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Abstract. Efficient loop scheduling on parallel and distributed systems depends 
mostly on load balancing, especially on heterogeneous PC-based cluster and 
grid computing environments. In this paper, a general approach, named 
Performance-Based Parallel Loop Self-Scheduling (PPLSS), was given to 
partition workload according to performance of grid nodes. This approach was 
applied to three types of application programs, which were executed on a 
testbed grid. Experimental results showed that our approach could execute 
efficiently for most scheduling parameters when estimation of node 
performance was accurate. 

Keywords. Parallel loops, Loop scheduling, Self-scheduling, Grid computing,  
  Globus, MPI 

1 Introduction 
A promising approach to parallel computing is grid computing, which utilizes 
heterogeneous computers through the Internet to compute [2, 5, 6]. Traditional 
schemes for parallel loop scheduling include static scheduling and dynamic 
scheduling [8]. While the former might incur load imbalancing on heterogeneous 
environments, the latter has not been investigated thoroughly on grid environments. 

Self-scheduling is a major class of dynamic loop scheduling schemes. Well-known 
self-scheduling schemes include Pure Self-Scheduling (PSS), Chunk Self-Scheduling 
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(CSS), Guided Self-Scheduling (GSS) [9], Factoring Self-Scheduling (FSS) [7], and 
Trapezoid Self-Scheduling (TSS) [10]. These schemes partition work load according 
to a simple formula, not considering performance of processors. 

In [11], a method (α self-scheduling) is proposed to improve well-known self-
scheduling schemes. Although this scheme partition work load according to CPU 
clock speed of processors, CPU could not completely represent performance of 
processors. In [12], an approach is proposed to adjust α scheduling parameter, but 
performance is still estimated only by CPU speed. In [4], a class of self-scheduling 
schemes is extended to heterogeneous distributed systems. 

In this paper, we address the performance estimation issue in parallel loop 
scheduling, and propose a general approach called Performance-Based Parallel Loop 
Self-Scheduling (PPLSS). This approach estimates the performance ratio of each node 
to partition loop iterations. For verification, this approach is applied to three types of 
application programs. 

We organize the rest of this paper as follows. Section 2 describes the background 
about parallel loop self-scheduling schemes. Next, our approach is presented in 
section 3. In section 4, our system configuration is specified and experimental results 
on three application programs are also reported. Finally, the conclusion is given in the 
last section. 

2 Background 

In this section, related work on self-scheduling schemes is described. First, we review 
several well-known self-scheduling schemes. Next, two recently proposed schemes 
are introduced. 

2.1 Well-Known Self-scheduling Schemes 

Traditional self-scheduling schemes operate in common. At each step, the master 
assigns some amount of loop iterations to an idle slave. These schemes differ in the 
way how the master computes the amount to next idle slave. The well-known 
schemes include PSS, CSS, GSS, FSS and TSS. Table 1 shows the different chunk 
sizes for a problem with the number of iteration N=1536 and the number of processor 
p=4. 

Table 1. Sample partition size 

Scheme Sample partition size 
PSS 1, 1, 1, 1, 1, 1, 1, 1, 1, … 
CSS(125) 125, 125, 125, 125, 125, 125, 125, 125, 125, … 
FSS 192, 192, 192, 192, 96, 96, 96, 96, 48, … 
GSS 384, 288, 216, 162, 122, 91, 69, 51, 39, … 
TSS 192, 180, 168, 156, 144, 132, 120, 108, 96, … 



2.2 Schemes for Cluster and Grid Environments 

In [11], the authors revise known loop self-scheduling schemes for extremely 
heterogeneous PC-cluster environments. The algorithm is divided into two phases. In 
phase one, α% of workload is partitioned according to CPU clock of processors. 
Then, the rest of workload is scheduled according to some well-known self-
scheduling in the second phase. 

In [3, 12], a new scheme for heterogeneous grid computing environments is 
proposed. This scheme is still a two-phased approach. However, it can adjust the α 
scheduling parameter according to the relative heterogeneity of the environment. 

3 Performance-based Parallel Loop Self-Scheduling (PPLSS) 

In this section, the concept of performance estimation is presented first. After that, the 
algorithm of our approach is described. 

3.1 Performance Estimation 

We propose to estimate performance of each grid node, and assign work load to each 
node accordingly. In this paper, our performance function (PF) for node j is defined as  
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where 
− S is the set of all grid nodes. 
− Ti is the execution time (sec.) of node i for some application program, such as 

matrix multiplication. 
− w is the weight of this term. 

The performance ratio (PR) is defined to be the ratio of all performance functions. 
For instance, assume the PF of three nodes are 1/2, 1/3 and 1/4. Then, the PR is 1/2 : 
1/3 : 1/4; i.e., the PR of the three nodes is 6 : 4 : 3. In other words, if there are 13 loop 
iterations, 6 iterations will be assigned to the first node, 4 iterations will be assigned 
to the second node, and 3 iterations will be assigned to the last one. 

3.2 Algorithm 

The algorithm of our approach is modified from [11], and master program and slave 
program are listed as follows. 
Module MASTER 
Gather performance ratio of all slave nodes 
r = 0; 
for (i = 1; i < number_of_slaves; i++) { 



   partition α% of loop iterations according to the 
performance ratio; 
   send data to slave nodes; 
   r++; 
} 
Partition (100-α)% of loop iterations into the task 
queue using some known self-scheduling scheme 
Probe for returned results 
Do { 
     Distinguish source and receive returned data 
     If the task queue is not empty then 
  Send another data to the idle slave 
  r -- ; 
 else 
  send TAG = 0 to the idle slave 
} while (r > 0) 
END MASTER 

Module SLAVE 
Probe if some data in 
While (TAG > 0) { 
       Receive initial solution and size of subtask 
work and compute to fine solution 
     Send the result to the master 
     Probe if some data in 
} 
END SLAVE 

4 Experimental Results 

In this section, our grid configuration is presented. Then, experimental results for 
matrix multiplication, Mandelbrot and circuit satisfiability are shown respectively. 

4.1 Grid Environments 

The testbed grid includes three clusters which are located in three universities 
respectively. Cluster 1, located in Providence University, has five nodes. One of the 
nodes is designated as the master node. Cluster 2, located in Hsiuping Institute of 
Technology, has four nodes. Cluster 3, located in Tunghai University, also has four 
nodes. We use the following middleware to build the grid: 
• Globus Toolkit 3.0.2 
• Mpich library 1.2.6 

For readability of experimental results, the naming of our implementation is listed 
in Table 2. 



Table 2. Description of our implementation for all programs 

AP Name Description 
G(F, T)SS Dynamic scheduling G(F, T)SS 
NG(F, T)SS Fixed α scheduling + G(F, T)SS 

Matrix Multiplication, 
Mandelbrot, and 
Circuit Satisfiability PG(F, T)SS Our scheduling + G(F, T)SS 

4.2 Application 1: Matrix Multiplication 

The matrix multiplication is a fundamental operation in many applications. In this 
subsection, we investigate how scheduling parameters influence performance. In the 
experiment as shown in Fig. 1(a), we find NGSS get best performance when α= 50. 
Therefore, this value is adopted for the next experiment. Fig. 1(b) illustrates the result 
for α= 50. Although both NGSS and our PGSS seem to perform well the same, PGSS 
is not restricted by the selection of α value. In other words, PGSS is more robust. 
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Fig. 1. (a)Execution time for different alpha values (b) Execution Time of Matrix 

Multiplication with GSS 

Fig. 2(a) illustrates the result for α= 30. Although FSS, NFSS and our PFSS seem 
to perform well the same, PFSS is not restricted by the selection of α value. In other 
words, PFSS is more robust. Fig. 2(b) illustrates the result for α= 30. Although TSS, 
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the 
selection of α value. In other words, PTSS is more robust. 
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Fig. 2. (a) Execution Time of Matrix Multiplication with FSS (b) Execution Time of Matrix 

Multiplication with TSS 

 



For application of Matrix Multiplication, experimental results show that our 
performance-based approach is efficient and robust. 

4.3 Application 2: Mandelbrot 

The Mandelbrot set is a problem involving the same computation on different data 
points which have different convergence rates [1]. In this subsection, we investigate 
how scheduling parameters influence performance. In the experiment as shown in Fig. 
3(a), we find NGSS get best performance when α= 50. Therefore, this value is 
adopted for the next experiment. Fig. 3(b) illustrates the result for α= 50. Although 
both NGSS and our PGSS seem to perform well the same, PGSS is not restricted by 
the selection of α value. In other words, PGSS is more robust. 
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Fig. 3. (a)Execution time for different alpha values (b) Execution Time of Mandelbrot with 

GSS 

Fig. 4(a) illustrates the result for α= 50. Although FSS, NFSS and our PFSS seem 
to perform well the same, PFSS is not restricted by the selection of α value. In other 
words, PFSS is more robust. Fig. 4(b) illustrates the result for α= 50. Although TSS, 
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the 
selection of α value. In other words, PTSS is more robust. 
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Fig. 4. (a) Execution Time of Mandelbrot with FSS (b) Execution Time of Mandelbrot with 

TSS 

For application of the Mandelbrot set, experimental results show that our 
performance-based approach is efficient and robust. 



4.4 Application 3: Circuit Satisfiability 

The circuit satisfiability problem is one involving a combinational circuit composed 
of AND, OR, and NOT gates. In this subsection, we investigate how scheduling 
parameters influence performance. In the experiment as shown in Fig. 5(a), we find 
NGSS get best performance when α= 50. Therefore, this value is adopted for the next 
experiment. Fig. 5(b) illustrates the result for α= 50. Although both NGSS and our 
PGSS seem to perform well the same, PGSS is not restricted by the selection of α 
value. In other words, PGSS is more robust. 
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Fig. 5. (a)Execution time for different alpha values (b) Execution Time of Circuit Satisfiability 

with GSS 

Fig. 6(a) illustrates the result for α= 50. Although FSS, NFSS and our PFSS seem 
to perform well the same, PFSS is not restricted by the selection of α values. In other 
words, PFSS is more robust. Fig. 6(b) illustrates the result for α= 50. Although TSS, 
NTSS and our PTSS seem to perform well the same, PTSS is not restricted by the 
selection of α value. In other words, PTSS is more robust. 
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Fig. 6. (a) Execution Time of Circuit Satisfiability with FSS (b) Execution Time of Circuit 

Satisfiability with TSS 

For application of the Circuit Satisfiability problem, experimental results show that 
our performance-based approach is efficient and robust. 



5 Conclusions and Future Work 

We have proposed a performance-based parallel loop self-scheduling (PPLSS) 
approach, which partitions work load according to performance ratio of grid nodes. It 
has been compared with previous algorithms by experiments on three types of 
application programs. In each case, our approach can obtain performance 
improvement on previous schemes. Besides, our approach is less sensitive to α values 
than previous schemes; in other words, it is more robust. In our future work, we will 
implement more types of application programs to verify our approach. Furthermore, 
we hope to find better ways of modeling the performance function, incorporating 
network information. 
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