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Abstract—Memcached is an in-memory key-value distributed
caching solution, commonly used by web servers for fast content
delivery. Keys with their values are distributed between Mem-
cached servers using a consistent hashing technique, resulting
in an even distribution (of keys) among the servers. However,
as small number of keys are significantly more popular than
others (a.k.a., hot keys), even distribution of keys may cause a
significantly different request load on the Memcached servers,
which, in turn, causes substantial performance degradation.

Previous solutions to this problem require complex application
level solutions and extra servers. In this paper, we propose
MBalancer–a simple L7 load balancing scheme for Memcached
that can be seamlessly integrated into Memcached architectures
running over Software-Defined Networks (SDN). In a nutshell,
MBalancer runs as an SDN application and duplicates the hot
keys to many (or all) Memcached servers. The SDN controller
updates the SDN switches forwarding tables and uses SDN ready-
made load balancing capabilities. Thus, no change is required to
Memcached clients or servers.

Our analysis shows that with minimal overhead for storing
a few extra keys, the number of requests per server is close to
balanced (assuming requests for keys follows a Zipf distribution).
Moreover, we have implemented MBalancer on a hardware-
based OpenFlow switch. As MBalancer offloads requests from
bottleneck Memcached servers, our experiments show that it
achieves significant throughput boost and latency reduction.

I. INTRODUCTION

Memcached is a very popular general-purpose caching
service that is often used to boost the performance of dynamic
database-driven websites. Nowadays, Memcached is used by
many major web application companies, such as Facebook,
Netflix, Twitter and LinkedIn. In addition, it is offered either as
a Software-as-a-Service or as part of a Platform-as-a-Service
by all major cloud computing companies (e.g., Amazon Elas-
tiCache [2], Google Cloud Platform Memcache [11], Redis
Labs Memcached Cloud [28]).

Memcached architecture is depicted in Figure 1. Popular
data items are stored in the RAM of Memcached servers,
allowing orders of magnitude faster query time than tradi-
tional disk-driven database queries. Data items are stored in
Memcached servers by their keys, where each key is linked to
a single Memcached server, using a consistent hashing algo-
rithm. Therefore, all Memchached clients are using the same
Memcached server to retrieve a specific data item. Consistent
hashing algorithm ensures an even distribution of keys, but it
does not take into account the number of Memcached get

Fig. 1. Memcached in a simple web server architecture.

requests to their corresponding data item (namely, the key
load). It is well-known that web-items in general, and data
elements stored in Memcached in particular, follow a Zipf
distribution [1, 8, 10], implying that some data items are much
more popular than others (a.k.a. hot-keys). This results in an
imbalanced load on the Memchached servers, which, in turn,
results in a substantial overall performance degradation.

The hot-keys problem is well-known in Memcached de-
ployments and several tools to detect hot keys are available
(e.g., Etsy’s mctop [20] and Tumblr’s memkeys [32]). Once
the hot-keys (or the loaded servers) are detected, common
solutions include breaking down the popular data item to many
sub-items or replicating the entire heavily-loaded Memcached
server and managing these replications using a proxy.

In this paper, we take an alternative approach and propose
MBalancer, a simple L7 load-balancing scheme for Mem-
cached. MBalancer can be seamlessly integrated into existing
Memcached deployments over Software Defined Networks
(SDN). Unlike previous solutions, it does not require either
a cooperation from the Memcached client (or developer) or
additional servers.

In a nutshell, MBalancer identifies the hot keys, which are
small in number. Then, MBalancer duplicates them to many
Memcached servers. When one of the SDN switches identifies
a Memcached get request for a hot key, the switch sends theISBN 978-3-901882-94-4 c⃝ 2017 IFIP



packet to one of the servers using its readily-available load
balancing capabilities (namely, OpenFlow’s select groups [21,
Section 5.10].For P4 switches, we present equivalent load
balancing program).

SDN switches are based on a per-packet match-action
paradigm, where fixed bits of the packet header are matched
against forwarding table rules to decide which action to
perform on the packet (e.g., forward to specific port, rewrite
header, or drop the packet). MBalancer uses specific locations
(namely, a fixed offset) in the packets’ Layer 7 header, in
which Memcached’s keys appear. While such a matching is not
supported by OpenFlow 1.5 (which restricts the matching to
L2-L4 header fields), many SDN switch vendors today extend
the matching capabilities to support matching in fixed location
in the payload 1. Moreover, P4 [5] recently proposed a method
for dynamically configuring the header parsing, allowing for
even greater control over how matching is performed and on
which parts of the header. Thus, in this paper, we present
implementations of MBalancer both over P4 switches and
OpenFlow switches with the above-mentioned capabilities.

We have evaluated MBalancer both in simulations and in ex-
periments, and show that in practice about 10 key duplications
suffice for gaining a performance boost equivalent to adding 2-
10 additional servers (the exact number depends on the specific
settings). Moreover, we have shown that smartly duplicating
the keys to half of the servers yields almost the same results
to duplicating the keys to all the servers. In contrast, we show
that moving keys between servers (without duplication) almost
never helps.

We have implemented MBalancer and run it in a small SDN
network, with a NoviFlow switch that is capable of matching
fixed bits in the payload. Our experiments show balanced
request load and overall throughput gain that conforms to
our analysis. Furthermore, MBalancer significantly reduces the
average latency of requests.

II. MEMCACHED PRELIMINARIES

One of the main reasons Memcached is so popular is
its simple, client-server–based architecture (see illustration in
Figure 1): Memcached servers are used as a cache, storing
in their memory the latest retrieved items. Memcached clients
are an integral part of the web server implementation, and
their basic operations are get key, which retrieves an object
according to its key; set key,value, which stores the pair
⟨key, value⟩ in one of the servers; and delete key, which
deletes a key and its corresponding value. Every Memcached
client is initialized with a list of n Memcached servers and
a consistent hashing function, hash; thus every Memcached
request with key k is sent to server number hash(k). If key k
is not found in server hash(k), a cache miss is encountered,
and the Memcached client reads the data from the database
and performs a set request to store the ⟨key, value⟩ pair in
that server for future requests. When the Memcached server
depletes its memory, the least recently used data item is
evicted. In this basic solution, each data item is stored in

1This is in contrast to the complex general task of Deep Packet Inspection,
which searches for a signature that may appear anywhere in the data.

exactly one server, and data items are evenly distributed among
the servers.

Memcached’s protocol is simple and ASCII based (it also
supports a binary protocol). For instance, get requests are
structured as follows: ”get <key>\r\n”, where the key is
always in a fixed location in the request structure, starting
from the fifth byte, and thus can be easily identified, as
in, for example, ”get shopping-cart-91238\r\n”. We leverage
this structure in our solution. The keys in Memcached are
determined by the developer who is using the Memcached
system, and its size is bound by 250 bytes. The value contains
up to 1MB of data.

III. EVALUATION OF HOT KEY PROBLEM AND REMEDIES

Recall that keys are distributed over the Memcached servers
using a consistent hashing algorithm, which assigns a key to a
server uniformly at random. However, as the load on the keys
follows Zipf distribution, the overall load on the Memcached
server is not uniform.

Formally, let n be the number of servers and N be the
number of keys. The load on the i-th most popular key, denote
by wi = Pr[data item has key i] is 1/(iα · HN ), where α is
a parameter close to 1 (in the remainder of the paper we set
α = 1) and HN ≈ lnN is the N -th Harmonic number. As
before, let hash be the hash function that maps keys to servers.
Thus, the load on server j is load(j) =

∑
{i|hash(i)=j} wi.

We measure the expected imbalance factor between the
servers, namely the ratio between the average load and the
maximum load. Note that the imbalance factor is equivalent
to the throughput when the most loaded server (say, server k)
becomes saturated and the rest of the servers process requests
proportionally to server k’s load:

1

n

n∑

j=1

load(j)

load(k)
=

1

load(k)

∑n
j=1 load(j)

n
.

In Section V, we show that the imbalance factor indeed
corresponds to the obtained throughput.

We have investigated the impact of the number of keys
and the number of servers on the imbalance factor through
simulations.2 All results presented are the average of 100
runs. Figure 2(a) shows that given a fixed number of servers
(in this figure, 10 servers which are common in websites
deployments), the imbalance factor grows logarithmically in
the number of keys. As the imbalance factor runs between
40%−60%, it implies that half of the system resources are
idled due to this imbalance. The problem becomes even more
severe as the number of servers increases (see Figure 2(b)).
Intuitively, this is due to the fact that even if the heaviest key
was placed on a server by itself, its weight is still significantly
larger than the average load. This also rules out solutions that
move data items between servers without duplications.

Notice that Figures 2(a) and 2(b) show also that MBalancer,
whose specific design will be explained in Section IV, achieves
substantial improvement of imbalance factor, even when a only

2While the problem can be modelled as a weighted balls and bins prob-
lem [3], to the best of our knowledge there are no tight bounds when the
weights are distributed with Zipf distribution.
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Fig. 2. The imbalance factor as a function of (a) the number of servers (for 1000 keys and 10 hot-keys), (b) the number of keys (for 10 servers and 10
hot-keys).
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Fig. 3. Jain’s fairness factor as a function of the number of servers (for 1000
keys and 10 hot keys). The closer Jain’s fairness index to 1, the more balanced
the load on the servers.

the 10 most popular keys are being treated. The same holds
also when other measures of fairness are considered: Figure 3
shows that MBalancer significantly improves Jain’s fairness
index [14], while Figure 4 shows the same improvement when
the coefficient of variation is considered.

A. Comparing with Other Solutions
Facebook suggests to solve the hot key problem by repli-

cating the busiest servers [23]. The solution is implemented
by placing Memcahced proxies between the clients to the
servers, that distribute the load between the replicated servers.
Figure 5 shows the number of extra servers required, so
that this solution will achieve the same imbalance factor of
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Fig. 4. Coefficient of variation as a function of the number of servers (for
1000 keys and 10 hot keys). The closer the coefficient of variation to 0, the
more balanced the load on the servers.

MBalancer. Clearly, this solution is more expensive in CAPEX
and requires extra software. Similarly, Trajano et. al. [31]
suggest to use proxies (inside virtual machines) to replicate
and cache popular keys and to load balance others; however,
they increase the network latency and do not analyse the
performance when requests follow Zipf distribution.

Pitoura et al. [26] considered replicating items to improve
load balancing in the context of range queries in distributed
hash tables (DHTs). As our results, they showed that also in
their context, replicating few items is enough to give good
balance. However, their setting is not directly applied to our
memcached setting and their solution does not provide the
networking support to enable replication as required in our
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Fig. 5. The number of additional servers (e.g., as suggested by Facebook
[23]) required to achieve the same imbalance factor of MBalancer with 10
hot keys and 1000 keys.
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Fig. 6. The imbalance factor as a function the number of hot keys (for 10
servers and 1000 keys).

setting.
Other suggestions are to manually change the application

logic [13, 20]. For instance, break down the data of a hot key
into smaller pieces, each assigned with its own key. This way
each piece of data might be placed in a different Memcached
server (by hashing the new key), implying several servers will
participate in the retrieval of the original data item. However,
this solution is complex, as it requires extra logic in the web
server for splitting data items, and for writing and reading
them correctly from Memcached.

MBalancer deals with improving the performance of Mem-
cached traffic and thus it differs from general key-value storage
system designs that aim at improving the storage system per-
formance by adding cache nodes. Specifically, recent system
designs [19], which dealt with the general case of key-value
storage systems, use SDN techniques and the switch hardware
to enable efficient and balanced routing of UDP traffic between
newly-added cache nodes and existing resource-constrained
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Fig. 7. The number of hot keys required to reach a certain imbalance factor
threshold (for 10 servers).

backend nodes. Despite the similarity in using the switch hard-
ware for load balancing, these system designs come to solve a
different problem, the designs are not geared for Memcached
traffic and therefore involve packet header modifications, and
their analysis [9] is based on a general cache model with
unknown request distribution. MBalancer, on the other hand,
does not require adding new nodes to the system (and, in fact,
no change to either the client and server sides), no packet
header modification (as it looks at Memcached header in L7),
and its analysis is based on the fact that request distribution
is zipf.

IV. MBALANCER OVERVIEW

MBalancer partitions the Memcached servers to G groups
of n/G servers each. In order to load-balance requests for hot
keys, MBalancer duplicates each of the H most popular keys
to all servers in one such group, where H is a parameter of the
algorithm. For brevity, we will assume G = 1, and therefore,
all hot keys are duplicated to all servers. This will be relaxed
later in Section IV-D.

Notice that the Zipf distribution implies that even if we
choose H to be small (e.g., 10 out of 1000 keys), we get a large
portion of the requests (in this case, H10

H1000
= 2.93

7.49 = 0.39).
Figure 6 shows the impact of H on the imbalance factor,
given a fixed number of servers and a fixed number of keys.
Figure 7 shows the number of hot keys required in order
to reach a certain value of an imbalance factor (for fixed
number of servers). Evidently, the impact becomes negligible
when H ≈ 10, which in the specific setting we considered
in the figure results in an imbalance factor of 0.83. This
implies that the memory required for duplicating the keys to all
Memcached servers is small. Using this method, requests for
hot keys are spread evenly over all Memcached servers, while
the less popular keys are treated as in the original memory
implementation (namely, they are mapped to a single server).

3Notice that by Figure 2(b), as the number of servers increases, the
imbalance factor improves, even when H is left unchanged.



Fig. 8. The MBalancer framework.

A. MBalancer Design
While MBalancer can be implemented using a proxy or an

L7 middlebox, we suggest an implementation using an SDN
network that does not require any software modification and,
in particular, leaves both Memcached clients and Memcached
servers unchanged.

The MBalancer architecture is illustrated in Figure 8. For
simplicity we first explain the solution where all the mem-
cahced clients and servers are connected to a single switch.
Later we explain how to relax this assumption to a general
SDN network.

One of the advantages of SDN networks is a clear separation
between their control and data planes. Our architecture in-
volves actions in both planes. Specifically, in the control plane,
we have devised an SDN application, named MBalancer, that
receives Memcahced traffic statistics from some monitoring
component solution (e.g., mctop or memkeys), selects the
hot keys, duplicates the keys to all servers, and configures the
switches. In the data plane, the SDN switch matches hot keys
from Memcached traffic and performs L7 load-balancing, as
will be explained next. The rest of the keys are forwarded to
their original destination by the Memcached clients as before.

We note that our solution is only applicable for Mem-
cached get requests over UDP. While TCP is the default
in Memcached, UDP is usually preferred when the goal is
better performance (cf. Facebook’s solution [23]). The main
challenge with adapting MBalancer to TCP is handing-off the
connection from its original destination and the destination
chosen by MBalancer, without requiring the switches to keep
track of the state of every open connection (e.g., as in [22]),

B. MBalancer Data Plane Configuration
For simplicity, we begin by explaining the switch configura-

tion assuming that the H heaviest keys were already duplicated

to all Memcached servers.
Figure 9 shows the switch configuration. Hot keys are

identified by a flow table rule with payload matching for the
hot key. The rules added to the switch rely on the fact that the
key in a Memcached get request packet is in a fixed location
(specifically, offset of 12 bytes) and ends with \r\n.

Once a packet with a hot key is identified, it is forwarded
to an OpenFlow group of type select [24, Section 5.10].
Each such group contains a list of action buckets (in our
case, each action bucket is responsible of redirecting packets
to a different Memcached server). Each packet is processed
by a single bucket in the group, based on a switch-computed
selection algorithm that implements equal load sharing (e.g.
hash on some user-configured tuple, simple round robin, or
basing on the bucket weight).

In order to redirect a packet, the action bucket rewrites
the destination MAC and IP addresses fields with the new
addresses and forwards the packet to its new destination.
We note that, in this situation, when the Memcached server
responds to the client, the client receives a packet where the
source IP address is different from the address it expects.
In UDP, this is not a problem, as Memcached UDP clients
are using unique identifiers (added to their get requests) to
correlate between Memcached requests and responses, and are
not validating the source IP address of the response packet.

Finally, an additional rule per hot key is added to the switch
for capturing set requests for hot keys (update). These rules
action is set to duplicate the packet and forward it to the
MBalancer application in addition to the original Memcached
server; note that this rule contains the original Memcached
server destination (further explained in section IV-C). We note
that, unlike get operations, set operations typically use TCP,
and therefore, their destination addresses cannot be simply
rewritten as before.

The total number of additional flow table entries is 2H +
n: one rule per hot key for get operation, one rule per hot
key for set operation, and additional group configuration that
requires buckets as the number of servers.

Multi-Switch SDN Network: In order to apply hot keys
redirection rules in an SDN network that contains multiple
switches, it is needed to place the rewrite rule only once at
each path between each client and Memcached server. Then,
the packet should be marked (with one bit) in order to avoid
loops. Several methods have been proposed to cope with such
issues in multi-switch SDN networks [16, 17] and can be also
applied in our case.

C. MBalancer Application Tasks

MBalancer decides which are the H hot keys according to a
monitoring information. It then decides if it should interfere
with the regular Memcached activity. If so, it performs hot
keys duplication to the Memcached servers and configures the
flow table in the switch.

MBalancer application performs hot keys duplication using
a Memcached client running within the MBalancer applica-
tion. This client is configured to perform an explicit set
operation to each of the relevant servers. The value of the



Fig. 9. Load-balanced packet flow in SDN switch

hot keys is taken from the original Memcached server the key
is stored in.4

As mentioned before MBalancer application is notified
whenever a set operation for a hot key occurs and gets a
copy of the packet. Then, it initiates a set operation to all
relevant Memcached servers but the original one.5

D. MBalancer with More than One Group
As mentioned before, MBalancer partitions the Memcached

servers to G groups of n/G servers each. For G > 1, first a
group is selected and then the hot key is duplicated to all the
servers in this group. Notice that the load resulting from hot
keys is the same for all servers within a group. Therefore,
upon adding a hot key, the selected group is naturally the one
with the least such load. MBalancer’s data plane is changed
to support G groups and not one, and forwarding the hot key
to the right group in its corresponding rule. Because each
Memcached server is in only one group, the total number of
rules (2H + n) is unchanged. On the other hand, the memory
(in the Memcached servers) used for duplicating hot keys is
reduced by a factor of G.

Figure 10 compares the imbalance factor when using more
than one group. Notice that the values for G = 1 and G = 2
are indistinguishable in this setting, implying one can save
half of the memory overhead for free. For larger G, there is
some imbalance factor penalty that decreases as the number
of servers (or, equivalently, the size of the groups) increases.

E. P4 Implementation
P4 switches [5] parse packet fields according to user defined

protocols and process packets using user defined pipeline of
field matches and modifications. Our P4 program extends a
simple router with the ability to parse a simplified version
of memcached UDP packets and extract the queried key.
Then, that key is matched against a list of heavy keys, which
are configured externally. Requests to heavy keys are then
balanced between a list of servers in a round robin manner.

Specifically, this is done by adding two tables to the simple
router base program. The first table contains the heavy keys

4In arbitrary web application architecture, the value of a key can be a
database record, or a computation result which might not be a database record.
Thus, the value is taken from the Memcached server and not directly from
the database.

5As the hot key rule that matches the original set operation contains also
the original destination address, it will not be matched with the set operations
initiated by MBalancer application, and therefore, will not creates loops.
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Fig. 10. The imbalance factor as a function of the number of servers, for
different number of MBalancer groups. All settings use H = 10 hot keys out
of 1000 keys.

and is matched to the memcached key of the packet. Upon a
match, it increases a register that counts how many such heavy
key matches were seen so far. The second table contains the
list of servers. The current register value (as a metadata field)
is used in order to choose which server to send the request,
thus achieving round robin semantics.

Selecting the server can be done in two ways: (a) using
exact match of register value so register size is a-priori defined
according to the number of servers; or (b) the second table uses
ternary patterns to map the first k-bits of the register to one
of the 2k servers. While the second option is more expensive
in terms of performance, it allows flexible scaling of servers.
In both cases, since the register values increased by one for
each packet and overlaps to zero when overflowed, we get a
round robin load balancing over the servers. Note that heavy
keys can be configured on the fly (by adding records to the
first table), while the load-balancing system and memcached
clients/servers are still working.

We have compiled the P4 program using the p4factory
framework [25] and have tested it with Mininet. Figure 11
depicts an example of the configuration code that corresponds
to the tables presented in Figure 9. Main parts of the source
code are provided in Appendix B.

We note that our P4 program uses mostly stateless oper-
ations (i.e., operations that only read or write packet fields).



a d d e n t r y memcached match 0 x67 : 6 5 : 7 4 : 2 0 : 6 6 : 7 2 : 6 f : 6 e : 7 4 : 2 d : 7 0 : 6 1 : 6 7 : 6 5 : 2 d : . . . s c a t t e r
a d d e n t r y memcached match 0x6 7 : 6 5 : 7 4 : 2 0 : 6 2 : 6 5 : 7 3 : 7 4 : 2 d : 7 3 : 6 5 : 6 c : 6 c : 6 5 : 7 2 : 0 d : 0 a s c a t t e r
a d d e n t r y s e l e c t h e a v y d e s t 0 s e t d e s t 1 0 . 0 . 0 . 1
a d d e n t r y s e l e c t h e a v y d e s t 1 s e t d e s t 1 0 . 0 . 0 . 2
a d d e n t r y s e l e c t h e a v y d e s t 2 s e t d e s t 1 0 . 0 . 0 . 3
a d d e n t r y s e l e c t h e a v y d e s t 3 s e t d e s t 1 0 . 0 . 0 . 4

Fig. 11. A configuration example that corresponds to the tables shown in Figure 9. The following commands can be applied using the pd_cli.py tool
which is part of the p4factory framework.

The only stateful operation we have is needed to maintain a
single counter (or, if one than one more group is used, a single
counter per group). As discussed in [30] (and for the stateless
operations, even in [6]), our program is feasible in today’s
technology and can run in hardware line rate.

V. EXPERIMENTAL RESULTS

In this section we present the results of an experiment
we have conducted over an SDN network. We have used
64 memcached clients, running on 2 servers that issued get
requests for 1000 keys to two Memcached servers, which
stored values of 100KB size.6 We note that as the number of
keys increases, MBalancer perfroms better (cf. Figures 2(a)
and 7). The clients and the servers were connected to a single
switch using a 1GBit/s interface. We used a NoviKit 250 SDN
switch with payload matching capabilities7. The prototype of
the MBalancer application was implemented in Python, as a
Ryu [29] SDN controller application.

The get requests were issued over UDP, with a timeout
of 1 second. In common web server implementations, get
requests are blocking until a response has been received; only
then another request is made. Thus, in our configuration if
a web sever did not receive a response from Memcached it
waited for 1 second before issuing the second request.

We ran an experiment with over 100,000 get requests
100 times. Since we had only two Memcached severs, we
used a skewed hash function in order to create settings with
different imbalance factors (recall that as the number of servers
increases, the imbalance factor decreases). Figure 12 shows the
effect of the imbalance factor on the (normalized) throughput,
while Figure 13 shows the effect on latency. All experiments
run with H = 10 and G = 1 (which in our case is only
1MB extra RAM). Clearly, it shows a significant boost in
performance, matching the results of Section III.

Moreover, as expected, the (normalized) throughput matches
the imbalance factor. This is because the clients do not
continue to the next request until a response for the previous
request is received. Thus, the loaded servers become the
system bottleneck and have a high impact on the throughput.

VI. CONCLUSION

In this paper, we presented MBalancer: an efficient frame-
work for solving Memcached’s hot keys problem by efficiently

6We have used only two Memcached servers due to a limitation of
equipment in our lab.

7We note that while Memcached’s maximum key size is 256 bytes long,
NoviKit 250 switch payload matching capabilities supports only keys up to
80 bytes long.

Fig. 12. The average (normalized) throughput with and without MBalancer.
The vertical line is the normalized throughput of the servers with minimum
and maximum load.

Fig. 13. The average latency with and without MBalancer. The vertical line
is the values of the servers with minimum and maximum average latency.

load balancing its requests. We note that an SDN-based load-
balancing was introduced in several works such as HULA [18],
B4 [15], and SWAN [12]. These works focus on centralized
load balancing for wide area network connecting their data
center (namely, load balancing traffic routes for traffic engi-
neering). In this work, on the other hand, we deal with specific
(distributed) application and have control on the endpoints of



the traffic (i.e., we can change the mapping of keys to servers
and can duplicate keys).

On a broader perspective, MBalancer demonstrates the
ability of switches and routers in SDN environment to solve
problems that were traditionally done by middleboxes (namely,
in our case, load balancers and proxies). Especially as con-
temporary switches and routers can look at the payload of the
packet and are able to modify the packet before forwarding
it, we believe that it is important to investigate the fine
line between having middleboxes as separate entities and
delegating middlebox capabilities to the switches (which exist
in the network anyway). We note that our solution does not
require any change to existing switch hardware, and relies on
very limited payload matching capabilities (namely, in fixed
location in the L7 header). We note that several other works
calls for application-aware data-plane [22], where extensions
to OpenVSwitch (OVS) are suggested to support even more
sophisticated operations (e.g., even adding DPI module to
OpenVSwitch, as was suggested in [7]). Similar payload
matching capabilities were also used in [33] to improve
performance of YouTube streaming using SDN.
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APPENDIX A
ANALYTICAL MODEL

In this appendix we give some more details about the
analysis of the hot keys problem using a balls and bins model.
Specifically, we analyze the expected maximum load to a
server considering the following model: requests are made to
N distinct keys where keys are requested according to a key



weight distribution D = {wk}i∈[N ], such that
∑

i∈[N ] wk = 1
and wk ≥ wk+1 (i.e., wk is the weight of the k-heaviest key).
Each key is hashed to one out of n servers, and all requests
to that key are sent to that server.

We observe that this model can be approximated using the
weighted balls into bins games model [3], which considers m
balls with weights {wk}i∈[N ] uniformly thrown into n bins.
In case all weights are one then the heaviest bin is with high
probablity loaded with m/n + Θ

(√
m log n/n

)
balls (and

total weight) [27]. For the general case, the maximum loaded
bin is at least
maxi∈[N ]({wk}) higher than the average bin [4].

Considering the Zipf key distribution with parameter α =
1, the (normalized) weight of the k-heaviest key is wk :=

1
k
∑N

k=1
1
k

, which can be approximated by wk := 1
k lnN . When

considered as weights of N balls and considering the n servers
as bins in a balls-into-bins game, we get that the maximum
loaded server has weight of 1

lnN more than the average which
is 1

n .
In order to compare this to the maximum load in the uniform

key distribution (wk := 1
N ), we use the maximum load in the

all one weight balls-into-bins game (with N balls and n bins)
and we factor it by 1

N . We get 1/n + Θ(1) ·
√
logn√
N

√
n

. When
considering the gap from the average ( 1

n ), this is asymptoti-
cally lower than in the Zipf case, i.e., Θ(1) ·

√
logn√
N

√
n
<< 1

lnN

when n or N are big enough.
As we mentioned before, these bounds are only asymptotic

and are not tight. Real-life behavior of hot keys under various
variables was presented through simulations in Section III.

APPENDIX B
P4 SOURCE CODE

A. Memcached Message Header Definitions

# d e f i n e MEMCACHED KEY SIZE 128

h e a d e r t y p e memcached udp frame h e a d e r t {
f i e l d s {

r e q u e s t I D : 1 6 ;
seqNum : 1 6 ;
to ta lDa tagramsNum : 1 6 ;
r e s e r v e d : 1 6 ;

}
}

h e a d e r t y p e memcached s imple f rame t {
f i e l d s {

command3chars : 2 4 ;
s p a c e : 8 ;
key : MEMCACHED KEY SIZE;

}
}

B. Memcache Packet Parsing Configurations

h e a d e r memcached udp frame header t
memcached udp frame header ;

h e a d e r memcached s imple f rame t
memcached simple frame ;

p a r s e r parse memcached udp frame{
e x t r a c t ( memcached udp frame header ) ;
re turn parse memcached s imple f rame ;

}

p a r s e r pa r se memcached s imple f rame{
e x t r a c t ( memcached simple frame ) ;
re turn i n g r e s s ;

}

h e a d e r udp t udp ;

p a r s e r p a r s e u d p {
e x t r a c t ( udp ) ;
re turn parse memcached udp frame ;

}

C. Control Program Extension

# d e f i n e SELECTOR TYPE e x a c t
// e i t h e r e x a c t o r t e r n a r y

# d e f i n e REG WIDTH 1
// if e x a c t t h e n log2 ( s e rve r s num )

h e a d e r t y p e memcached metada ta t {
f i e l d s {

s e l e c t o r : REG WIDTH;
}

}

r e g i s t e r h e a v y r e q s {
wid th : REG WIDTH;
i n s t a n c e c o u n t : 1 ;

}

m e t a d a t a memcached metada ta t
memcached metadata ;

a c t i o n s c a t t e r ( ) {
r e g i s t e r r e a d

( memcached metadata . s e l e c t o r ,
heavy reqs , 0 ) ;

a d d t o f i e l d
( memcached metadata . s e l e c t o r , 1 ) ;

r e g i s t e r w r i t e ( heavy reqs , 0 ,
memcached metadata . s e l e c t o r ) ;

}

t a b l e memcached match {
r e a d s {

memcached simple frame . command3chars
: e x a c t ;

memcached simple frame . key : e x a c t ;
}
a c t i o n s {

s c a t t e r ;
}
s i z e : 1024 ;

}

t a b l e s e l e c t h e a v y d e s t {
r e a d s {

memcached metadata . s e l e c t o r
: SELECTOR TYPE ;

}
a c t i o n s {

s e t d e s t ;
}
s i z e : 1024 ;

}


