
Leveraging Flexibility of Time-Sensitive Networks
for dynamic Reconfigurability

Christoph Gärtner∗, Amr Rizk¶, Boris Koldehofe‡, Rhaban Hark∗, René Guillaume§ and Ralf Steinmetz∗
∗Technical University of Darmstadt, Germany, {christoph.gaertner, rhaban.hark, ralf.steinmetz}@kom.tu-darmstadt.de

¶University of Duisburg-Essen, Germany, amr.rizk@uni-due.de
‡University of Groningen, Netherlands, boris.koldehofe@rug.nl

§Robert Bosch GmbH, Corporate Research, rene.guillaume@de.bosch.com

Abstract—In Time-Sensitive Networks (TSN) applications with
the highest real-time flow requirements are deployed using
the Time-Aware Shaper which requires careful planning and
scheduling of flows before deployment. Such deployments lack
support for dynamic industrial scenarios such as modular ma-
chine assembly and reconfiguration, which require a flexible
transition between real-time tasks. In contrast, state-of-the-
art techniques rely on flow rescheduling and deployment in
conjunction with undesired network downtime. Existing works
on adapting schedules to traffic admissions are limited in their
ability to choose suitable flows to account for future tasks.

In this paper, we aim to leverage the flexibility of scheduler
configurations to enable TSN dynamic reconfigurability at run-
time. We propose a notion of flexibility for TSN Time-Aware
Shaper schedules which we utilize to decide the admissibility of
consecutive real-time tasks.

Index Terms—TSN, IEEE802.1Qbv, flexibility, scheduling

I. INTRODUCTION

Networks supporting real-time requirements are becoming
increasingly important in industrial scenarios, e.g., to couple
and control manufacturing processes. Since those processes
span and control end-devices which physically interact, strin-
gent real-time requirements are essential, but also challenging
to meet. In the context of Time-Sensitive Networks (TSN) real-
time guarantees on packet flows are enforced by mechanisms
that explicitly avoid conflicts in the use of network resources in
form of real-time schedules. One such mechanism is the IEEE
802.1Qbv Time-Aware Shaper (TAS), which supports time
division multiplexing at egress ports for so-called scheduled
traffic through specifying times at which the port is exclusively
open for certain traffic class queues. This cyclic schedule is
often referred to as gate control list (GCL), which contains
the times the traffic queue gates are open. Thus, Time-Aware
Shaping allows no-jitter isochronous traffic streams.

Deploying real-time applications with Time-Aware Shaping
requires a careful planning before deployment. For each flow,
properties need to be specified ahead such as the path between
source/destination, the periodic behavior of the traffic bursts in
form of a cycle time and the size of the payload. The feasibility
of schedules is hence tested ahead and appropriate schedules
are determined by offline techniques for solving variants of
the constraint satisfaction problem. These static schedules are
not designed to be adapted at runtime.

In this paper, we propose TSN support for dynamic indus-
trial scenarios, where the flow characteristics change over time
and the path characteristics may also be subject to change.
Changes in flow characteristics are naturally given by changes
in the tasks carried out by the real-time application. Here,
flows may only exist for a fixed period of time in the network
or flow properties such as cycle or frame size may also
change upon certain events. Examples of dynamic industrial
scenarios are given in [1], e.g., for dynamic plugging and
unplugging of machines or modular machine assembly. A
particular difficulty that we tackle in this paper is considering
TAS for dynamic reconfigurations at runtime [2]. This is
challenging as providing no-jitter isochronous flow guarantees
in the form of TAS in a dynamic scenario is hard.

Existing approaches to support dynamic industrial sce-
narios update real-time flows at run-time by taking snap-
shots of flow properties/requirements and solving the entire
scheduling/routing optimization problem before redeploying
the GCLs. A key drawback is that such changes to the
industrial network are usually implemented through halt-
ing/updating and restarting the network. Hence, in addition to
solving the scheduling/routing optimization problem (which
can be computed as soon as changes become known) the
associated network downtime cannot be circumvented. Given
a-priori known flow changes and requirements, the alternative
approach carried out by the industry is to assume the worst
case in terms of requirements and hence, allocate static gate
control entries to all scheduled traffic flows even if these
should only exist for a finite duration in the network. The
key drawback is the unnecessary and potentially unbounded
waste of capacity in addition to the difficulty of modelling the
worst case in scenarios with complex machine interactions.
New flows or changes to the statically configured network can
only be integrated through a new schedule embedding which
is associated with a down time.

In this paper, we aim to improve the flexibility at which the
configuration of TSN-networks can be adapted to dynamic
changes of real-time applications. Our contribution in this
paper is the introduction of a flexibility notion (flexibility curve
model and algorithms) for TAS schedules that allows

1) dynamic reconfiguration of TAS schedules at runtime
2) admitting multiple flows across a TSN network at onceISBN 978-3-903176-39-3©2021 IFIP

without the need to recompute these schedules.

II. RELATED WORK

In the following, we briefly review the related work specif-
ically with respect to (i) calculating and reconfiguring sched-
ules for TSN, (ii) models that allow obtaining performance
guarantees for real-time traffic flows and finally (iii) notions
of flexibility and adaptivity in resource allocation problems.

Creating static schedules to populate the gate control lists
of TSN switches before deploying any real-time applications
in the network can be carried out by solving a constraint
satisfaction problem such as in [3], [4]. These works use Satis-
fiability Modulo Theories (SMT) solvers to generate schedules
that meet a-priori specified flow requirements. Similarly, the
authors of [5] use integer linear programming (ILP) to find a
valid gate schedule. They introduce the notion of a flowspan,
which indicates the time until all flows are delivered within
each cycle, which grows when new flows are admitted on the
limiting path. The authors search for schedules that minimize
the flowspan using an ILP solver. Note that the assumption
in [5] is that all flows possess the same cycle time. The
approach is designed to focus GCL events at the beginning of
each cycle, thus not directly applicable to answer the question
of embedding one or more flows at once.

Changing flow characteristics can require the incremental
addition of a set of flows. The work in [6] is closest to
ours as it enables TSN reconfiguration at runtime using a
heuristic. A requested admission of a new flow invokes the
execution of a scheduling heuristic, which tries to find a valid
schedule for individually added flows. If this is unsuccessful,
the heuristic builds an entirely new schedule, e.g. through
invoking classical scheduling approaches, which may discard
existing flow timings. Note that the heuristic allows for only
one flow-admission at a time, if multiple flows are to be added,
another heuristic is needed that orders flows for an incremental
admission. The work in [7] aims at the reconfiguration of
GCLs by deciding if scheduled traffic gate windows can be
populated with additional flows or are allowed to be extended.
In contrast to our work added flows change the behavior within
the time window for scheduled traffic, therefore affecting all
flows within the traffic window.

Network Calculus based models such as [8]–[10] capture
various properties of different TSN mechanisms such as
IEEE 802.1 Ba/AS/Qat/Qav/Qcr very well. Service Curves
for TSN schedulers enable the derivation of deterministic
delay bounds given known constraints on the flow burstiness.
Complementary to these works we consider here isochronous
flows that are scheduled using the Time-Aware Shaper as given
in IEEE 802.1Qbv. The key differences that make modeling
such a scenario using Network Calculus hard are that (i) flows
require contiguous service and (ii) flows need to arrive in an
isochronous form at the destination. The first key difference
becomes clear when considering the so-called strong service
guarantee [11] (also known as strict service curve [8]) that
describes the service using a function S(t) that fulfills the
relationship D(t) ≥ D(τ) + S(t − τ) for all 0 ≤ τ ≤ t

with D(t) being the cumulative departures of a system (e.g.
buffered link or scheduler). The argument made by a strict
service curve is not directly applicable to the TAS flow
admission, i.e., the value the service curve at t − τ does not
solely decide whether a flow that requires service of length
less than t − τ is contiguously admissible. The second key
difference relates to the type of guarantee that can immediately
be obtained from network calculus models. While obtaining
delay bounds is well understood given a deterministic network
calculus model [8], guarantees on isochronicity are not.

As we define a notion of flexibility in this paper, we note
that previous works that analyze resource allocation algorithms
in the context of shop floor/production [12] or network vir-
tualization scenarios [13] provide viable starting points for
this goal. In a nutshell, these works measure flexibility as
a ratio of what we call weighted execution of tasks to the
weight of a measurable task set. Now, the interpretation of
this task set as well as its execution depends on the context
of the flexibility notion. In [12] the flexibility of a production
system is measured in terms of the ratio of the integral of
the machine-task efficiency rating with respect to the weight-
density function of tasks normalized by the overall task weight.
In [13] flexibility is generalized towards network virtualization
with a “weighted execution” that depends on the time and
cost of introducing changes to virtualized network resources
with a corresponding appropriate normalization. These works,
however, do not lend themselves easily to model the queueing
behavior that we allow at the TAS. Essentially, the computation
of such a flexibility measure under a combination of queueing
and scheduling remains very hard.

III. PROBLEM DESCRIPTION

In this paper, we consider a dynamic network centric real-
time application, comprising a set of dynamically deployable
real-time tasks T = {t1, . . . , tl}. We use the number of tasks
l ∈ N to define the index set [l] := {1, 2, . . . , l}. Each task ti
will impose a set of flows Fi = {fi1, . . . , fim}, which defines
the network traffic necessary to perform the task. The task
set T may be given as a directed acyclic graph that describes
the temporal behavior of the application. In the following, we
consider a simple totally ordered task set T .

Each flow fij is associated with a specific real-time require-
ment and task ti can execute only if all of its flows can be
admitted to the real-time network. Hence, the network needs
to admit a sequence of flow sets (Fi)i∈[l] in order for the
real-time tasks of the real-time application to make progress.

As depicted in Fig. 1 we consider real-time applications
that dynamically introduce new flows fij or new flow sets
Fi depending on the current application state and goal. Such
real-time applications abstract dynamic use cases in industrial
automation such as dynamic plugging and unplugging of ma-
chines or modular machine assembly that are mentioned in [1].
Fig. 1 shows a controller that is responsible for calculating the
schedules at every output port at every switch and translating
these to gate control lists that control the exclusive mapping of
switch ports to output queues. Admitting a new flow fij of ti

Controller

TSN Bridge

Flows not admitted

Request flow admittance

TSN Bridge

Update GCL

TSN Bridge

DEVICE DEVICE

ADDED
DEVICE

TSN Flows

Fig. 1: New Devices request the admittance of new flows at
the central controller that calculates a possible embedding and
updates the global and local schedule of the network.

to the network requires a careful analysis whether a resulting
schedule is meeting the real-time requirements of all admitted
flows. To understand the overhead let’s consider the following
scenarios engaged in the admission process:

Consider first, there is sufficient capacity available. Recall
that flows require contiguous transmission slots and cannot
be split in time. In this scenario the controller can aim to
determine a complimentary schedule to integrate the new flow.
If not sufficient capacity is available then the controller may
analyze whether a new schedule will allow to integrate the
flow. Note that deploying the new schedule requires stopping
the running tasks which leads to a down time of the network.
Alternatively, the task tj could be suspended until sufficient
network resources of the network become available.

Overall, we assume in this paper that a controller of the real-
time application aims to maximize the throughput in executing
real-time tasks over the real-time network. A critical issue,
required in all discussed scenarios, is to support the controller
in detecting that one or more flows can be admitted. In
this paper we propose a model that efficiently supports this
decision and reduces the time until new flows can be admitted.

IV. SYSTEM MODEL

In this section, we present a model of a time-sensitive
network with TAS that lends itself to the derivation of a notion
of flexibility for TAS schedules. We also provide a short review
of schedule calculation for IEEE 802.1Qbv.

A. Network model

We model a given time-sensitive network as a graph
G(V,E). The real-time capable devices in V comprise output
queued switches and end-devices, each with at least one Time-
Sensitive Networking (TSN) scheduling mechanism enabled.
An example of such scheduling mechanism is IEEE 802.1Qbv.
The real-time capable devices are connected by bi-directional
symmetrical links in E. Cyclic or isochronous real-time traffic
belonging to a task ti is described by the set of flows Fi
where each flow fij ∈ Fi is associated with a specification that
characterizes the real-time behavior in terms of requirements
and properties of end-to-end communication. Flow properties
include the cycle time, source and destination node pair

and payload size. The requirements describe the allowed
packet loss per time-period, allowed jitter and an end-to-end
delay bound. A scheduled TSN network using TAS (IEEE
802.1Qbv) has at each vertex v ∈ V a set of output ports
where each port i has a schedule si resulting in an set of
network schedules S = {s1, . . . , sN}. Overall there exists N
scheduled output ports in the TSN network. As mandated by
IEEE 802.1Qbv we assume time synchronization at all vertices
and consider time to be slotted in slots of size ∆. The set
of schedules is computed in a way that each flow constraint,
described by F is met. Each schedule si ∈ S is a sequence
of pairs where a pair consists of an isochronous flow and an
associated departure time on the port i within the scheduling
hyperperiod K∆, i.e., the least common multiple of all flow
cycle times. For a clear exposition we omit the transmission
and propagation delays in the following.

B. Schedule Calculation for IEEE 802.1Qbv

IEEE 802.1Qbv controls the opening times of up to eight
separated queues for each controlled output port. In our
network model we assume a common network cycle time,
which is equal to the flow-hyperperiod K∆. Since the GCL’s
granularity is limited we can assume a time slotted behavior
for opened and closed queues. Therefore, each GCL encodes
a part of the global schedule, which opens the corresponding
queue gate when a flow is scheduled for egress.

In this work, we use state-of-the-art approaches to calculate
TAS schedules. Given an empty network with a set of initial
flows, we create a schedule, that satisfies the flow require-
ments, including a predefined routing, and the switch/port lim-
itations, by solving a constraint satisfaction problem, similar
to existing related work reviewed in Sect. II.

V. A NOTION OF FLEXIBILITY FOR SCHEDULES

Given the tuple (G,Fi, S) describing a valid mapping of
Fi to G using schedules in S. We denote L the set of paths
that aggregate local port schedules between every distinct
sender/receiver device pair, i.e., the path lp ∈ L is a sequence
of one or more ports that are along the same end-to-end
path between a given sender/receiver pair. Here p is the
index of the path. Hence, we consider paths that carry one
or more flows between given sender/destination pairs. The
schedule of port i is given by si ∈ S where si denotes a
sequence of time points (sij)j∈[χi] for which the flows obtain
exclusive use of the output port. Here, χi denotes the number
of flows in schedule si. We define for each schedule si the
number of free-slots after the last transmission as φi (each of
width ∆) and the end-shifted sequence of departure times as

s₁ w₁

0 1 2 3 4 5 6 7 8 9
0

2

4

6

K0 1 2 3 4 5 6 7 8 9
0

2

4

6

K

Slot Index

C
um

ul
at

iv
e

N
um

be
r

of
 F

re
e

Sl
ot

s

Fig. 2: (Left) An example schedule s1 with Cp(n) underneath.
(Right) The end-shifted schedule w1 of s1.

wi = (si1 + φi, . . . , siχi
+ φi). Fig. 2 depicts an example of

such a sequence.
Given a schedule length, i.e., a hyperperiod of length K∆,

we denote the cumulative capacity for port p up to slot index
n by Cp(n) =

∑
k ∆1{n≥apk} with apk being the time point

of the k-th free slot at p with slot index n ∈ [K]. Note we use
the end-shifted schedule wi at each port p for the cumulative
capacity. This allows considering scheduling wraps.

Next, we propose the following flexibility notion. We define
the flexibility curve (flexcurve) for path lp as

hp(n) = min
k∈lp

K−n∑
τ=0

1{Ck(n+τ)−Ck(τ)=n}. (1)

Note that the flexibility curve is limited by the minimum value
of possible flow arrangements for new flows along its path.

The rationale behind the flexcurve: It provides the number
of possible arrangements for a flow of size n∆ at the cor-
responding bottleneck schedule along a given path between
two endpoints. The flexibility curve denotes the “embeddable”
flow sizes along the path lp for cycles of size K∆ and uncon-
strained end-to-end delay without recalculating the schedules
for the existing flows along that path. Note that it does not
reflect potential flow queue isolation requirements.

Note that the flexcurve considers all potentially overlap-
ping arrangements at each schedule. Restricting the flexcurve
to only reflect non-overlapping arrangements, which would
directly allow parallel flow embedding, would reduce the
encoded information. Through counting overlaps the flexcurve
encodes information on the capacity leftover after embedding a
flow. The flexcurve encodes various information such as hp(1)
which denotes the overall residual free capacity along a path
or nmax,p = arg minn hp(n)|hp(n)>0, which is denoted the
maximum embeddable flow size on path p.
Numerical Example

Considering the topology of Fig. 3a as a store and forward
network we define the following flows:

Flow Size Cycle Max Delay
Flow 0 (red) 4∆ 20∆ ∞∆
Flow 1 (green) 2∆ 20∆ 10∆
Flow 2 (blue) 2∆ 20∆ 10∆
Flow 3 (orange) 2∆ 10∆ 10∆

Assume first that Flow 0 is not present yet. Without Flow
0 (red), a scheduler computed the output port schedules in
Tab. I with regard to individual flow and queue availability
constraints with a resulting hypercycle of 20∆.

Port Schedule
4
5
6
7

TABLE I: Port schedules for the numerical example.
With the given port schedules, we can calculate the flexibil-

ity curve for each current and future (Flow 0) path. Note that
flexcurves for different non-disjoint paths might be identical if
the corresponding bottlenecks are located in the non-disjoint
part. In this example, this is the case for Flow 2 (blue) and
Flow 3 (orange) where both have identical flexcurves for all
embeddable flow sizes because both paths are constrained
by the same port (port 5). For Flow 1 (green), the limiting
schedule is located at Port 4.

Given the schedule in Tab. I, the resulting flexcurves
are visualized in Fig. 3b. There are three flexcurves, with
two overlapping. Comparing flexcurves directly allows us
to compare the immediate embeddability of additional flows
along the path of each flexcurve. For instance, there are
10 possible arrangements for an additional flow of size 7∆
along the path (1, 4, 6, 9). However, only two along the paths
{(2, 4, 5), (3, 7, 5)}. Embedding additional flows might impact
the flexcurves of all intersecting paths. Affected flexcurves
have reduced flexibility because additional flows limit the
capacity somewhere along the path.

Calculating the flexcurve along the red flow’s path
(0, 4, 6, 8) we directly see that it allows for the immediate
embedding of Flow 0 (red). Depending on the actual embed-
ding, i.e., where the flow is assigned at the schedule of each
port, the flexcurves are differently affected. Intuitively, this is
because additional fragmentation within a schedule reduces
the ability to deploy larger flows after the addition.

The path of Flow 0 (red) has its bottleneck at port 4.
Scheduling the red flow on port 4 directly after Flow 1 (green)
in Tab. I, reduces h(0,4,6,8)(1) to 12∆, which is equal to the

4

 6

5

 9

8

 7
DEVICE

1

DEVICE
3

DEVICE
0

DEVICE
2

Switch Switch Switch

(a)

0 2 4 6 8 10 12 14 16
Flow Size

0
2
4
6
8

10
12
14
16
18
20

Co
un

t o
f A

rra
ng

em
en

ts

(b)

0 2 4 6 8 10 12 14 16
Flow Size

0
2
4
6
8

10
12
14
16
18
20

Co
un

t o
f A

rra
ng

em
en

ts

(c)

Fig. 3: (a) Example routes and topology with four flows (red, green, blue, orange) and three switches. Output port numbers
are labeled. (b) The resulting flexibility curves for all given paths of each schedule. The flexcurve for path of Flow 2/3 and
Flow 0/1 overlap. (c) Flexibility curves after the addition of Flow 0 (red) directly after Flow 1 (green). The capacity loss is
shifting the flexibility curve of the path of Flow 1 (green) downwards, and creating new limits for the path of Flow 2 (blue).

Runtime (in ms)

Added Flows initial +1 +2 +3 +4 +5

Flexcurve 2.48 2.37 2.32 2.47 2.76 2.81
SMT 48.30 62.00 77.72 106.36 137.90 171.09

TABLE II: Given Tab. I we compare the runtime of the
creation of the flexcurve against a constraint solving approach
(SMT) with an increasing number of added flows.

path’s limiting residual capacity. However, the introduction of
the red flow also changes the blue path’s flexcurve, since the
residual capacity and therefore limiting schedules for it also
change. Until n ≤ 3 the blue flexcurve is limited by port 4,
larger flows have their bottleneck at port 5, from there the
flexcurve follows values of orange’s flexcurve.

VI. APPLICATIONS

In this section we consider two applications of the notion
of flexcurves in the context of dynamic reconfiguration of
TSN networks with TAS. The first application is a basic
admission control of one or multiple new flows at once while
the second application revolves around using the flexcurve as
an optimization constraint when calculating flow routing in
case multiple paths between sender/destination pairs exist.

A. Admission Control

Deciding admissibility is required when a real-time appli-
cation transitions from one task to the next in Sect. III. Being
able to quickly decide which tasks can be admitted reduces
computational waiting times. As the residual capacity hp(1)
does not reflect contiguous free slots it is not sufficient to state
the admissibility of a flow of size n∆ with n > 1.

In the following, we sketch how to use the flexibility curve
metric to assess the possibility of future flow admissions. The
flexibility curve is defined such that it immediately shows a
number of arrangements for flow-admissions along a path for
flows with unconstrained end-to-end delay, and with a cycle
time equal to K∆. After the initial schedule creation, the
flexibility curve can be precomputed providing information
on the embeddability of future flows. This renders resource
exhausting recalculations of the schedule unnecessary and
allows rapid insertions of new flows. Note that the creation
of the flexibility curve possesses time and space requirements
that increase with the hyperperiod and the number of hops.
Tab. II shows the runtime requirements of creating all four
flexibility curves from the example in Sect. V, and creating a
corresponding schedule by solving a SMT problem.

A naive and straightforward approach to check flow ad-
missibility compared to fully scheduling or using flexibility
curves is to apply Alg. 1 with a given path and size of the
future flow. Alg. 1 checks every port schedule along a flow’s
path whether it has enough capacity to admit the flow. A
minimal modification also returns a possible embedding. A
main drawback of this simple approach is that it only applies to
tasks with single flows as it is not able to decide admissibility
for two or more flows simultaneously. For a simultaneous flow

Algorithm 1: Naive flow admissibility check
Data: Flow = (path, size)
Result: True/False : Flow is admissible
forall schedule in path do

if size is not embeddable in schedule then
return False;

return True;

admission, a different search is required which warrants the
usage of classical scheduling/optimization approaches.

The flexibility curve, however, is able to answer the ad-
missibility question for multiple flows simultaneously. Here,
we only need to regard flows that share common output ports
along their path. The possibility for flow admission of path
independent flows is given by the path’s flexcurve.

A simultaneous embedding of multiple flows given by the
set Fe sharing at least one output port is also possible, if
all flexibility curves given by the paths of Fe are able to
accommodate all flows f ∈ Fe. Hence, we check if

∀f ∈ Fe : hp(
∑
f∈Fe

size(f)) > 0 (2)

is true, where p is the path of f , i.e., whether a continuous gap
of free-slots for the sum of all flow sizes Fe in every flow’s
path exists. Note that the condition above is only sufficient.

Now, if (2) does not hold we can still obtain parallel embed-
ding through considering the set of flows to be embedded Fe
and a set of disaggregated flexcurves as detailed in Alg. 2.
In the following, we explain how to obtain disaggregated
flexcurves to embed a set of flows at once: Considering each
flow f ∈ Fe in a decreasing order of flow sizes we match every
flow fi with a disaggregated flexcurve h′p,i(n). We obtain the
ith disaggregated flexcurve h′p,i(n) by recursive subtraction as

h′p,i(n) = h′p,i−1(n)− h̃p(n) (3)

for i > 1. The first disaggregated flexcurve h′p,1(n) is calcu-
lated by considering the largest embeddable flow size nmax,p

on path p and subtracting the canonical flexibility curve

h̃p(n) =

{
nmax,p − n+ 1 if n ≤ nmax,p,

0 otherwise
(4)

from the flexcurve hp(n) as h′p,1(n) = hp(n)−h̃p(n). Observe
that we perform the subtraction hp(nmax) times to remove the
count of arrangements for all gaps of flow size nmax. Note that
this method is only applicable if the number of disaggregated
flexcurves is larger or equal to the number of flows in Fe.
If there exists more flows than disaggregated flexcurves, an
embedding might still be possible, but we cannot decide on
admissibility without combinatorial approaches. A fallback to
classical scheduling approaches is required.

B. Flexibility Optimization and constrained Routing

In the previous subsection, we considered the application of
the flexcurve to answering the question whether one or mul-
tiple flows can be admitted to a TSN network. Answering the
admissibility question entails concretely scheduling the flow,

Algorithm 2: Flow admissibility using flexcurves
Data:
// Flows sorted descending by size Flows ← [size];
// Flexcurves of distinct paths Flexcurves ← [h()];
Result: True/False/null: Flows are admissible
// Single Flows are directly applied (omitted)
// Apply Eq. (2) on Flows (omitted)
// Further, flexcurves failing Eq. (2):
FlexcurvesUnsatisfied ← [];
Flowcount ← |Flows|;
for h in FlexcurvesUnsatisfied do

// Disaggregate flexibility curve
Disaggregations ← 0;
repeat

// Attempt flow placement
// Create a decoupled schedule
nmax ← Flexcurve.nmax;
if Flows[0] > nmax then

return False;

Create h(nmax) schedule with K = nmax;
while Flows can be placed in decoupled schedule do

Place Flows[0] in decoupled schedule;
Remove Flows[0];
if |Flows| = 0 then

return True;

// Subtraction of canonical flexcurve
forall i ∈ {1 . . .K} do

h(i) ← h(i) − nmaxh̃p(i);

Disaggregations ← Disaggregations + 1;
until h(1) = 0;
if Flowcount > Disaggregations then

return null;
else

return False;

i.e., deciding which slots should the flow occupy. Next, we
consider this question in the light of the flexcurve definition.

Given the flexcurves hp(n) that describe the available
arrangements for flows of various sizes in a network with
flow set F , it is natural to aim at maximizing the flexibility
of the entire network. Note that a flow admission on a given
path decreases the flexcurves that share the same bottleneck
schedule on that path.

To account for future flow embeddings, we propose to
schedule the newly admitted flow to maximize flexibility for
all distinct paths of a priori known flows, by maximizing the
sum of the area under the flexibility curves as to

maximize
∑
p∈F

∑
n

hp(n) (5)

subject to satisfying all individual flow constraints. Certainly,
this criterion can also be used at the initial scheduling of flows.

Note that if flow paths are fixed, a flexcurve is maximal,
when the fragmentation of each schedule along its path is
minimal. This implies that the largest embeddable flow size
nmax,p is maximized. An empty path possesses a canonical
flexibility curve, cf. Eq. (4), with nmax,p = K∆.

Building on the flexibility optimization above, a subset of
flows belonging to some task that are being admitted may
be allowed to be routed along different paths, i.e. different
sequence of ports between two given end-points. This joint
flexibility optimization and routing problem can be solved

using the flexcurve concept to obtain the routes that provide
the least loss of flexibility in terms of the criterion from (5).

VII. CONCLUSION

Transitions between real-time tasks in dynamic industrial
scenarios at runtime require flexibility within the deployed
TAS schedules. We proposed a network path-based flexibility
notion, denoted flexcurve, that is deduced from schedules
along a given path. Using the flexcurve we can decide the
admissibility of multiple flows at once and assess their impact
on the admissibility of future flows. We obtain a notion of the
network flexibility by appropriately aggregating the flexcurves
of different paths. Flexcurves enables online reconfiguration of
schedules, without rescheduling existing flows. In future work
we will generalize this concept to arbitrary flow cycle times,
queue isolation and different delay guarantees.

VIII. ACKNOWLEDGMENT

This work has been funded in parts by the German Research
Foundation (DFG) as part of projects T3, B4 within the
Collaborative Research Center (CRC) 1053 – MAKI as well
as the DFG project SPINE.

REFERENCES

[1] R. Belliardi, J. Dorr, T. Enzinger, F. Essler, J. Farkas, M. Hantel,
M. Riegel, M.-P. Stanica, G. Steindl, R. Wamßer, K. Weber, and S. A.
Zuponcic, “Use Cases IEC/IEEE 60802 v1.3,” Sep. 2018.

[2] B. Alt, M. Weckesser, C. Becker, M. Hollick, S. Kar, A. Klein, R. Klose,
R. Kluge, H. Koeppl, B. Koldehofe, W. R. KhudaBukhsh, M. Luthra,
M. Mousavi, M. Mühlhäuser, M. Pfannemüller, A. Rizk, A. Schürr, and
R. Steinmetz, “Transitions: A Protocol-Independent View of the Future
Internet,” Proc. IEEE, vol. 107, no. 4, pp. 835–846, 2019.

[3] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
Real-Time Communication in IEEE 802.1Qbv Time Sensitive Net-
works,” in Proc. of ACM RTNS, 2016, pp. 183–192.

[4] A. Santos, B. Schneider, and V. Nigam, “TSNSCHED: Automated
schedule generation for time sensitive networking,” in Proc. of Formal
Methods in Computer Aided Design (FMCAD), pp. 69–77.

[5] F. Dürr and N. G. Nayak, “No-Wait Packet Scheduling for IEEE Time-
Sensitive Networks (TSN),” in Proc. of ACM RTNS, 2016, pp. 203–212.

[6] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling Fog
Computing for Industrial Automation Through Time-Sensitive Network-
ing (TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 55–61, 2018.

[7] A. Nasrallah, V. Balasubramanian, A. Thyagaturu, M. Reisslein, and
H. ElBakoury, “Reconfiguration Algorithms for High Precision Commu-
nications in Time Sensitive Networks: Time-Aware Shaper Configuration
with IEEE 802.1Qcc,” Jun. 2019, arXiv: 1906.11596v1.

[8] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer, 2001.

[9] E. Mohammadpour, E. Stai, M. Mohiuddin, and J. Le Boudec, “Latency
and backlog bounds in time-sensitive networking with credit based
shapers and asynchronous traffic shaping,” in Proc. of International
Teletraffic Congress (ITC), 2018.

[10] J. A. R. De Azua and M. Boyer, “Complete modelling of avb in network
calculus framework,” in Proc. of ACM RTNS, 2014, p. 55–64.

[11] R. Agrawal, R. L. Cruz, C. M. Okino, and R. Rajan, “A framework for
adaptive service guarantees,” in Proceedings of Allerton Conference on
Communication, Control, and Computing, 1998, pp. 693–702.

[12] P. H. Brill and M. Mandelbaum, “On measures of flexibility in manufac-
turing systems,” International Journal of Production Research, vol. 27,
no. 5, pp. 747–756, 1989.

[13] P. Babarczi, M. Klügel, A. Martı́nez Alba, M. He, J. Zerwas, P. Kalm-
bach, A. Blenk, and W. Kellerer, “A mathematical framework for
measuring network flexibility,” Computer Communications, vol. 164, pp.
13–24, 2020.

