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Abstract—Routing and Spectrum Assignment (RSA) is key to
an efficient resource usage in optical networks. Although this
problem is known to be complex, an even more complex version
arises when considering multi-band (MB) optical networks, where
the spectrum-dependency of performance becomes significantly
more pronounced. This paper proposes a Deep Reinforcement
Learning (DRL)-based strategy for RSA in MB optical networks
leveraging the GNPy library for accurate estimation of optical
performance. Simulation results show that DRL-RSA reduces
blocking by up to 80% when comparing to state-of-the-art RSA
strategies.

Index Terms—routing and spectrum assignment, multi-band
optical networks, blocking probability, deep reinforcement learn-
ing, optical performance

I. INTRODUCTION

In recent years, global data traffic has seen rapid growth,
which placed a burden on existing optical network infrastruc-
tures. To address this issue, the exploitation of Multi-Band
(MB) transmission in deployed optical networks has emerged
as a promising solution to increase the network capacity and
meet the surge in demand for more bandwidth, while miti-
gating/postponing the need to lease/roll-out additional fibers
[1]. Yet, with the advantages of MB optical networks come
new challenges. As the available spectrum resources increase,
the network design and operation complexity grows due to the
need of considering multiple frequency bands, a significantly
larger number of channels and more disparate performance
differences between channels of different bands. This added
complexity impacts Routing and Spectrum Assignment (RSA),
which is one of the most critical tasks in the control of the
network and in maintaining an efficient usage of resources.
Traditional RSA algorithms such as k-Shortest Path (k-SP) for
routing and First-Fit (FF) for spectrum assignment have been
widely investigated and adopted in commercial deployments.
More recently, machine learning (ML) techniques have been
considered to replace/complement traditional RSA algorithms,
especially in complex systems with a large amount of re-
sources and non-simple physical layer constraints, as the ones
present in MB optical networks.

Deep Reinforcement Learning (DRL) [2], [3] can be an
interesting solution for RSA due to its ability to learn traffic
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patterns and deduce a RSA strategy through a series of
trials and errors by interacting with the network, receiving
feedback in the form of reward if a path and channel have
been successfully assigned to the source-destination connec-
tion request or a penalty if the request was blocked. In [4],
the authors introduce the DeepRMSA framework, a strategy
based on Deep Reinforcement Learning (DRL), designed for
the Routing, Modulation, and Spectrum Assignment (RMSA)
problem within C-band optical networks. The authors in [5]
employ a latency-aware RSA mechanism based on DRL to
jointly address the spectrum utilization and delay constraints
in the network. The work presented in [6] presents a DRL
algorithm addressing the Routing, Modulation, Spectrum, and
Core Allocation (RMSCA) problem in optical networks with
multicore fiber. Furthermore, The study in [7] focuses on
extending the challenges associated with the Routing, Band,
Modulation, and Spectrum Assignment (RBMSA) problems
using DRL to MB optical networks, however, the DRL-
based strategies proposed in this study did not show a better
performance when they were comaperd to a heuristic strategy
(i.e, k-SP FF FF) in terms of blocking probability.

This paper presents an RSA strategy based on DRL, specif-
ically designed for multi-band optical networks. The physical
layer model utilized for the Quality of Transmission (QoT)
estimation is the Generalized Gaussian Noise (GGN) model.
This model accounts for wide-band impairments like the
Stimulated Raman Scattering (SRS) and a widely used and
validated implementation is available in the GNPy tool [8]. In
addition, a new reward function for the DRL agent has been
created considering the assigned path and channel in terms
of hops and frequency slots. Simulation results show that the
DRL-based strategy has the ability compared to benchmark
algorithms such as k-SP FF and RL [9], to reduce the blocking
probability (BP), further increasing the throughput of MB
optical networks.

II. PROPOSED APPROACH FOR ROUTING AND SPECTRUM
ASSIGNMENT

DRL is a learning approach in which the agent (in our case
the RSA model) continuously interacts with its environment
(the MB network). For every incoming (source, destination)
connection request, the agent observes the current state of the
network encapsulated in the observation space, which contains
for each (source, destination) pair information about available
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TABLE I
DRL TUNED PARAMETERS.

DRL Parameter Tuned Value
Learning Rate (α) 5.32× 10−4

Discount Factor (γ) 9.86× 10−1

Clip Range 1.64× 10−1

Entropy Coefficient 2.82× 10−4

Episode Length Traffic Load
Total Number of Steps 1200×Traffic Load
Policy Optimizer PPO [3]

spectrum resources on all the precomputed paths and over
all the bands. Next, the agent takes an action, which is a
tuple of (path, band, channel) based on the observation and
his knowledge gained over time. The environment moves to
another state according to the agent’s action selection and
returns a reward, as shown in Algorithm 1, which is positive
if the request (source, destination) was established or negative
if the request was blocked. This reward feedback loop is what
drives the agent to learn and refine its RSA strategy over time
so as to maximize the number of positive rewards received
which should translate into a reduction of blocked requests.

Algorithm 1 DRL reward function
Require: (path, channel)← Reward
α← Number of allocated channels
β ← Number of hops in the selected path
if the connection can be established then

Reward← 1 + 1
α×β

else if a connection cannot be established on that path and
channel then

Penalty ← −1
end if

In this study, in order to explore the capability of DRL
for RSA in optical networks, the Optical RL-Gym toolkit [2],
[3] has been used. Optical RL-Gym is an open source and
flexible toolkit for applications of DRL models to solve the
RSA problem. Two additional upgrades have been conducted
to the online available Optical RL-Gym toolkit in the context
of our scenario: (i) The integration of the GNPy tool for the
physical layer impairments model. (ii) A new reward function,
described in Algorithm 1, returning a reward that takes into
account the allocated path and the selected channel format
in terms of hops and frequency slots used, respectively. The
DRL model has been trained and tuned to ensure optimal
performance. Following an initial offline training using a
digital twin of the real network with multiple traffic loads
where the agent receives a set of incoming source-destination
node connection requests with different time of arrival and
holding times, the DRL agent leverages its acquired knowledge
to dynamically assign path and spectrum in the real network.
In the event of network modifications, such as the installation
of new sites or the addition of new links, the agent can undergo
a retraining process offline on an updated digital twin of the
new network, using the knowledge obtained from the old

network to adapt effectively to changes. The tuned parameters
and their values are shown in Table I. The total number of
training steps depends directly on the network traffic load,
starting from 240× 103 to 540× 103 steps for traffic loads of
200 and 450 Erlang, respectively.

III. SIMULATION RESULTS

The DRL-based RSA strategy is analyzed through simula-
tions using the optical RL-Gym toolkit [2] and compared to
k-SP FF and RL-based RSA strategies (Q-Learning) [9]. The
Japanese network topology [10] consisting of 14 nodes and 44
links is considered. Traffic follows a Poisson distribution with
rate λ. Connection holding time is exponentially distributed
with an average of 1/µ = 60 minutes. The traffic load (λ/µ) is
varied with λ between 200 and 450 Erlang. 400 Gb/s requests
are assumed, which can be served via a single dual polarization
16 quadrature amplitude modulation (DP-16QAM) channel 75
GHz or 2×200Gb/s dual-polarization quadrature phase shift
keying (DP-QPSK) channels over 150 GHz. The Generalized
Signal-to-Noise Ratio (GSNR) is computed for each individual
channel with GNPy [8] and accounting for SRS. An L-C-S-
E multi-band system is assumed with the supported spectrum
as described in [1] and summarized in II. The adopted GSNR
thresholds are 24 dB for DP-16QAM and 16 dB for DP-QPSK,
assuming a symbol rate of 64 GBaud and channel spacing of
75 GHz. Table II summarizes the parameters of the multi-band
system considered, including the per-band fiber attenuation
range and amplifier noise figure [1].
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Fig. 1. BP vs traffic load.

Fig. 1 shows the BP as a performance metric considered
to compare DRL-RSA with the previously proposed RSA
strategies, RL and k-SP FF [9], across varying traffic loads,
ranging from 200 to 450 Erlang using the Japanese topology.
As expected, with all the strategies, k-SP FF, RL-RSA and
DRL-RSA, the BP increases as the traffic load increases. It
starts at 1.2 × 10−3 and 2.9 × 10−3 at 200 Erlang load and
grows up to 7.7 × 10−2 and 3.1 × 10−2 at 450 Erlang load
with the RL and DRL based RSA strategies, respectively.
Meanwhile, the k-SP FF starts with a BP of 2.6 × 10−3 at



TABLE II
MULTI-BAND SYSTEM PARAMETERS.

Band L C S E
Band Range [nm] 1565-1625 1530-1565 1460-1530 1360-1460
Frequency Range [THz] 184.62-191.69 191.69-196.08 196.08-205.48 205.48-220.59
Available Bandwidth [THz] 6.95 4.05 9.1 14.8
Central Frequency [THz] 188.16 193.89 200.78 213.04
Number of Channels (75 GHz) 94 58 125 201
Amplifier Noise Figure [dB] 6 5 7 6.5
Fiber Attenuation [dB/km] [0.20 - 0.191] [0.191 - 0.197] [0.197 - 0.22] [0.22 - 0.28]

200 Erlang and increases to a BP of 16.5 × 10−2 at 450
Erlang, which is significantly higher than that observed with
the RL and DRL strategies. The performance of the DRL-
based RSA strategy versus the state-of-the-art RL-based RSA
strategy could be distinguished depending on the traffic across
the network: i) low traffic loads and ii) medium and high
traffic loads. At low traffic loads (i.e, 200 Erlang) the RL-based
strategy is able to reduce the BP by 55% compared to the DRL
and the commonly used heuristic RSA strategy (k-SP FF). As
the traffic load increases (starting 250 Erlang), the DRL-RSA
strategy outperforms both k-SP FF and RL-RSA strategies
and shows an average decrease in BP of approximately 80%
and 50%, respectively. In addition, the DRL-based strategy
may increase the network throughput, for a target BP of
1 × 10−2, by 20% and 50% compared to RL-RSA and k-SP
FF strategies, respectively.
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Fig. 2. Average interfaces usage per accommodated demands.

Fig. 2 illustrates the utilization of transmitter/receiver
(TX/RX) interfaces by the RSA strategies as a function of the
number of accommodated demands (in order to guarantee a
fair comparison of this cost-related metric a similar number of
traffic demands need to be established). All strategies exhibit
a consistent increase in the number of used interfaces, with
a notably higher interface count with the RL-based strategy,
starting from 560, 778, and 574 interfaces to accommodate 200
demands and peaking at 807, 1164, and 876 interfaces for 300
demands with k-SP FF, RL-RSA, and DRL-RSA, respectively.
This corresponds to an average of 2.73, 3.88, and 2.9 used

interfaces per demand. The lower average interface utilization
by DRL-RSA and k-SP FF compared to RL-RSA is attributed
to their tendency to select shorter paths more frequently, as
shown in Fig. 3 (the average path lengths chosen by DRL-
RSA and k-SP FF are 520 km and 457 km, respectively,
whereas RL-RSA assigns paths with an average length of 826
km). Optical channels established over shorter paths tend to
have higher GSNR values. This enables the accommodation
of incoming requests via a single DP-16QAM channel with a
bandwidth of 75 GHz using only 2 interfaces compared to 4
interfaces if a double DP-QPSK channels with a bandwidth
of 150 GHz were used due to a low GSNR value. It is
important to note that at medium to high traffic loads the RSA
must perform a balancing act in the sense that in resorting
to longer paths to mitigate the impact on blocking of links
that are becoming congested, it may be selecting less spectral
efficient modulation formats. This balancing act is clearly
achieved more efficiently with DRL-RSA than with the other
two strategies.
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Fig. 3. Paths usage in the Japanese topology.

Fig. 4 illustrates the differences between DRL and k-SP
FF-based RSA approaches in terms of BP and the utilization
of interfaces at various traffic loads. At low traffic loads (i.e.,
200 Erlang), the k-SP FF strategy demonstrates a 7% reduc-
tion in BP compared to DRL-RSA. However, as the traffic



load increases from 250 Erlang to 450 Erlang, DRL-RSA
significantly decreases BP by an average of 50%, utilizing
the same or fewer TX/RX interfaces compared to k-SP FF.
This improvement can be attributed not only to the utilization
of shorter paths but also to the dynamic path assignment
policy of the DRL agent. The DRL agent updates its path
selection based on the network status and incoming request
volume, leveraging its reward function. Such adaptability is
a distinct advantage of DRL-RSA over heuristic approaches
like FF, which lack the capability to dynamically adjust path
assignments based on real-time network conditions.
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Fig. 4. BP and interfaces count differences (DRL & k-SP FF).

Fig. 5 shows the spectrum utilization per-band by the DRL-
RSA algorithm. The most used band is the C-band, where 43%
of the established source-destination connection requests are
assigned a channel in this band, then L-band with 27%, after
that the S-band with 16% and finally the E-band with 14%.
Note that the RL-RSA and k-SP FF algorithms give preference
to bands that feature channels with higher GSNR (resulting
in an order C, L, S and E), as described in [9]. However,
for the DRL-RSA algorithm, the explicit ordering of bands is
not provided to the agent. Instead, the agent uses a selection
mechanism based on the length of the path (i.e, shorter path)
and the GSNR value (higher GSNR value) of the channels in
the bands. After training, the DRL agent autonomously has
learned to prioritize the bands, e.g., C, L, S, and E, and make
the most efficient use of each.

IV. CONCLUSION

In this work, we presented a new Deep Reinforcement
Learning (DRL) strategy for Routing and Spectrum Assign-
ment (RSA) in multi-band optical networks. The DRL strategy
accounts for physical layer impairments, including the Simu-
lated Raman Scattering (SRS) effect, and embeds a reward
function that is also resource usage-aware. Simulation results
obtained over the Japanese topology provide evidence that
the DRL strategy reduces the blocking probability (BP) at
medium and high traffic loads. More precisely, it enabled an
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Fig. 5. Band usage in the Japanese topology.

average decrease in BP of 50% and 80%, utilizing the same
or fewer TX/RX interfaces per demand, when compared to
those obtained with a state-of-the art RL-based RSA and k-
Shortest Path First-Fit (k-SP FF) strategies, respectively. In
addition, the DRL-based strategy may increase the network
throughput by 20% and 50% compared to RL-RSA and k-SP
FF strategies, respectively.
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