensive view allows searching for
previously unknown malicious entities and providing valuable
cyber-threat intelligence. Actively collected Internet-wide Domain
Name System (DNS) and TLS meta-data can provide the basis for
such large-scale analyses. However, in order to efficiently navigate
the vast volumes of data, an effective methodology is required.
This work proposes a graph model of the TLS ecosystem
that utilizes the relationships between servers, domains, and
certificates. A Probabilistic Threat Propagation (PTP) algorithm
is then used to propagate a threat score from existing blocklists to
related nodes. We conducted a one-year-long measurement study
of 13 monthly active Internet-wide DNS and TLS measurements
to evaluate the methodology. The latest measurement found four
highly suspicious clusters among the nodes with high threat
scores. External threat intelligence services were used to confirm
a high rate of maliciousness in the rest of the newly found
servers. With the help of optimized thresholds, we identified 557
domains and 11 IP addresses throughout the last year before they
were known to be malicious. Up to 40% of the identified nodes
appeared on average three months later on the input blocklist.
This work proposes a versatile graph model to analyze the TLS
ecosystem and a PTP analysis to help security researchers focus
on suspicious subsets of the Internet when searching for unknown
threats.

Index Terms—TLS, DNS, Probabilistic Threat Propagation,
Labeled Property Graph, Blocklists, Internet-wide Measurements

I. INTRODUCTION

The widespread adoption of Transport Layer Security
(TLS) [1] has led to the development of an interconnected
ecosystem that, in conjunction with the Domain Name System
(DNS) and the Web Public Key Infrastructure (WebPKI),
underpins the majority of the current Internet.

Notably, active measurements of this TLS ecosystem can
enable novel possibilities to identify malicious activity because
interesting meta-data about servers, their configuration, or the
actor behind the deployments (e.g., Refs. [2, 3, 4]) can be
collected, especially considering the increased usage of TLS
by cyber-criminals [5]. Blocklists like the abuse.ch SSLBL [6]
(listing certificates used by botnet Command and Control
(C2) servers) indicate that certificates can reveal relations
among C2 server IP addresses. Moreover, domains might
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Figure 1: Internet-wide TLS Ecosystem Graph (ITEG) Schema

resolve to these IP addresses and could be embedded in other
certificates. Leveraging such relations can provide a detailed
view of malicious infrastructure and offer valuable cyber-threat
intelligence. However, a comprehensive model and efficient
approach for navigating the vast amount of collectible data
are necessary to provide this information.

This work investigates a graph-based model of active DNS
and TLS measurement data to leverage the extracted relations
and transmit a threat score across entities using a Probabilistic
Threat Propagation (PTP) [7] algorithm to find new, potentially
malicious servers.

This paper makes the following contribution:
i) A versatile graph model of the TLS ecosystem built

around the deliberate actions of an actor controlling a
domain, IP address, or certificate; cf., Figure 1.

ii) The application of a message-based implementation of
PTP to propagate a threat score throughout the graph
using blocklists as input.

iii) A one-year-long measurement study covering 13 monthly
Internet-wide DNS and TLS measurements. We analyzed
newly found domains and IP addresses with a high
threat score via manual inspection and external threat
intelligence services. Additionally, we evaluated whether
they would appear on the respective blocklists over time.

iv) Published results, scripts, and example graph [8].

II. METHODOLOGY

The TLS ecosystem is an interplay of the DNS [9], X.509
Public Key Infrastructures (PKIs) [10], and the applications
using TLS (e.g., HTTPS) to provide a level of trust in
our communication over the Internet. This work proposes
modeling actively collected DNS and TLS meta-data as a978-3-903176-64-5 © 2024 IFIP
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Figure 2: Data Collection and Graph Processing Pipeline

Labeled Property Graph to streamline processing, simplify
inspection, and benefit from well-known graph algorithms,
ultimately aiding security-relevant use cases.

Figure 2 describes our data collection and processing
pipeline. It worked as follows: we started with domain lists
(downloaded from external sources and extracted from the
Certificate Transparency (CT) log) covering a large portion
of the Internet and resolved each domain to one or more IP
addresses (IPv4 and IPv6). Afterward, we conducted Internet-
wide TLS scans of the entire IPv4 address space and all the
(IP address, domain) tuples we collected during the DNS scan.
In the second case, we used the domains as Server Name
Indications (SNIs) to collect certificates bound to specific
names. The TLS scans targeted TCP port 443, and we stored
the received Hypertext Transfer Protocol (HTTP) headers.
We leave an extension with QUIC scans to future work. As
Refs. [11, 12] point out, QUIC is currently mostly used by
Content Delivery Networks (CDNs) and hypergiants.

An Apache Spark [13] application transformed the DNS and
TLS scan results into a property graph and performed a PTP
analysis on the data. The graph and the calculated PTP scores
were the basis for our later analyses.

The data collection is further elaborated in Section II-B,
while Section II-C explains modeling this data as ITEG, and
Section II-D proposes a message-based PTP on the ITEG.

A. Why Modeling a Property Graph?

Modeling real-world data as graphs is intuitive, especially
if the data source is already a network like the Internet. The
idea is not new; e.g., the RDF [14] tries to model arbitrary
resources on the Internet as a single Internet-wide graph.

A graph is an abstraction and simplification that expresses
connected data using only nodes (or vertices) and edges [15].
The most popular graph model variant is a Property Graph,
where nodes and edges can contain properties (expressed as
key-value pairs), edges are named and directed, and they
always have a start and end node (cf., Ref. [15]). A Labeled
Property Graph additionally contains labels attached to nodes
that distinguish different types. We selected a Labeled Property
Graph for our modeling because it is a simple and intuitive
representation powerful enough to express the complex data
we collect through our active measurements.

We propose a graph-based model of the TLS ecosystem.
However, this does not mean the data has to be stored in a
graph database. For example, we implemented our message
passing in Section II-D using only a series of SQL joins
and aggregations on Apache Spark [13] Dataframes because it
allowed us to optimize the algorithm better. Conversely, graph
databases can sometimes improve performance because they
were optimized for typical graph problems; e.g., Abedrabbo et
al. [16] observed a “significant degregation of performance” at
depths 4 and 5 when comparing graph traversals using a rela-
tional and graph database. Additionally, graph-based libraries
and databases can provide a convenient interface to interact
and visualize data, e.g., we used the Graph Frames [17] library
to compute the node degrees in Section III-A and Neo4J [18]
to visualize and manually inspect our findings.

B. Internet-wide DNS and TLS Scans

We collected data about the TLS ecosystem with the help of
DNS and TLS measurements. Input for the DNS scans were:

i) domains from gTLD zone files obtained from the Cen-
tralized Zone Data Service (CZDS), including .com, .net,
and .org;

ii) top and blocklists, i.a., Majestic [19], Umbrella [20],
Chrome UX Report [21], Chromium HSTS Preload [22],
Cloudflare Radar [23], and Openphish [24]; and

iii) domains we extracted from the Subject Alternative Name
(SAN) extension in CT log certificates.

We issued A and AAAA queries using MassDNS [25] and a
local Unbound [26] resolver. For our TLS measurements, we
focused on TLS-capable addresses on port 443, the standard
HTTPS port, expecting a high rate of deployed servers sup-
porting TLS. For IPv4, we used ZMap [27] on the complete
address space to identify servers with an open port 443.
Afterward, we used the Goscanner [28] to conduct a full
TLS handshake without a SNI. We relied on the previous
A and AAAA DNS resolutions to collect further TLS data
bound to specific domains. We scanned each resolved IPv6
address for an open port 443 using ZMapv6 [29]. Afterwards,
we filtered all (domain, IP address)-pairs for targets with an
open port 443 based on our previous ZMap(v6) scans and
established a TLS connection to all targets with the respective
domain as SNI. Selecting targets with an open port reduced
the scanning overhead and network load. We adhered to the
ethical considerations in the appendix.

C. An Internet-wide TLS Ecosystem Graph (ITEG) Model

This work proposes to model the actively collected data
from the TLS ecosystem as a single Internet-wide graph. This
section describes the model and the reasons for its design.

Essentially, the TLS ecosystem links resources (identified
by domains) to physical locations (IP addresses) and ensures,
with the help of certificates, that only servers eligible to
serve a particular resource do so. In other words, it creates a
cyclic relation between a domain, certificate, and IP address,
illustrated in Figure 1. A domain can resolve to one or multiple
IP addresses via the DNS. When performing a TLS handshake
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Figure 3: Example PTP on the ITEG. The IP address “1.2.3.4” is on the input list, hence, has its score fixed to one. To prevent
nodes falsely increasing their own scores, PTP subtracts the potential error from the last iteration on bidirectional edges, e.g.,
between b.com and a.b.com. Scores of zero are hidden.

with the resolved IP address, the server returns a certificate
to authorize its response. The certificate contains one or
multiple domains with the SAN [10] extension. Domains are
hierarchical per-design expressed in the subdomain and main
domain relation (e.g., www.example.org has an edge to
example.org). Because we performed our scans on port
443, we received several redirects via the HTTP to different
domains (e.g., from example.com to example.org). An
important design criterion was that each edge should reflect
an actor’s intent who is controlling the node. For example, the
owner of a domain controls which IP addresses are resolved;
however, the owner of an IP address cannot control which
domains point to the address. Similarly, the server behind
an IP address controls which certificates it returns, and the
creator of a certificate chooses the included domains and
on which servers the private key is deployed. We decided
not to distinguish between valid or self-signed certificates to
simplify the model and because the graph already contains this
information to a certain degree, as discussed in Section V-3.

In summary, the TLS ecosystem can be modeled with an
Internet-wide Labeled Property Graph. Relations in the ITEG
express a deliberate action of the actor controlling an entity.

D. Probabilistic Threat Propagation (PTP) on the ITEG

This work leverages the graph structure of the TLS ecosys-
tem to propagate threat indications between connected nodes
and find new, potentially malicious nodes given a set of input
hints. We used the PTP algorithm developed by Carter et al. [7]
to achieve this propagation. They originally designed their
approach to propagate a threat score among a graph derived
from IP addresses and domains a web proxy server observed.
However, we will show that it can be also used on the ITEG.

The directions in the ITEG express a deliberate action
of someone controlling a node; therefore, we can use the
edges to propagate a score and find other relevant nodes. We
decided to propagate scores in reversed graph direction. The
intuition of this decision was that nodes deliberately pointing
to a known malicious node might also be malicious, but the

Algorithm 1: Message-based Approximate PTP
Input: The ITEG (without loops), a blocklist as Input,

and a convergence parameter ε
repeat

for (src, dst) ∈ ITEG.edges do
message← dst[score]
prev ← score send over edge (dst, src) in the

previous iteration
if ∃ prev and dst ̸∈ Input then

// remove error caused by prev
message← message− prev

dst[outDegree]

send message to e.src

for n ∈ ITEG.nodes do
M ← messages received by n

n[score]←
{
1 , if n ∈ Input
1

|M|
∑

m∈M m , otherwise

until no score changed more than ε

contrary can not be assumed. For example, a benign actor
cannot prevent malicious domains from being resolved to his
benign IP addresses. Although, domains resolving to a known
malicious IP address might be misconfigured, compromised,
or even belong to the respective malicious actor. The other
ITEG relations follow the same intuition.

We implemented the Approximate Inference (O(n)) of the
PTP algorithm [7] because the Exact Inference (O(n2)) would
not scale to our large graph. We realized it as a message-
passing algorithm, described in Algorithm 1. Our PTP im-
plementation runs for multiple iterations until convergence.
We detected a convergence if neither node changed its score
more than an input parameter ε. Additional inputs are the
ITEG without loops (edges from and to the same node) and
a blocklist from which the scores should spread (all nodes on
the blocklist will have their scores fixed to one throughout all
iterations). Some values were pre-computed to save time, e.g.,
the outDegree of a node. For each iteration, a node would send
its score to all nodes pointing to it; in the case of bidirectional



edges, we subtracted the portion of the score that was directly
caused by the destination in the previous iteration, reducing
the error created by nodes falsely increasing their own score.
Limiting this error is a central design aspect of PTP (more
details in Ref. [7]). However, when using the Approximate
Inference, cycles in the graph can still cause scores to flow
back to the originating node. The approximation is the reason
we need ε because the graph does not converge to a final state,
the error is only reduced in each iteration. However, Carter et
al. [7] argue this error is negligible. Then, we computed the
average of received scores and assigned it as the new node
score. Finally, nodes with high scores can be analyzed.

Figure 3 shows an example run over three iterations:
1) Initially, the IP address 1.2.3.4 is placed on a blocklist,

and thus, has a fixed score of one. In the first iteration,
this score is passed on to all neighbors. The recipients
a.b.com and Cert. 1 will also receive a score of zero
from b.com and a.b.com, respectively. We send scores in
reversed edge direction; hence, a.b.com receives no score
from Cert. 1. Then, the new scores of a.b.com and Cert.
1 are set to 0.5, the average of received messages.

2) In the second iteration, Cert. 1 will increase its score to
0.75, as a.b.com now sends a score of 0.5 instead of zero.
Similarly, b.com will increase its score to 0.25. We ignore
messages sent to 1.2.3.4 because its score is fixed to one.

3) In the third iteration, we observe an interesting effect
between a.b.com and b.com due to the bidirectional edge.
Without the PTP error correction, the 0.25 score from
b.com would flow back to a.b.com, falsely increasing the
score in every iteration. The b.com node has an outgoing
degree of two, hence the portion received from a.b.com
is prev

outDegree = 0.5
2 = 0.25, resulting in a score of zero

sent to a.b.com after the error correction. In the example,
the scores will remain stable after the third iteration.
However, the third iteration also shows the downside of
the Approximate Inference, as we can see a score of 0.25
falsely flowing back to 1.2.3.4 via the cycle over a.b.com
and Cert. 1. Although, it is irrelevant in the example since
1.2.3.4’s score is fixed.

In conclusion, a message-based PTP allows the propagation
of a threat score across the ITEG such that new, potentially
malicious IP addresses, domains, and certificates can be
found. Existing threat intelligence serves as algorithm input.

E. Potential Optimization

As we developed our methodology, we used top lists as
input due to their smaller size, allowing for faster development.
However, we soon realized that our methodology heavily relied
on collecting critical pieces of information in a larger puzzle,
which was impossible with a small input. This means that
the completeness of the graph is very crucial to the efficacy
of our approach, and the more data available, the higher the
chances of discovering something interesting. Nevertheless,
compared to all nodes, only a few blocked nodes exist. Since
the PTP algorithm is based on locality, only nodes close to
blocked ones can achieve a high score. Thus, we optimized the

implementation significantly by considering only nodes that
received a score greater than zero, enabling us to run each
iteration in minutes instead of hours. We ran the algorithm
separately for each blocklist, which enabled us to retrace how
concrete scores were created. However, merging the input
blocklists into a single list, could save processing resources.
Nonetheless, we discovered in Section III-D that the block-
lists behaved differently, and blocklist-type specific thresholds
provided the best detection results. Hence, knowing the type
of blocklist helps interpreting the results. Future work may
involve exploring more advanced models combining numerous
blocklists to provide better threat intelligence.

III. EVALUATION

With the help of the methods described in the previous
section, we performed 13 monthly Internet-wide DNS and
TLS measurements starting January 1, 2023. This data was the
basis of 13 ITEGs, which modeled the TLS ecosystem during
the respective month. For each ITEG, it took approximately
one week to finish scanning, parsing, and calculating the
PTP scores. We could have created at most one graph every
week, but we decided to do it once a month to minimize
computational and storage costs. However, this could mean
we may have missed some findings.

Before we present our results, we want to provide an
explanation to help interpret the results. Our methodology
allowed us to find numerous suspicious domains, IP addresses,
and certificates. However, it is important to note that there
is no definitive way for us to determine if a suspicious
entity is actually malicious or not. To gain insights into the
nature of these suspicious entities we will be using external
threat intelligence services to check whether the entities also
attracted the attention of other actors searching for threats on
the Internet; but again, their output is usually only an indicator
as well, and it remains unclear whether a domain or IP address
is truly malicious or harmless. Nevertheless, by highlighting
the overlap between our findings and the data known to these
services, we aim to illustrate that our approach can provide
valuable indications of malicious activity.

A. Overview

This section provides an overview of collected measurement
data, the resulting ITEG, and the blocklist data used as input
for the PTP algorithm. We will analyze multiple graphs over
time in Section III-D; however, for simplicity and because we
mainly analyzed our latest graph in the following sections,
we focus this overview on data from January 1, 2024. The
statistics are similar for the other time frames.

Table I presents an overview of the measurements necessary
to create a single ITEG. It took five days, on average, to
complete all scans. We conducted 6.3× 108 DNS resolutions
of domains extracted from CT Log SANs and downloaded
from external services. We scanned domains present in both
sources only once. The CT Log SANs provided us with
the most domains. However, the success rate was higher
for the downloaded domains. We used the A and AAAA



Table I: Overview of the measurements necessary to create a
single ITEG from Jan. 1, 2024.

Total Measurements Success Rate

DNS Scan 6.3× 108 78.1%
⌞ CT Log SANs 4.9× 108 72.1%
⌞ domain lists 2.8× 108 95.5%

TLS IPv4 SNI Scan 5.5× 108 90.7%
TLS IPv6 SNI Scan 1.5× 108 83.1%
TLS Full IPv4 Scan 5.4× 107 77.2%

Table II: Overview of the ITEG from Jan. 1, 2024. Listing the
number and distribution of node and edge types.

Type Amount Distribution

ITEG nodes 9.0× 108

⌞ domains 6.3× 108 70.0%
⌞ certificates 1.7× 108 19.1%
⌞ IP addresses 9.8× 107 10.9%

ITEG edges 3.2× 109

⌞ resolves 1.3× 109 39.6%
⌞ returns 4.0× 108 12.6%
⌞ deployed on 4.0× 108 12.6%
⌞ contains 3.6× 108 11.4%
⌞ main domain 3.6× 108 11.2%
⌞ subdomain 3.6× 108 11.2%
⌞ redirects 4.5× 107 1.4%

resolutions for our TLS SNI scans over IPv4 and IPv6 only
if we previously detected an open port 443 (cf., Section II-B).
Interestingly, the success rate over IPv4 was higher than over
IPv6. The full IPv4 address space scan had the lowest success
rate compared to the other TLS scans. Although we detected
open HTTPS ports, we observed TCP resets, TLS protocol
errors, or nothing, and the connection ran into a timeout.

We used the actively collected data from Table I to create
an ITEG. Table II shows an overview of the number of
resulting nodes and edges. In general, the graphs contained
fewer entries because we included information only once. The
table reveals that domains and their resolutions dominated the
graph. We observed almost twice as many certificates as IP
addresses, highlighting the importance of SNI scans to get a
comprehensive view of the TLS ecosystem. To provide another
perspective on the ITEG, we investigated node degrees in
Figure 4. Node degrees are a straightforward but effective
metric for understanding the structure of a graph. The inDegree
is defined for each node as the number of incoming edges.
The figure shows how the edges in our graph are not evenly
distributed and accumulate around a few nodes. In particular,
90% of all edges pointing to IP Addresses accumulate on only
2% (1.3× 107), meaning that few addresses were responsible
for most connections, resulting in a high centralization. We
could attribute the top two IP addresses to a domain parking
service from GoDaddy, as shown by Zirngibl et al. [30]. The
rest of the top ten addresses were from Cloudflare and website
hosters (i.e., Wix.com and Squarespace).

On the ITEG, we ran the PTP algorithm described in
Section II-D for each blocklist in Table III. We downloaded
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Table III: Used blocklists, number of listed entries, the portion
also observed in the ITEG, and Iterations (Iter.) necessary until
PTP convergence on Jan. 1, 2024.

Blocklist Entries Observed Iter.

abuse.ch Feodo 174 IP addresses 34 (19.5,%) 12
Blocklist.de Strongips 472 IP addresses 161 ( 34.1%) 9
abuse.ch SSLBL 5 577 Certificates 19 ( 0.3%) 14
Openphish 9 289 Domains 3 461 ( 37.3%) 42

each list daily and merged all entries from the last month
as algorithm input. For example, if the scans for the ITEG
on May 1 were finished on May 7, we considered the daily
blocklist from Apr. 1 to May 7 as PTP input. As seen in the
table, our scans observed only a fraction of the blocked entries.
Unresponsive IP addresses, unresolvable domains, and unseen
certificates were not included in the graph. The low rates were
expected, especially for the SSLBL, because certificates are a
strong indicator that do not have to be removed timely after
CNC servers stop using them. The PTP algorithm worked as
follows: we fixed the threat score to one on each node on the
input blocklist. Then, we ran the algorithm using ε = 0.01
until convergence; this took 9 to 42 iterations, depending on
the input.

This section gave an overview of the collected data nec-
essary to create a single ITEG and to run the PTP algo-
rithm. Statistics about the graph’s structure revealed a high
centralization. In the following sections, we will evaluate the
generated graph and calculated threat scores more closely.

B. Manual Analysis of Suspicious Clusters

This section shows four outliers that the ITEG modeling and
the PTP scores revealed in the scans from January 1, 2024.

As shown in Table IV, the first outliers were 1.5×105 seem-
ingly random domains (e.g., figtbnfjxbqjyl[.]in) that
resolved to a single IP address returning a blocked certificate.
A blocked certificate has a SHA-1 hash that was published
on the abuse.ch SSLBL blocklist. We did not see these
domains in any other context, so the PTP algorithm assigned



Table IV: Suspicious groups of domains and IP addresses
identified by a high and uniform threat score.

Suspicious Cluster Score Size

1. Seemingly random domains resolving to
an IP address with a blocked certificate

100% 1.5× 105

2. unbouncepages subdomains 33% 3.8× 104

3. IP addresses without known domain re-
turning a blocked certificate

100% 2.7× 104

4. Seemingly random domains redirecting
to a blocked Openphish domain

51% 3.1× 103

a threat score of 100%. We extracted only 0.7% of these
domains from the CT log; most originated from the zone
files retrieved from the CZDS. We assume this large group
of domains was automatically generated. The second outliers
were 3.8×104 subdomains from unbouncepages[.]com.
Because Openphish listed the main domain, all subdomains
were assigned a score of 33%. Unbouncepages might not be
malicious (at the time of writing, it was not listed on the
blocklist anymore); although, we think the high threat score
for its subdomains is justified assuming the information on
the blocklist is correct. The third outliers were 2.7 × 104

IP addresses we observed only in our full IPv4 address
scan returning a blocked self-signed certificate. None of our
domains resolved to these addresses or were they involved in
any other context; hence, the PTP algorithm assigned them
a threat score of 100%. The SSLBL contains certificates that
botnet C2 servers have used [6], some are default certificates
(e.g., embedded in web servers), meaning that the found
addresses do not have to be malicious, but they are suspicious.
The last outliers were 3.1×103 domains with a uniform score
of 51%. The domains resolved to an unremarkable IP address,
but were redirected to a domain on the Openphish blocklist
(i.e., 407979[.]com). We believe the majority of this group
was also generated because they seemed to be made of random
6-character strings with sometimes a prepended “www” (e.g.,
www11666x[.]com). Similar to the above, only 8.0% were
from the CT log, and the rest were CZDS domains.

To conclude, the ITEG can help manually analyze the
TLS ecosystem. The PTP algorithm allowed us to quickly
find new blocklist-related IP addresses and domains for a
more thorough analysis. Moreover, we found several highly
suspicious groups of IP addresses and domains.

C. Comparison with External Threat Intelligence Services

The ITEG allowed us to use a PTP algorithm to propagate
a threat score from a set of input nodes listed on blocklists. In
the following, we investigate IP addresses and domains with a
high score in the graph from January 1, 2024, and check their
status with the external threat intelligence services VirusTotal
(VT) [31] and Google Safe Browsing (GSB) [32].

VT provides aggregated threat intelligence, and we used it
to classify an IP address or domain as malicious, suspicious,
harmless, or—in case of a Not Found error—as unknown. GSB
also provides information about malicious websites; however,

malicious harmless unknown ipv6

0

10

20

30

D
om

ai
ns

[ ×
1
0
3
]

3

4

IP
A

dd
re

ss
es

[ ×
1
0
3
]

20%40%60%80%100%

0

1

Threshold

Figure 5: Cumulative number of domains and IP addresses
with a threat score above the threshold, found via PTP, and
classified according to the VT and GSB labels. Excluding the
input blocklists and the first three clusters from Table IV.

their Application Programming Interface (API) returned only
a malicious flag or no data in other cases. Both are unable
to check IPv6 addresses or certificates. We combined both
sources for our evaluation and flagged an entry as malicious
if either service identified it as malicious or suspicious. If
present, we used the VT harmless class and flagged the rest
as unknown. However, the VT API was rate-limited, and we
could check only a small set of nodes; hence, we removed
the first three large clusters we had already identified in the
previous Section III-B as suspicious from this analysis.

Table III shows the cumulative number of domains and IP
address with threat scores above the shown threshold grouped
by the results from VT and GSB. We only analyzed nodes
with a score above 10% because the number of affected nodes
increased exponentially below this threshold. VT and GSB had
no data about several domains and most IP addresses. The
figure shows that we found an increasing amount of domains
the lower we set the threshold. Most domains were flagged
as harmless; however, we found an increasing number known
as malicious. A large portion of the identified domains were
unknown to VT and GSB. A different picture is revealed for
IP addresses. By far, the largest portion of found IP addresses
had a threat score of 100%, mainly due to servers returning
a blocked certificate from the SSLBL. We found only a few
additional addresses by lowering the threshold; among them
were IPv6 addresses we could not check via either service.

For this analysis, we included the smallest cluster from
Section III-B to evaluate it with VT and GSB. As a reminder,
we identified 3.1×103 likely automatically generated domains
(they had a very similar naming schema) that were redirected
to a blocked phishing domain. These domains cause the
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thresholds providing the maximal rate.

small sharp increment at the 51% threshold in Figure 5.
Interestingly, VT and GSB labeled only 53% of the identified
domains malicious, 24% harmless, and 23% were unknown.
Considering all of the indicators, we believe the entire cluster
should be classified as malicious. It is unclear if VT and GSB
did not add these domains due to a lack of visibility or if
they were never operationalized. Nevertheless, this highlights
our work’s importance in identifying gaps in threat detection
approaches. However, our approach is only intended as an
indicator, and we will discuss false positives in Section V-2.

To conclude, the ITEG modeling and a PTP analysis can
be used to propagate thread scores. Many of the newly found
domains and IP addresses were already labeled as malicious
by other sources for threat intelligence, highlighting that our
approach can identify threat-relevant subsets of the Internet.
Moreover, we saw indicators that our work could help fill gaps
in the knowledge base of threat intelligence services. However,
our findings should not be directly treated as malicious, but
as a starting point for a more thorough investigation.

D. A Perspective Over Time

One goal of this work was to develop an approach that
can find entities on the Internet before becoming known to be
malicious. This section analyzes multiple ITEGs over time and
whether nodes for which we calculated a high score appeared
later on the blocklist. We analyzed 13 monthly measurements
starting from January 1, 2023. For each month, we conducted
the Internet-wide scans described in Section II-B, created an
ITEG, and performed the PTP algorithm with the blocklists
from Table III as input. We defined a new appearance as an
IP address or domain that was not input for the PTP algorithm
and which appeared on the input blocklist only after the ITEG
measurements were completed and before Feb. 10, 2024. For
example, the ITEG from May 1 would use the blocklists
downloaded from April 1 to May 7 (because the last TLS scan
finished on May 7) as PTP input and the blocklists from May
8, 2023, to Feb. 9, 2024, for the evaluation in this section.
Although we identified certificates with high threat scores,
none appeared later on the SSLBL. For this reason, we focus
on domains and IP addresses in this section.

To investigate whether nodes with a high score appeared
later on the respective blocklist, we first had to identify a
set of relevant nodes. A straightforward approach considers
all nodes with a score above a certain threshold. For this
analysis, we wanted to use the best-performing thresholds.
Hence, we calculated an Appearance Rate for domains and IP
addresses for each threshold above 1% across all 13 ITEGs to
choose the best option. We define the Appearance Rate as the
portion of relevant nodes that later appeared on the blocklist.
For example, if ten IP addresses scored above 50% and two
appeared later on the blocklist, then the IP address Appearance
Rate for a threshold of 50% would be 20%. Figure 6 illustrates
the calculated rates. Then, we selected the best-performing
thresholds of 51.3% and 18.0% to identify domains and IP
address, respectively.

Figure 7 shows the number of nodes we identified for
each of the 13 ITEGs and the percentage of these nodes
that appeared later on the respective blocklist. The subfigures
reveal that the performance of the overall approach highly
depends on the input list and the time of the measurements.
Sometimes, it worked very well, and other times, not at all. For
example, our approach revealed ten new IP addresses when
using the Feodo Tracker as input on April 1, 2023, where
four of them appeared later on the blocklist. On the other
hand, on December 1, 2023, we identified no new address;
either our active measurements missed a relevant piece of
data, or there was nothing to find. The Blocklist.de Strongips
list was larger, and we identified more IP addresses, although
the Appearance Rate was generally lower. The Openphish
list contained many more blocked entries, and our approach
revealed a few thousand additional domains. Although the
Appearance Rate was only between 0.4% and 4.0%, this still
means we found 557 domains before they appeared later on the
list. Some identified nodes overlapped on consecutive scans;
hence, the number of distinct addresses was 5 using Feodo and
6 with Strongips as input. 82% of the IP addresses appearing
later on a blocklist returned the same certificate when we
identified them and when we scanned them again after they
appeared on the blocklist, indicating that the deployment was
the same the whole time. The other 18% were unresponsive.

We can see that the rate of nodes appearing on the blocklists
has decreased in the four most recent months. Several nodes
we identified with a high score might be added only after
writing this paper. Therefore, we analyzed the time until an
entry appeared on a blocklist in Figure 8. On average, it took
three months for an entry to appear, although it took much
longer in some cases (350 days).

An example for a domain we identified before it was
listed by Openphish was D1 (bluewishlists[.]shop).
During our scans, we revealed its connection to the domain
usps[.]speed-mypkg[.]shop (already listed on Open-
phish) because they both resolved to the same IP address
and had the same valid Let’s Encrypt certificate. Two days
after we finished our scans, D1 was listed by Openphish. It is
possible that the domain was operationalized only later or that
the activity remained unnoticed for several days. Interestingly,
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Figure 8: Time passed between our identification of an IP
address or domain and its inclusion into the blocklist.

usps[.]logistic-info[.]shop was also included in
the same Let’s Encrypt certificate and we assigned it a high
threat score. However, it was never added to the blocklist at
the time of writing. The domain may have never been used,
but we believe the threat score is justified due to its suspicious
connection to an already blocked domain. The Openphish list
only includes entries for which phishing was reported. Hence,
this example shows how a low appearance rate is not necessary
a problem of the blocklist nor our approach, but a result of
different methodologies. Nevertheless, we had false positives,
which we will discuss in Section V-2.

In conclusion, the ITEG modeling and PTP allows using
existing blocklist data to identify additional IP addresses
and domains before they appear on the respective blocklist.
While the rate of nodes appearing is generally low, they are
present, emphasizing that this work can find valuable cyber-
threat intelligence as a starting point for further investigation.
Depending on the input and measurement period, up to 40%
of the identified nodes showed up later on the blocklist.

IV. RELATED WORK

Multiple works (e.g., Refs. [33, 34, 35]) performed Internet-
wide active measurements to improve the understanding of the
TLS ecosystem. VanderSloot et al. [36] found that IPv4 ad-
dress space scans captured only one-third of their certificates,

and a combination of CT logs and SNI scans is needed to
acquire 99.4%, highlighting ne necessity of our SNI scans.

Refs. [3, 4, 37, 38, 39] have used data extracted from the
TLS ecosystem to fingerprint and detect malicious C2 servers.
However, their fingerprinting relies on multiple TLS connec-
tions to the same server, which can be a scalability issue. Our
approach uses only a single connection.

Security-related Internet-wide graph modeling has been
successfully applied on higher layers based on the web
graph derived from hyperlinks (initially used for Google’s
PageRank [40]): Gyöngyi et al. [41] proposed “TrustRank”,
propagating a trust score to help identify spam, and Najafi et
al. [42] introduced “MalRank”, propagating a maliciousness
score between connected nodes based on known threat in-
telligence. Because their work uses different data and graph
algorithms, they can find other (possible complementary) types
of threats compared to us.

Graph modeling is a common technique to model passively
collected network data, as shown by Refs. [43, 44, 45] and the
PTP paper [7]. Some consider TLS meta-data. The approaches
range from score propagation to community detection or the
application of graph neural networks.

Similar to this work, Simeonovski et al. [46] used DNS, IP
addresses, and hosting information to derive a property graph
and used taint-style propagation techniques to understand the
impact of dependencies between Internet services and their
providers on attacks. Like us, they propagated scores only in
explicit directions reasoned with their domain knowledge.

To our knowledge, no work has applied a similar method-
ology than this paper to detect malicious activity. Neither has
the feasibility been shown in a large-scale study over time.

V. DISCUSSION

The ITEG modeling and PTP analysis creates new oppor-
tunities to analyze the TLS ecosystem and the Internet. We
want to discuss some aspects in the following paragraphs.

1) IPv6 Addresses and Blocklists: We could not find IPv6
addresses on our blocklists, and VT and GSB did not support



them either. However, we found IPv6 addresses related to the
blocked entries; e.g., 29 IPv6 addresses returned a blocked
certificate in the scans from January 1, 2024. An approach
similar to this work could be a starting point to find malicious
IPv6 addresses so that blocklists include them in the future.

2) Examples for False Positives: Our methodology allowed
us to find suspicious IP addresses and domains. However, we
noticed also false positives. One cause was that the Openphish
blocklist contained Uniform Resource Locators (URLs), but
we only modeled domains. Most of the time this was accept-
able; however, in some cases this introduced an error. For
example, a URL on sites.google.com was blocked, but
of course not the whole domain should be treated malicious.
This affected smaller websites that redirected their domain to
a google site URL and we falsely propagated a threat score
to their domains. A similar case was the bit.ly domain (a
URL shortener) that we falsely labeled as blocked because
some URLs were blocked. This affected domains redirecting
to bit.ly; however, it was an uncommon behavior and
several of the domains we found this way were actually
known as malicious by VT, but most of them as harmless.
We could have prevented both cases by using a blocklist
that considers domains only. Other cases for false positives
were subdomains configured insecurely with one of the default
certificates blocked by the SSLBL. These subdomains likely
hosted services intended for internal or experimental use only
(with names like internal, ftp, webdisk, etc.). Due to
the score propagation this resulted in a threat score on the
other (correctly configured) domains as well.

3) Valid Certificates in the ITEG: A core aspect of our TLS
ecosystem is that it allows for a decentralized assessment of
trust issued by Certificate Authoritys (CAs) through digital
signatures. CAs check whether the private key owner also
owns the subject names listed in the certificates. In the
context of HTTPS the names are usually domains (rarely, IP
addresses). However, we decided not to treat valid certificates
(having a valid signature during scanning) differently in the
graph and the PTP analysis: i) it makes modeling, parsing, and
analyzing more straightforward and independent of root stores;
ii) we focus on malicious activity where mostly self-signed
certificates are used (e.g., all observed SSLBL certificates
were self-signed); and iii) the graph already contains an
intuition of validity as triangles between domains, IP addresses
and certificates. Unless we were subject to a Man-in-the-
Middle (MITM) attack, a CA like Let’s Encrypt would issue
a certificate for all requested domains that resolve to the IP
address of the requesting server (basically, creating a triangle)
via the ACME [47] protocol. Hence, to a certain extent, the
validity of certificates is embedded in the ITEG edges; thus,
it is considered in the PTP analysis. However, future work
focusing on benign services might model validity differently.

4) Mitigation: This work relies on malicious actors using
the TLS ecosystem in ways that leak information about their
deployments. Such leaks can arise out of necessity (e.g.,
when a single IP address serves multiple services), limited
resources and prioritization on other aspects, or human errors.

A malicious actor may mitigate detection by isolating or
obfuscating their deployments. The former can be achieved
if every malicious activity has its own IP address, domain and
certificate. If an address appears on a blocklist and fallback
addresses are used, new domains and certificates must also
be used to prevent information leakage. However, isolating
deployments can be difficult, and the risk of human error
remains. It is possible to obfuscate deployments from our PTP
algorithm, e.g., by including an unusual number of domains
in a certificate. Although the algorithm would not assign a
high score in such cases, it would be an outlier in the ITEG,
detectible by other means.

5) Limitations: The data collected with our Internet scans
tried to be as comprehensive as possible. However, we only
scanned open ports 443 and used a single vantage point.
Hence, we missed parts of the TLS ecosystem (e.g., mail), and
our results might be biased due to DNS load-balancing and
location [48]. However, it is sufficient to show the potential
of this work and provide valuable insights.

VI. CONCLUSION

This work investigated modeling Internet-wide active mea-
surements as a single property graph and applying a PTP al-
gorithm to find new, potentially malicious servers. To evaluate
the methodology, we conducted a one-year-long measurement
study of 13 monthly Internet-wide DNS and TLS scans and
used the collected data to create respective Internet-wide TLS
Ecosystem Graphs. In our latest graph, we found four highly
suspicious clusters of domains and IP addresses, two likely due
to automatic domain generation. We checked nodes outside
these clusters with external threat intelligence services. We
found that more IP address with a threat score above 10%
were flagged as malicious than harmless, highlighting that
our approach focused on malicious activity. Moreover, with
the help of an optimized detection threshold, we identified
11 IP addresses and 557 domains throughout the last year
before they were added to a blocklist. Depending on the
input blocklist and the measurement period, up to 40% of
the detected nodes appeared later on the respective blocklist.
We do not think nodes with a high score should be directly
considered as malicious; however, our approach narrows down
the millions of possible domains and IP addresses, which can
be a starting point for a more thorough investigation.

The results were obtained by modeling Internet-wide DNS
and TLS measurements as a Labeled Property Graph. Existing
blocklists were input for a PTP algorithm that propagated a
threat score among IP addresses, domains, and certificates.
Our proposed model explains and simplifies the massive data
collectible from the TLS ecosystem. The proposed application
of PTP can help to find previously unknown threats on the
Internet and provide valuable threat intelligence.

This work could be extended in the future using additional
data (e.g., routing information) or alternative graph algorithms.
Our modeling and data collection pipeline can be an addition
to the tool-set of researchers analyzing the TLS ecosystem to
answer security and non-security related questions.
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APPENDIX

ETHICAL CONSIDERATIONS

During our scans, we followed ethical considerations and
best practices described by Dittrich et al. [49] and Partridge
and Allman [50]. We scanned with a limited rate, used a
blocklist containing opt-out requests, and informed about our
scans using reverse DNS, a website on the scanning machine,
and whois information. We responded to all requests regarding
our scans and requested opt-outs. Our study collected no user
data but focused on publicly visible server data. No human
subjects were part of this study.


