
Two evolution indicators for FOSS projects

Etiel Petrinja1 and Giancarlo Succi1

Free University of Bozen/Bolzano

Abstract
In this paper we introduce two project evolution indicators. One is show-

ing an increase of downloads of the project and therefore a growing interest of
users in the results of the project. The second indicator is predicting the future
evolution of the project with the submission of new revisions to the concurrent
versioning system. Both indicators can provide evidence of the sustainability
of a software project. We used the General Linear Model method to statisti-
cally formulate the two linear equations that can be used to predict the two
indicators. The predicting equations were build by using two stratified data
samples one of 760 projects and the second of 880 projects extracted from the
SourceForge repository. The six metrics included into the final version of the
two models were extracted from a set of thirty project and product metrics as:
the number of downloads, the number of developers, etc. We have validated the
discriminant and the concurrent validity of the two models by using different
statistical tests as the goodness-of-fit and we have used the two models to pre-
dict the indicators on two hold-out validation samples. The model predicting
the increment of downloads was correct in 75 percent of the cases, the model
predicting the submission of new revisions was correct in 93 percent of the cases.

1 Introduction

Software projects evolve according to different evolution processes. The Free
Source Software [9] projects or the Open Source Software projects (FOSS) evo-
lution differs in several aspects from closed source software (CSS) projects [11].
The success of closed source software projects is usually correlated with the
number of copies of the software product soled [27]. FOSS projects are often
considered successful if there is a large number of users of the FOSS product
[18]. As proposed by DeLone and McLean in their Model of Information systems
Success paper [28] the number of FOSS users can represent the ‘Users satisfac-
tion‘ factor that is included in their model. The number of users depends on the
quality of the software product and on the quality of the development process
that is followed inside the FOSS community [18], [6].

The number of FOSS projects has been growing rapidly in the last decade
[29]. The aim of the presented research was to identify characteristics of suc-
cessful FOSS projects focusing on the number of downloads of FOSS products
and the vitality of the development process. Based on those characteristics we

2 Etiel Petrinja and Giancarlo Succi

defined two indicators of the future evolution of the FOSS project. The suc-
cess of a software product is a common dependent variable of the research of
software projects, and due to its dependency on several aspects, it should be
modelled as a multidimensional factor. The number of downloads should be
considered as a metric indicating the interest of users into a FOSS product,
not necessarily its real usage. Not all downloaded projects are used and there
is also a large number of users of FOSS products that have not downloaded
them but obtained them as part of a software bundle; for example in one of the
Linux distributions. Taking in consideration these two deviations, the number
of downloads of FOSS projects is still a factor that is well correlated with the
number of users of a FOSS product. The research presented in this paper was
based on a empirical study of several thousands FOSS projects stored in the
SourceForge repository. The characteristics of FOSS projects were identified by
defining and validating two indicators of FOSS project evolution based on a set
of thirty measurements. Two models were studied: one is focused on the interest
of users in the FOSS product, the second is explaining the potential future sur-
vival of the FOSS project by inserting new revisions (working increments of the
project) into the project’s versioning system. Another important characteristic
of FOSS projects is the sustainability. It depends on a large number of product
and process aspects. The two indicators, presented in this paper, can provide
evidence of the sustainability of the FOSS project. An growing number of users
and a high probability of new revisions being published is correlated with the
sustainability of the project. The data collected about the projects stored in
SourceForge were used for building and validating the two models following a
statistical approach.

Section two provides background information reviewed for the study. Section
three contains information about the measures collected, the sources of infor-
mation used, the building of the two evolution indicators, and their validation.
In section four we discuss the results and consider the limitations of this study.
Finally, in section five we conclude the paper.

2 Background

The quality of a FOSS product is an important factor considered when adopt-
ing it or planing to start contributing to the project. The open availability of
project data has supported a large set of FOSS studies. Many of those studies
were focused on software measurement and especially on the measurement of
its quality. Scacchi [12], McConnell [26], Alshayeb and Li [10] published ob-
servations of the results of studies comparing Closed source software projects
and FOSS projects showing the differences and similarities between the two
development approaches.

The Lines of Code (LOC) and their variation through time was a metric
often considered and analysed [22], [11]. Crowston and Scozzi [13] analysed the
FOSS development process and proposed transitions between different phases of

Two evolution indicators for FOSS projects 3

the FOSS development process. Several studies were conducted by statistically
analysing a large sample of projects. Capiluppi et al. [15] conducted a horizontal
study of 404 FOSS projects focusing on the change of the size of alive projects.
They observed that only a small percentage of projects is in a growing phase.
Similar studies analysing large samples of FOSS projects were done by Koch
[16] that identified a relationship between the size of the project, the number
of participants, and the distribution of work in the development team. Robles-
Martinez et al. [17] studied the MONO project by taking in consideration the
lines of code, the commits, and the authorship of contributions.

Projects available on SourceForge were used for FOSS studies published
by for example Grewal et al. [20], Koch [16], or Capiluppi et al. [15]. Raja and
Tretter [25] have used the data of 290 projects available on SourceForge to build
and validate a model of FOSS projects survivability. Their study allowed them
to propose a stable model to define the survivability of a FOSS project. The
model is based on three factors: the organization of the project, the resilience of
the community, and its vigour. We have adopted a similar approach to build our
models, however along the three factors we have included in the study several
other FOSS software and process metrics.

Various publicly available data sources were used for studies of FOSS. The
source code stored in versioning systems is one of them. Code level studies done
by Godfrey and Tu [22] and Robles et al. [23] are often based on concurrent
versioning system tools as CVS, Subversion, and recently GIT or Mercurial.
Mishra et al. [24] proposed a quality model that analyses factors contributing
to code quality, such as the number of developers, or the mix of talents involved
in a FOSS community. Other studies include data from the issue management
system as the number of issue contributors, the time necessary to solve an issue
[25], etc. Mailing lists [23] and the information available on web pages are also
an important source of information for studies on FOSS projects Koch [16].

Crowston et al. [18] proposed a framework for measuring the success of
FOSS projects. The exact number and type of users of FOSS products is not
well-known as it is in commercial projects, where customers are usually well
profiled. Crowston et al.[19] proposed to insert an automatic feedback collection
mechanism directly inside the software product. This functionality has been
implemented in the last years in projects as Firefox, Ubuntu, Libre Office, and
others. Grewal et al. [20] identified user and technical criteria for inferring the
success of FOSS projects. In part similarly to our approach Polancic et al. [21]
proposed a framework for evaluating OSS projects based on simple metrics.

The FOSS development process was studied by Taibi et al. [5] and Petrinja,
et al. [6]. They proposed evaluation models as the MOSST and the OMM
models based on FOSS product and process metrics. Deprez and Simons [8],
and Petrinja et al. [7] have compared the models used to assess the FOSS
development process and identified the critical aspects of the analysed models.
Some of the issues identified were the subjectivity of the assessment process,
and a difficult interpretation of some metrics. In the study presented in this
paper we use a set of metrics to propose evaluation models that are based

4 Etiel Petrinja and Giancarlo Succi

on a statistically significant sample of FOSS projects and are not biased by a
subjective interpretation of factors.

3 Analysing project evolution

Based on a sample of project data extracted from concurrent versioning systems
and web pages available on the SourceForge repository, we sudied which char-
acteristics influence the number of downloads of a FOSS product, and which
factors can be used to predict the evolution of the FOSS project. Based on
identified characteristics we proposed two evolution indicators. We inferred the
evolution of projects by counting the number of new revisions inserted into
the versioning system. The number of downloads is indicating the user’s inter-
est in the project. New revisions indicate the further evolution of the FOSS
project and therefore the interest in the project by the FOSS community. The
two aspects shows the expansion or restriction of the development process. We
considered the increase of the two aspects as an indication of improved quality
of the FOSS project. We defined a dichotomous value for both characteristics
and calculate them for each FOSS project included in the study. The Equation
1 shows the definition of the download increment factor and the Equation 2
shows the revisions indicator. In both cases k represents the time period. We
decided to choose one year as the studied time period, in particular we used the
data available for year 2011. For building the model and calculating the metrics
we used all the data available for the considered projects from when they have
started. Some projects included in the study exist already for more than ten
years.

DownloadsIncrement(Di) =

{
1 if

∑
k(Downloadsk −Downloadsk−1) > 0

0 otherwise
(1)

Revisions(Ri) =

{
1 ifRevisionsk > 0
0 otherwise

(2)

The generalized linear model (GLM) is in statistics the generalization of the
linear regression approach. It allows linking the variance of each factor included
in the model (independent variables) to be linearly connected with the predicted
value (the dependent variable). The dependent variable can be calculated using
the Equation 3. The predicted value is the sum of the independent factors
multiplied by a weighting factor β summed with an intercept constant.

PredictedV alue =
∑
i

βi ∗ IndependentFactori + Intercept (3)

Two evolution indicators for FOSS projects 5

3.1 Data sources

The SourceForge project repository contains currently nearly 360.000 projects
and exists already for more than a decade. In spite of the high number of projects
only a small percentage of those projects is still alive and evolving. The large
majority of them is represented only by a name, and a brief description of
an idea to be implemented inside the project. Half of the projects in Source-
Forge adopted the Subversion versioning system and the other half is using the
CVS. The GIT, the Mercurial, and the Bazaar versioning systems are not yet
largely used inside SourceForge. Out of the 150.820 projects using Subversion
only 66.674 have at least one revision inserted into the versioning system. In
several cases the projects that are inserted into SourceForge have also an ex-
ternal database and versioning system. The projects are not always promptly
synchronised between the two repositories. A retrieval of external project data
and comparison with the data available in SourceForge could provide an inter-
esting indications of the life cycle of those FOSS projects. We limited our study
just to the data stored in different data sources all composing the SourceForge
system.

We have decided to considered just the projects stored in the Subversion
system. We have collected different data as the number of revisions and the
date when they were inserted, for each of the 66.674 projects with at least
one revision. Another important source of information about the projects were
the SourceForge web pages presentations available for each project. We have
spidered the pages collecting metrics as: the name of the project, the staring
date, the status of the project, the issues reported and solved, the develop-
ers involved in the process, the number of downloads, the time distribution of
the downloads, and others. Joining all the data collected we have limited the
number of projects useful for our study. The number of projects with all the
characteristics necessary for our study stored in SourceForge was 5.905. We
have performed several analyses on these data and we have additionally limited
their number for some studies. For the two studies reported in this paper we
have considered only projects that exist for a period longer than 1 year when
calculating the download increase factor and for a period longer than 3 years
for building the model related to the revisions and survival of the FOSS project.
The factors included into the study are simple project metrics that do not need
additional explanations. Three composed factors: vigour, resilience, and orga-
nization have been calculated following the equations proposed by Raja and
Tretter [25].

3.2 Building the two models

We aimed to predict if the number of downloads in the considered period will be
higher from the preceding period. We predicted this characteristic (dependent
variable) from a set of factors characterising FOSS projects (independent vari-
ables). For building the model we adopted the General Linear Model (GLM).

6 Etiel Petrinja and Giancarlo Succi

We used the R statistical evaluation tool to automate the GLM calculation.
After restricting the projects to the one that exist for more than one or three
years we have obtained a sample (with 760 projects) as inputs for building the
downloading evolution model. Based on the number of downloads extracted
from the SourceForge repository for the years 2010 and 2011 we calculated the
downloading delta factor assigning a 1 if the number of downloads was higher in
2011 than in 2010 and 0 if the number was lower. For improving the correctness
of the accuracy, and the precision of the proposed model it is important that the
number of projects that have increased the number of downloads (having the
download increase factor 1) and those that did not (having the download factor
0) should be equal. In our initial sample of projects the number of projects
that did not increase the number of downloads was larger than the number of
projects increasing the number of downloads. We had to limit the number of
the first type of projects. We randomly selected projects from the first group
to reach the number of projects in the second group. We have prepared both
a modelling and a hold-out validation sample following the stratified sampling
approach. We first selected all projects that exist for more than one year and
divided them into two strata based on the increment of the number of down-
loads. We used two-thirds of the sample for building the model and one-third
for validating the model.

We have considered 30 different factors for building the download increment
model and 12 factors for building the model of the liveliness of the project by
predicting the future revisions of FOSS projects. Due to space constraints we are
unable to present in details all the metrics considered. However just few of the
factors proved to be significant for building the two models. Four factors were
dichotomous (with values 0 or 1) the other represented continuous metrics. In
the continuation of this section we present basic statistics of the factors included
in the final versions of the models developed.

The two dichotomous factors that were included into the download incre-
ment model were ActivityRev2011 and ActivityDowDelta2010. The first indi-
cates either there were new revisions for the project in year 2010 and the second
indicates if there was an increment of the number of downloads in the year 2010
in comparison with the number of downloads in the year 2009. The two continu-
ous factors included into the model were: the number of new revisions inserted
into the versioning system during the year 2010 (Rev2010) and the number
of new opened issues in the year 2011 (OpenedIssues2011). The majority of
characteristics of projects stored in SourceForge is strongly skewed to the right.

The ‘step‘ function available in the R statistical tool was used to find the
optimal combination of factors that should be included into the model. The
‘step‘ function proceeds stepwise to identify the GLM model that has the low-
est Akaike Information Criterion (AIC) number. The AIC factor indicates how
well the data values predicted with the help of the parametric model fits the
measured data. Better the model, better the predicted data, therefore smaller
the difference between the predicted and the measured data. The optimal linear
model for predicting downloads increment contained 9 different factors (activ-

Two evolution indicators for FOSS projects 7

ityRev2010, ActivityRev2011, activityRev2011delta, closedissues2010, average-
closuretime2010, openedissues2011, closedissues2011, averageclosuretime2011,
and activityDow2010Delta). We limited the number of factors to four by loos-
ing less than one percent of the prediction power of the model. We limited the
number of metrics that have to be collected to improve the usability of the
model. The statistical data characterising the factors included into the model
are presented in Table 1. We see that the mean value of revisions in 2010 is
103 per project. There are some projects with zero revisions and one with 3431
revisions. The number of issues reported in the year 2011 for our sample of
projects is not very large; the larger is 86 and the mean is just 2.6 issues. The
percentage of projects that have more revisions in 2011 then in 2010 in our
sample is 65 percent. The DownloadDelta Checker for 2011 is balanced for the
correctness of the prediction as discussed previously.

We have designed the final GLM model by considering the prediction
power of singular factors. We obtained a list of β factors for each of the
30 factors considered for predicting the downloading increment. The predic-
tion power of factors were: projectLongevity (0.54), revisionsTotal (0.518),
revisions2010 (0.575), revisions2011 (0.602), activityRev2010 (0.625), activ-
ityRev2011 (0.682), activityRev2011delta (0.595), vigorAverage2010 (0.589),
vigorAverage2011 (0.607), openedissues (0.501), closedissues (0.501), openedis-
sues2010 (0.587), closedissues2010 (0.595), averageclosuretime2010 (0.586), resi-
lence2010 (0.570), openedissues2011 (0.616), closedissues2011 (0.595), average-
closuretime2011 (0.6), resilence2011 (0.597), organization (0.509), downloads
(0.505), downloads2009 (0.501), downloads2010 (0.505), activityDow2010Delta
(0.736), recomendedBy (0.506), createdbynumber (0.502), closedbynumber (0.504),
averageclosuretime (0.516), averageclosuretimeabsolute (0.509), and numberOf-
Contributors (0.509).

If for the download increment model we consider just one factor, we are able
to predict correctly the percentage of projects shown in the brackets. We see
that the increase of the number of downloads in year 2010 comparing it with the
number of downloads in the year 2009 (activityDow2010Delta) factor is able to
predict correctly the increase in the year 2011 in 73 percent of cases. With the
combination of additional factors we tried to obtain a better prediction of the
downloading model. We run the stepwise calculation of the optimal prediction
model and obtained a model with four factors that are shown in Table 6. We see
that the activityDow2010Delta has a strong influence in the prediction model.
This is evident from the size of the β factor (1.83). The other factors have a
smaller influence. Nevertheless the β factors of the Revisions 2010 factor and
the OpenedIssues 2011 factor are small, they can still contribute considerably
to the value of the prediction, if the number of revisions or the number of newly
reported issues is large.

Before building the revision prediction indicator we have first analysed the
prediction power of 12 factors singularly: projectLongevity (0.57), revision-
sTotal (0.59), revisions2010 (0.74), activityRev2010 (0.71), vigorAverage2010
(0.69), openedissues2010 (0.50), averageclosuretime2010 (0.50), downloads2009

8 Etiel Petrinja and Giancarlo Succi

Table 1. Descriptive statistic data of the factors used for building the download
incrementing indicator

Revisions 2010 OpenedIssues
2011

Revisions
Checker 2011

DownloadDelta
Checker 2010

Mean 103.20 2.6 0.65 0.51
Median 18.00 0.00 1.00 1.00
Std Dev 252.99 8.17 0.48 0.50
Min 0.00 0.00 0.00 0.00
Max 3431.00 86.0 1.00 1.00
N 760 760 760 760

Table 2. Descriptive statistic data of the factors used for validating the download
incrementing indicator

Revisions 2010 OpenedIssues
2011

Revisions
Checker 2011

DownloadDelta
Checker 2010

Mean 127.10 3.77 0.67 0.51
Median 23.00 0.00 1.00 1.00
Std Dev 276.02 20.44 0.47 0.50
Min 0.00 0.00 0.00 0.00
Max 2444.00 352.00 1.00 1.00
N 379 379 379 379

(0.50), downloads2010 (0.50), createdbynumber (0.50), closedbynumber (0.52),
and averageclosuretime (0.50). In brackets is shown the percentage of correctly
predicted revision activity. We see that the number of revisions in the previous
year and the checker of revision activity in the year 2010 have a high predic-
tion power. Applying the step-by-step calculation of the optimal set of factors
for best constructing the GLM revision model we identified four factors: the
projectLongevity, the revisions2010, the activityRev2010, and the vigorAver-
age2010. The activityRev2010 is a dichotomous factor (values are 0 if there is
no revision in a specific year or 1 if there is at least one revision), the other three
factors are continuous metrics. We have subsequently trimmed the number of
factors for simplifying the model. With the trimming the model has loosed less
than one percent of its prediction power. Table 3 shows the descriptive statistics
for the two factors used to build the model and Table 4 the descriptive statistics
of the sample used for validating the revision model.

Table 5 shows the mutual correlations between the four factors used to
define the download increment model. We calculated the Pearson correlation
coefficient. We can consider the factors weakly correlated if the correlation is
smaller than 0.4. As we can see in Table 5 all mutual correlations fulfil this
requirement. All the tests were highly significant with the p value that was

Two evolution indicators for FOSS projects 9

Table 3. Descriptive statistic data of the factors used for building the revisions indi-
cator

Revisions 2010 Vigor average
2010

Mean 101.50 107.90
Median 6.50 10.95
Std Dev 294.37 296.09
Min 0.00 0.00
Max 3431.00 3431.00
N 880 880

Table 4. Descriptive statistic data of the factors used for validating the revisions
indicator

Revisions 2010 Vigor average
2010

Mean 109.2 120.10
Median 5.0 8.297
Std Dev 368.63 386.26
Min 0.0 0.0
Max 4337.0 4337.0
N 440 440

smaller than 0.00001 in all cases. We can consider the factors independent and
therefore it is not superfluous including them all into the same prediction model.

Table 5. Correlation table of the factors used for constructing the download incre-
menting model

Revisions 2010 OpenedIssues
2011

Revisions
Checker 2011

DownloadDelta
Checker 2010

Revisions 2010 - 0.364 0.276 0.157

OpenedIssues
2011

0.364 - 0.169 0.150

Revisions
Checker 2011

0.276 0.169 - 0.305

DownloadDelta
Checker 2010

0.157 0.150 0.305 -

Table 6 shows the β weights for the factors included into the download
incrementing model. The biggest the β weight the largest is the influence of the

10 Etiel Petrinja and Giancarlo Succi

related independent variable to the dependent predicted value. We see that the
download delta checker from the previous year (2010) and the revisions checker
from year 2010 have a strong influence on the predicted variable.

Table 6. General linear model coefficients for the download incrementing model

Estimate Std. Error z value Pr(> |z|)

(Intercept) -1.9040894 0.1774413 -10.731 <2e-16
Revisions 2010 -0.0009697 0.0003615 -2.683 0.00730
Revisions Checker 2011 1.4808722 0.1935980 7.649 2.02e-14
OpenedIssues 2011 0.0351792 0.0135808 2.590 0.00959
DownloadDelta Checker
2010

1.8329578 0.1749270 10.478 <2e-16

Using Equation 3 and the calculated weighting factors we can now write
explicitly the linear equation of the model for predicting the increment of the
downloads of a FOSS project as follows:

Increaseofdownloads = −1.904 −
0.001 ∗ (Revisions2010) +

1.481 ∗ (RevisionsChecker2011) +

0.035 ∗ (OpenedIssues2011) +

1.833 ∗ (DownloadDeltaChecker2010)

Similarly as for the download model we have calculated the weighting factors
for the revisions model. The Equation 2 can be used to predict the probability
that the project will have new revisions in the following time period (in the
year 2011 in our case).

IncreaseofRevisions = 1.201 +

451.49 ∗ (V igorAverage2010) −
452.252 ∗ (Revisions2010)

We can test the statistic significance of the weighting factors β by calculating
the Wald statistics and checking the values obtained. In Table 7 we see the β
values, their standard error, the Wald statistic, the p values, and the exponential
factors of the β values which show how strongly each factor contributes to
the change of the predicted value. We see that the p-values for all factors are
marginal therefore the factors are statistically significant.

To be able to predict the increase of the downloads or the insertion of
new revisions we have to define the threshold value of the prediction Equation

Two evolution indicators for FOSS projects 11

Table 7. Wald statistic for the download incrementing indicator

β St. Er. Wald df Sig. Exp(β)

(Intercept) -1.9040894 0.1774413 115.2 1 0.0 0.1489582
Revisions 2010 -0.0009697 0.0003615 7.2 1 0.0073 0.9990307
Revisions Checker 2011 1.4808722 0.1935980 58.5 1 0.0 4.3967788
OpenedIssues 2011 0.0351792 0.0135808 6.7 1 0.0096 1.0358053
DownloadDelta Checker
2010

1.8329578 0.1749270 109.8 1 0.0 6.2523523

3 for which the model will predict the increase. We predicted the threshold
value by drawing the receiver operating characteristics (ROC) curve for the
prediction model and finding the point where the successful prediction of the
model was reached. This value is optimal when the sum of the probability of a
correct prediction of the model (the sensitivity of the model) and the correct
prediction of the missing of the required conditions (the specificity of the model)
is maximized. The ROC curve helps to graphically identify the maximum of
both values (sensitivity and specificity). In the case of the model for download
increment prediction this value is 0.43. After computing the Equation 3 for the
values of a specific FOSS project, if the value is higher than 0.43, the model
predicts that the number of downloads in a specific year will be higher than in
the previous year.

3.3 Validating the models

With the selection of only weakly correlated factors we guaranteed the dis-
criminant validity of the two proposed models. The concurrent validity of the
models can be tested by checking the goodness-of-fit of the two models and by
comparing the measured and the predicted values. The goodness-of-fit of the
model shows how well the prediction model identifies the correct values. Several
tests exist that consider the difference between the observed and the predicted
values. We have used three different tests.

The -2 Log Likelihood ratio is a statistical test for comparing the fit of the
model to real data. For the model predicting the download increment the Log
likelihood ratio is 224. The second test we have used was the Cox and Snell
R2 which gave for the download model the value 0.18. Which shows that the
model has not a strong prediction power. The third test was the Nagelkerke R2

test which gave for the download model the value 0.24. Based on the results of
these tests we can not expect a high prediction power of the proposed download
prediction model. We can see exactly how precisely the model can predict the
values by using first the sample of FOSS projects used to build the model.
Afterwards we will use the hold-out validation sample that was composed by
one third of the initial sample.

Table 8 contains the measured and the predicted values about the increase
of the number of downloads between the years 2010 and 2011 for 760 FOSS

12 Etiel Petrinja and Giancarlo Succi

projects. We can see the percentages of correct and missed predictions. The
overall prediction precision is 75 percent and it is far from mere guessing (which
would be the case if the percentage rate would be 50 percent) but it is still not
very precise.

Table 8. Classification table for the download incrementing indicator

Predicted increase of downloads

Measured increase
of downloads Yes No %

Yes 294 85 77
No 107 274 72

% 73 76 75

The -2 Log Likelihood ratio for the revision download model is 177.56, the
Cox and Snell R2 value is 0.63, and the Nagelkerke R2 value is 0.83. The three
likelihood tests gave good results for the revision model showing that the model
fits well to the measured data. Table 9 shows the results of the prediction and
the measurement of the data used to create the Revision prediction model. The
number of FOSS projects included in this test was 880.

Table 9. Classification table for the Revision prediction indicator

Predicted new revisions

Observed new
revisions Yes No %

Yes 378 63 86
No 1 438 99

% 99 87 93

The predictions shown in the classification table 8 are biased while we have
used the same data to build the prediction model. By applying the download
prediction Equation 3 on the validation sample of 379 FOSS projects we have
obtained the results presented in Table 10. The percentages are comparable to
the data used for model creation, they are just slightly lower.

By applying the new revisions prediction Equation 2 on the validation sam-
ple of 423 FOSS projects we have obtained the results presented in Table 11.

Two evolution indicators for FOSS projects 13

Table 10. Validation table for the download increasing indicator

Predicted increase of downloads

Measured increase
of downloads Yes No %

Yes 113 78 60
No 36 152 81

% 76 66 70

Table 11. Validation table for the new revisions prediction indicator

Predicted new revisions

Observed new
revisions Yes No %

Yes 166 35 83
No 6 216 97

% 97 86 90

4 Discussion

The further evolution of the FOSS project from the point of view of the user
and from the point of view of the community provide two indications of the
success of the project. It is important to take in consideration that FOSS users
are sometimes also FOSS developers and that almost always the developers are
also users of products they have contributed to develop.

The results of the validation show that the two prediction models can provide
hints on the further evolution of the FOSS project. The equation for predicting
an increased download number is less precise than the equation for predicting
the availability of new revisions related to a FOSS project. One reason for this
can be a higher uncertainty of the number of downloads in comparison with the
number of new revisions. FOSS products are downloaded by individuals that
are not always part of the FOSS community and it is therefore more difficult to
predict precisely if their number will increase. On contrary the availability of
new revisions depends on the past development and stability of the development
process.

If the project is downloaded by a growing number of users it means that the
community implements functionality that is needed and considered useful by a
growing number of users. A larger number of users can afterwards provide new
bug/issue reports, forum entries, or even code contributions. A growing number
of downloads is a good indicator for the future development of a FOSS project.
We were able to predict the future availability of new revisions more precisely
than downloads. The proposed revisions prediction equation is precise and can
identify projects that will stop evolving and the one that will have new revisions

14 Etiel Petrinja and Giancarlo Succi

in the coming time period. Having an indication of the future availability of new
revisions can be an important factor when deciding to download and start using
a FOSS product. If the project is not going to be improved further with new
revisions, the new bugs/issues reported might not be addressed and the new
features proposed will never be implemented.

We can compare our results with the results reported by [25]. They achieved
accuracy of 92.78 percent for predicting the survivability of projects they have
included into their training and testing samples. We obtained a similar preci-
sion (93 percent) for the prediction of new revisions and a lower precision (75
percent) for the prediction of an increase of downloads. Our testing and training
samples were between three to four times larger than the one used by [25]. A
large sample allows us to be more confident when generalizing the results of our
study.

The factors included into the two equations show also which aspects of
the FOSS project influence the further evolution of the project. An increased
downloading of the FOSS product depends on new revisions in the analysed time
period. If there are no new revisions inserted into the versioning system most
probably the number of downloads will decrease. If the project was downloaded
in 2010 more often than in 2009 it will be probably downloaded more often
in 2011 than in 2010. The majority of this type of projects are in a growing
phase and they are attracting an increasing number of new users. The temporal
existence of these type of projects was statistically shorter than the average
existence of analysed FOSS projects. It means that they are new and they are
growing. A large number of new issues reported by the user base is triggered
by a larger number of users and downloads. The submission of new revisions
depends on the number of revisions in the previous time period and the average
vigour in the previous time period. The vigour is obtained from the number
of revisions in a specific time interval and it shows how strongly the project is
evolving.

4.1 Limitations

The construct validity is focused on the dependent and the independent factors
and how accurately they are able to model the hypothesis. Most of the measures
analysed are simple as the number of downloads, the number of revisions, or
the number of issues reported. Problematic could be the assumption that an
increased number of downloads or the submission of new revisions indicates a
higher quality of the FOSS project. The number of users of a FOSS project is
not equal to the number of downloads, however an increased download rate leads
to an increased number of users. The same is true for the number of revisions.
The total number of revisions is not an absolute indicator of the quality of the
project, nevertheless it is indicating an evolution trend of the project. Another
factor used was the number of issues which are usually bug reports or new
feature requests. We did not distinguish between the two, however this was
not an issue for our study, since both contributions indicate an interest of the

Two evolution indicators for FOSS projects 15

users in the project. The factor organization and the factor resilience where not
included into the final versions of the two models only the vigour factor is used
for predicting new revisions. The validity of the three factors was demonstrated
by Raja and Treter. Based on simply measured factors we have calculated four
dichotomous measures about the change of downloads or revisions. These four
measures do not present construct validity issues.

The internal validity is related to the link between the dependent and the
independent variables. If the independent variables changes also the dependent
variable should change. We have done rigorous testing of the factors included
into the two models and the internal validity proved not to be an issue for this
study.

The external validity is focused on the applicability of the results of the study
to FOSS projects not included into the study. All projects used for the study
have been extracted only from the SourceForge repository. This could prevent
the applicability of the two equations on projects developed in other environ-
ments. However SourceForge is one of the largest and oldest FOSS projects
repository and the quality of data available is good. The two models have been
designed based on several hundreds of relevant projects and validated with two
completely separate hold-out validation samples. Therefore we are confident
that if the basic data necessary for the prediction is extracted diligently, the
models should be valid also on FOSS projects contained in other FOSS repos-
itories. An extended study replicated also on other FOSS repositories could
anyway benefit the external validity of the proposed models.

5 Conclusions

In this paper we have presented an analyse of a large set of FOSS projects and
identified two prediction equations. One for predicting the increase of product
downloads and one for predicting the further development of the project with
new revisions being submitted to the source code versioning system. The two
indicators can provide a hint on the sustainability of the FOSS project. Based
on simple project metrics users can understand if the project will evolve in the
near future. The two predictions can be useful for the FOSS community that is
developing the project and also for potential new users of the FOSS product.
The community can benefit from the information about a potential risk of a
diminishing number of downloads and can take preventive actions. A new user
can decide to start using a product if there is a good chance of its further evo-
lution proved by the probability of new revisions published in the future. The
study presented in this paper is building on top of several other studies focused
on predictors of FOSS projects sustainability and success. Some of the methods
we have adopted for our study could be applied to similar research domains as
for example the prediction of bug/issues in FOSS projects. A higher number
of users and a growing number of revisions is intuitively correlated with the
sustainability of the FOSS project. Further investigations are, however, neces-

16 Etiel Petrinja and Giancarlo Succi

sary to quantitatively confirm this correlation. We have built the two models
by collecting data from the web pages and the source code versioning system
of the SourceForge repository. Thousands of projects have been analysed and
subsets of the projects were used to design two samples for modelling the pre-
diction equations and two samples for validating the predictions. The download
increment prediction equation achieved a 75 percent correctness of predictions
and the new revisions contribution equation achieved an average of 93 percent
of correct predictions. Both models have been tested according to guidelines
and best practices available in the literature for developing new software mea-
surements.

References

1. Kajan E (2002) Information technology encyclopedia and acronyms. Springer,
Berlin Heidelberg New York

2. Broy M (2002) Software engineering – From auxiliary to key technologies. In: Broy
M, Denert E (eds) Software Pioneers. Springer, Berlin Heidelberg New York

3. Che M, Grellmann W, Seidler S (1997) Appl Polym Sci 64:1079–1090
4. Ross DW (1977) Lysosomes and storage diseases. MA Thesis, Columbia Univer-

sity, New York
5. Taibi D., Lavazza L., Morasca S. (2007) OpenBQR: A framework for the assess-

ment of OSS, Open Source Software 2007, (Limerick, Ireland, June 2007).
6. Petrinja E., Nambakam R., Sillitti A. (2009) Introducing the OpenSource Matu-

rity Model. Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development collocated with 31st International Conference on Soft-
ware Engineering (Vancouver, Canada, ICSE 2009), 37–41.

7. Petrinja E., Sillitti A., Succi G. (2010) Comparing OpenBRR, QSOS, and OMM
Assessment Models. In the proceedings of the 6th International Conference on
Open Source Systems (OSS 2010) (Notre Dame, USA, May 2010), 224–238.

8. Deprez J.-C., Simons A. (2008) Comparing Assessment Methodologies for
Free/Open Source Software: OpenBRR and QSOS, Book chapter in Lecture
Notes in Computer Science, Ed. Springer Berlin, 189–203.

9. Stallman R. (1986) GNU’s Bulletin, Volume 1, Number 1, page 8, URL
http://www.gnu.org/bulletins/bull1.txt.

10. Alshayeb M., Li W. (2003) An Empirical Validation of Object-Oriented Metrics
in Two Iterative Processes, IEEE Trans. Software Eng., vol. 29, no. 11, pp. 1043–
1049, Nov. 2003.

11. Paulson J.W., Succi G., Eberlein A. (2004) An Empirical Study of Open-Source
and Closed-Source Software Products, IEEE Trans. Software Eng., vol. 30, no.
4, pp. 246–256, Apr. 2004.

12. Scacchi W. (2004) Understanding free/open source software evolution. Software
Evolution, Madhavji NH, Lehman MM, Ramil JF, Perry D (eds.). Wiley: New
York NY, 2004.

13. Crowston K., Scozzi B. (2002) Open source software projects as virtual organiza-
tions: Competency rallying for software development. IEE ProceedingsSoftware
Engineering 2002; 149(1):3-17.

Two evolution indicators for FOSS projects 17

14. Stewart K.J., Ammeter A.P., and Maruping L.M. (2006) Impacts of License
Choice and Organizational Sponsorship on User Interest and Development Ac-
tivity in Open Source Software Projects, J. Information Systems Research, vol.
17, no. 2, pp. 126–144, June 2006.

15. Capiluppi A., Lago P., Morisio M. (2003) Evidences in the evolution of OS
projects through Changelog analyses. Proceedings 3rd Workshop on Open Source
Software Engineering, 25th International Conference on Software Engineering,
19–24.

16. Koch S. (2007) Software Evolution in Open Source ProjectsA Large-Scale Inves-
tigation, J. Software Maintenance and Evolution: Research and Practice, vol. 19,
no. 6, pp. 361-382.

17. Robles-Martinez G., Gonzalez-Barahona J.M., Centeno-Gonzalez J., Matellan-
Olivera V., Rodero-Merino L. (2003) Studying the evolution of libre software
projects using publicly available data. Proceedings 3rd Workshop on Open Source
Software Engineering, 25th International Conference on Software Engineering,
2003; 111–116.

18. Crowston K., Annabi H., Howison J., Masango C. (2004) Towards a portfolio of
FLOSS project success measures. Collaboration, Conflict and Control: The 4th
Workshop on Open Source Software Engineering (ICSE 2004).

19. Crowston K., Annabi H., and Howison J. (2003) Defining Open Source Project
Success, Proc. Intl Conf. Information Systems, 2003.

20. Grewal R., Lilien G.L., and Mallapragada G. (2006) Location, Location, Loca-
tion: How Network Embeddedness Affects Project Success in Open Source Sys-
tems, J. Management Science, vol. 52, pp. 1043–1046.

21. Polancic G., Horvat R., and Rozman T. (2004) Comparative Assessment of Open
Source Software Using Easy Accessible Data, Proc. 26th Intl Conf. Information
Technology Interfaces, vol. 1, pp. 673–678.

22. Godfrey M.W., Tu Q. (2000) Evolution in open source software: A case study.
Proceedings International Conference on Software Maintenance, 2000; 131–142.

23. Robles G., Gonzalez-Barahona J.M., Merelo J.J. (2006) Beyond source code: The
importance of other artifacts in software development (a case study). Journal of
Systems and Software 2006; 79(9):1233–1248.

24. Mishra A., Mishra D. (2006) Software quality assurance models in small and
medium organisations: a comparison. IJITM 5(1): 4–20.

25. Raja U., Tretter M.J. (2012) Defining and Evaluating a Measure of Open Source
Project Survivability. IEEE Trans. Software Eng. 38(1): 163–174.

26. McConnell S. (1999) Open-source methodology: Ready for prime time? IEEE
Software 1999; 16(4):6-8.

27. Yiftachel P., Peled D., Hadar I., and Goldwasser D. (2006) Resource allocation
among development phases: an economic approach. In Proceedings of the 2006 in-
ternational workshop on Economics driven software engineering research (EDSER
’06). ACM, New York, NY, USA, 43–48.

28. DeLone W.H., McLean E.R. (1992) Information Systems Success: The Quest for
the Dependent Variable. Information Systems Research 3(1): 60–95.

29. Hippel E. von, Krogh G. von (2003) Open Source Software and the ‘Private-
Collective‘ Innovation Model: Issues for Organization Science. Organization Sci-
ence, Vol. 14, No. 2, March-April 2003, pp. 209.

