Machine-Learning-Aided Dynamic Reconfiguration in Optical DC/HPC Networks (Invited)

Sanddeep Kumar Singh¹, Che-Yu Liu², S. J. Ben Yoo¹, and Roberto Proietti¹, ³, *

¹Department of Electrical and Computer Engineering, University of California, Davis, CA, USA, 95616
²Department of Computer Science, University of California, Davis, CA, USA, 95616
³Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

* Corresponding author: roberto.proietti@polito.it

Abstract—The high bandwidth and low latency requirements of modern computing applications with their dynamic and non-uniform traffic patterns impose severe challenges to current data center (DC) and high performance computing (HPC) networks. Therefore, we present a dynamic network reconfiguration mechanism that could satisfy the time-varying applications' demands in an optical DC/HPC network. We propose a direct and an indirect topology extraction methods based on a machine learning-aided traffic prediction approach under multi-application scenario. The traffic prediction for topology extraction and bandwidth reconfiguration (PredicTER) method could lead to frequent topology and bandwidth reconfiguration. In contrast, the indirect approach, namely traffic prediction with clustering for topology extraction and bandwidth reconfiguration (PrediCLUSTER), utilizes an unsupervised learning-based clustering model to first associate the predicted traffic to one of possible traffic clusters, and then extracts a common topology for the cluster. This restricts the reconfigured topology set to the number of traffic clusters. Our simulation results show that the time-average of mean packet latencies (and total dropped packets) over 60 seconds of time-varying traffic under the PredicTER, PrediCLUSTER and a static topology are 37.7μs, 41.2μs, and 50.2μs (and 37, 967, 12, 305, and 36, 836), respectively. Overall, the PredicTER (and PrediCLUSTER) method(s) can improve the end-to-end packet latency by 24.9% (and 17.8%), and the packet loss rate by −3.1% (and 66.6%), as compared to the static flat Hyper-X-like topology.

I. INTRODUCTION

Modern high performance computing (HPC) and data center (DC) workloads, including distributed machine learning and graph analytics, exhibit dynamic change in communication patterns with non-uniform spatial and temporal distributions [1]. Thus, these heterogeneous applications exhibit traffic profiles that might not match with fixed multi-stage electrical DC/HPC architectures, resulting in low resource utilization and performance bottleneck [2]. To overcome this, the switching and computing systems should reconfigure themselves to adapt to the changes in data flow patterns for a given set of workloads. Recently, there have been a few proposals and studies looking at the benefits of using silicon photonics switches to enable topology and bandwidth reconfiguration of direct optical interconnect topologies in both spectral and spatial domains upon demand [3], [4]. By allocating interconnection resources where and when is needed and eliminating intermediate electronic switches and optical TRXs, it is possible to deliver superior performance at a fraction of the cost and energy required in legacy architectures [5].

In reconfigurable optical DC/HPC networks, a critical aspect is the codesign of control and management plane architecture to orchestrate when, where and how to perform the reconfiguration operation to adapt the interconnection topology and links’ bandwidth to the traffic characteristics. Machine learning (ML) techniques, especially neural networks, have been applied in various stages (i.e., when, where and how) of the reconfiguration process for traffic engineering, resource allocation, and service provisioning tasks in DC/HPC networks [6]. These ML-based approaches can provide, in general, better scalability, adaptability, and performance when compared to optimal and heuristic methodologies.

Recurrent neural network (RNN) architectures, in particular long short-term memory (LSTM), with their ability to learn long-term spatio-temporal correlation of traffic data have been widely investigated for traffic prediction in order to know when is time to perform certain resource allocation tasks [7]–[9]. The deep reinforcement learning can learn instead reconfiguration policies from repeated trials and errors [10]. The use of supervised learning, e.g., neural networks [11] together with a traffic clustering approach is also promising as the traffic characteristics can be learned without being labeled manually to generate the topology needed [12]. Additionally, deep neural networks (DNN) are useful in the estimation or prediction of network performance metrics, such as packet loss rate, latency, and job completion time, which can be used to trigger the network reconfiguration operation [13]. Nevertheless, the labeling and training of the DNN models require some sort of efforts and collecting a large amount of performance data. Meanwhile, these approaches mostly use a fixed-threshold-based policy applied to the performance estimations. While the reconfiguration operation can lead to performance gain under skewed and non-uniform traffic, it is important not to reconfigure electrical and optical switches frequently, as these operations involve updating routing tables and can cause traffic disruption [14]. Hence, it is desirable to implement effective reconfiguration policies.

In this paper we investigate the trade-off between the network performance and reconfiguration using two different ML-aided traffic-topology characterization methods. We propose a traffic prediction for topology extraction and band-
width reconfiguration method, in short PredicTER, under a multi-application scenario. We use a long-short term memory (LSTM)-based encoder-decoder RNN model to train time-varying top-of-rack (ToR)-to-ToR traffic matrix, and utilize it to extract topology and reconfigure the wavelengths over fiber links connecting ToRs of reconfigurable flat DC/HPC architecture [4]. We also propose a traffic prediction with clustering for topology extraction and bandwidth reconfiguration method (PrediCLUSTER), utilizing an unsupervised learning approach. We evaluate these methods against an all-to-all network without reconfiguration. Our simulation results show that PrediCLUSTER reduces the number of reconfigurations and packet loss rate at the cost of the increase in average packet latency as compared to the PredicTER method.

The rest of the paper is organised as follows. Section II briefly describes the software-controlled reconfigurable optical HPC/DC networks. Section III discusses the details of reconfiguration algorithm. Section IV discusses the evaluation results. Finally, Section V concludes the paper.

II. SOFTWARE-CONTROLLED RECONFIGURABLE HPC/DC NETWORK ARCHITECTURE

Fig. 1(a) shows the architecture of the control and management plane (CMP) that drives the reconfiguration operations. Note that the codesign of the data plane (hardware) and control and management plane (software and algorithms) is key for using any optical switching paradigm. The CMP is centralized at the cluster level but distributed between clusters. For each cluster, a software-defined networking (SDN) controller interfaces with a cluster-level photonic switch and \(P \) interconnected ToRs.

The architecture comprises the user plane layer, CMP layer, and data plane layer. The user plane layer communicates about its job’s resource requirements, communication patterns, etc. to a Job Manager of the CMP layer via an open-source user interface, for example, simple Linux utility for resource management (SLURM) [15]. Some examples of workloads are scientific computing and distributed machine learning, particularly distributed ML jobs such as recommender, translator, image processing, and map-reduce jobs. The distributed jobs could share information and parameters among themselves using the popular message passing interface (MPI) API.

The job manager places the workloads into the servers and informs an Inter-Cluster Manager about the new job mapping and its communication requirements over a request-response protocol, for instance Google remote procedure calls (gRPC). The Inter-cluster manager disseminates the job placement information to relevant Cluster Managers through the northbound API (e.g., gRPC) to reconfigure the underlining network topology to suit the new and other existing jobs inside relevant clusters. The SDN controller calls the cluster routing, bandwidth and topology assignment (RBTA) provisioning module to compute reconfiguration schemes, including the target connectivity graph, routing schemes, stepwise reconfig-
Fig. 2. Reconfiguration for RBTA triggering mechanism involving traffic monitoring, estimation, and prediction with connectivity graph computation without (PrediTER) and with clustering (PrediCLUSTER) methods.

Algorithm 1 Multi-cluster connectivity graph computation.

1. input: weight $W_{t+1} \leftarrow$ normalized predicted traffic D_{t+1}, connectivity graph G_0
2. output: connectivity graph topology G_{t+1}
3. $\mathcal{P} \leftarrow$ a set of shortest paths from all-to-all source-destination $(s-d)$ pairs based on the graph G_0
4. if PrediCLUSTER then
5. compute cluster id for D_{t+1}, and the average cluster traffic $\tilde{D}_{t+1} \leftarrow \frac{1}{|C_t|} \sum_{D_{t+1} \in C_t} D_t$, $W_{t+1} \leftarrow \tilde{D}_{t+1}$
6. end if
7. while ToRs’ port-pairs are free, or $\max W_{t+1} \neq -\infty$ do
8. select a $s-d$ pair (i, j) which maximizes the product of weight vector $w^{i,j} \in W$ and available ports
9. for each hop on a shortest path $p_{i,j} \in \mathcal{P}$ do
10. if all hops have available port-pairs then
11. add a link between each ToR-pair on $p_{i,j}$
12. update $G_{t+1}, w^{i,j} \leftarrow w^{i,j} - C$
13. else
14. assign $w^{i,j} \leftarrow -\infty$
15. end if
16. end for
17. end while
18. Connect remaining available port-pairs in each cluster of G_{t+1} based on the decreasing order of traffic \tilde{D}_{t+1}.

...
traffic matrix \(\hat{D}_t^{t+1} \) is clustered differently from the previous one \(\hat{D}_t \). Thus, by exploiting the inherent structure of traffic data, we can largely avoid unnecessary reconfiguration operations while sustaining the desired performance gains.

C. Connectivity Graph Optimization

Given the predicted ToR-to-ToR traffic matrix (TM) \(\hat{D}_t^{t+1} \), the number of ports per ToR \(k \) for interconnecting \(k_h \) (and \(k_v \)) ToRs in a horizontal (and vertical) cluster(s), where \(k_h + k_v \leq k/2 \), and the topology connectivity graph \(G_0 \) with each cluster interconnected in an all-to-all fashion (See Fig. 1(b)), Algorithm 1 summarizes how to compute the connectivity graph at time \(t \) for the next time interval, i.e., \(G_{t+1} \). The basic idea is to iteratively interconnect the largest number of available ToR ports on the shortest paths between ToR-pairs that potentially carry larger traffic.

In Algorithm 1, Step 3 precomputes the shortest paths between all source-destination ToR pairs. In Step 4-6, if the reconfiguration method is PrediCLUSTER, we assign the average TM of a cluster (w.r.t. the number of TMs in the cluster \(C \)), that the predicted TM \(\hat{D}_t^{t+1} \) belongs, to the weight \(w_{i,j} \). In Step 7-17, we iteratively interconnect available ToR ports on each hop of a shortest path between a ToR pair with larger amounts of traffic pending to be provisioned and larger number of ports not assigned yet. When all hops on a path \(p_{i,j} \) have available ports to connect, the connectivity graph \(G_{t+1} \) is updated and the weight \(w_{i,j} \) is decreased by a wavelength capacity \(C \) (Steps 10-12). Otherwise, the weight \(w_{i,j} \) is updated to negative infinite (Steps 13-14). When all weights are negative infinite and still some ports are available, we connect ToR-pairs in decreasing order of the predicted TM \(\hat{D}_t^{t+1} \) in Step 18.

D. Reconfiguration process for RBTA

When the reconfiguration process for RBTA is triggered, by comparing \(G_{t+1} \) and \(G_t \), we identify ports and corresponding links to be added into or removed from the current network topology. More importantly, during a reconfiguration period we adopt an offload-before-reconfigure approach to stop accepting new packets to ports to be reconfigured to reduce packet loss during the reconfiguration phase. Furthermore, we apply the equal-cost multipath (ECMP) routing [18] with flow splitting over parallel next hops for its capability of increasing bandwidth utilization by load-balancing traffic over multiple paths.

IV. PERFORMANCE EVALUATION

We evaluated the proposed reconfiguration design performance using the Netbench packet simulator [19] with an extension of the routing table update mechanism for the time-varying traffic and reconfiguration evaluation. We consider 16 ToRs, where each ToR connects to 16 servers. The 16 ToRs are arranged into a \(4 \times 4 \) flat (horizontal and vertical) architecture. The servers generate packets following the Poisson processes. The upper bound of Alizadeh Web Search distribution [20] was used to emulate the sizes of the flows injected into the network. The source-destination pairs of the packet flows were selected according to the traffic distributions derived from the time-varying traffic traces. We consider two real HPC applications, i.e., Crystal Router, and MiniFE [21], with different scaling over time. Fig. 3 shows the heatmaps of the traffic matrices. To emulate their time-varying traffic...
patterns, we combine them with different scaling over time, as shown in Fig. 4. They reflect the changes in overall traffic bandwidth utilization during the run-time of applications [9]. We assumed an identical wavelength/link capacity of 10 Gbps and a link delay of 20 ns. We adopted data center TCP [22] as the transport protocol responsible for the communications between two specific network devices. We set the buffer size of each ToR port as 300,000 Bytes and congestion threshold is 270,000 bytes. ECMP routing was used to decide the forwarding of packets. We also evaluate the algorithm under fixed topology, i.e., no reconfiguration scenario.

Parameters and Settings: A TM consists of 16×16 data entries. An input sample to train the LSTM encoder-decoder model is formed by 10 consecutive TMs measured at every time unit (second), and it learns to output an 11th TM. The model is trained (90%) and validated (5%) with the first 1130 sequence of TMs to predict traffic for next timestamp. Each encoder and decoder has 100 LSTM cells, and the model is trained with an Adam optimizer with a learning rate 0.001. We use the early stopping criteria to overcome the overfitting. The test dataset is formed on the last 60 sequences of consecutive TM instances (see Fig. 4). We monitor and predict traffic every time unit, which is second, as each second of real traffic takes several minutes in the discrete event simulation depending on the load. The RBTA reconfiguration time is set to 100 ms. For the PrediCLUSTER method, the DBSCAN parameters are set as $MinPts = 4$ and $\epsilon = 2.5$. Although the individual traffic matrix of both applications has time-varying spatial traffic distribution, the overall traffic matrix varies only slightly. Thus, the DBSCAN results in only one cluster, which leads to one topology extracted by the average TM of the cluster irrespective of the traffic variation. We believe that a larger variation in traffic distributions of multiple applications would result in more clusters, which we leave as a future work.

Fig. 5 (left) shows the overall flow arrival rates and their predicted values for the test dataset. The average mean square error for the overall rate prediction is ~ 0.04, and ToR-to-ToR prediction is ~ 0.001. Fig. 5 (right) shows the flow arrival rate from ToR 0 to 1, and from ToR 3 to 4 and their predicted values. Although the sum of prediction of TM as an overall...
rate shows an average of ~ 0.04 deviation, the model is able to predict the spatial traffic variation among ToR pairs with their average values over time. Note that the accuracy of predicted ToR-to-ToR traffic impacts the topology generation and the network performance under the reconfiguration methods.

Fig. 6(left) shows network latency, i.e., average end-to-end data packet latency for the time-varying test dataset. We observe that both reconfiguration methods reduce the packet latency. The percentage improvement in latency by the PredicTER and PrediCLUSTER schemes over the fixed topology is 24.9% and 17.8%, respectively. Furthermore, the packet latency increases when the load increases due to the queuing latency. Fig. 6(right) shows the packet loss rate under the fixed topology and reconfiguration methods. When the load is low or medium, the PredicTER method exhibits momentarily higher packet loss rate compared to other methods due to a larger number (44) of the reconfiguration processes. Interestingly, the PrediCLUSTER method exhibits no or lower loss than the PredicTER method. The reason is that it reconfigures only once in the beginning of the simulation in contrast to the PredicTER method which reconfigures 44 times out of 60 possible instances. Thus, the PrediCLUSTER shows a trade-off in reducing the packet loss at the cost of slightly higher packet latency than the PredicTER. Nevertheless, both methods show better loss performance under the high load, at time $t \sim 1185$s. Notably, there are only 12,305 (37,967) dropped packets under the PrediCLUSTER (PredicTER), which is 33.3% (103.1%) as compared to 36,836 dropped packets under the no reconfiguration in a fixed topology scenario.

V. CONCLUSION

We presented an ML-aided software-defined control plane architecture for dynamic network reconfiguration mechanism in an optical DC/HPC network. We proposed two reconfiguration methods utilizing the predicted traffic under time-varying traffic scenarios. The traffic prediction with the topology extraction and reconfiguration method, in short PredicTER, leads to frequent topology and bandwidth reconfiguration. In contrast, the traffic prediction with clustering for topology extraction and reconfiguration (PrediCLUSTER) reduces the number of reconfigurations at the cost of slightly higher average packet latency. Both methods show that the network reconfiguration is useful in the optical data center and computing networks. However, the reconfiguration does lead to packet loss. As a future work, we plan to implement and investigate the proposed reconfiguration mechanisms on an experimental testbed running one or multiple distributed applications.

ACKNOWLEDGMENT

This work was supported by the NSF ECCS Award #1611560. We thank authors from [9] for sharing traffic data from their testbed.

REFERENCES