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Abstract. In this paper we describe an approach in creating private network 
overlays in user-space to support the dynamic creation of personal clusters on-
demand.   These personal clusters are created by submitting job proxies to High 
Performance Computing (HPC) clusters.  Job proxies contribute CPU resources 
back to the personal cluster when they eventually run, allowing application jobs 
to execute on them in a system call virtualized run-time environment.  The 
virtualized run-time environment enables additional personal cluster-wide 
services to be interposed, including a private network overlay instantiated for 
each personal cluster created.  The interposed private network overlay allows 
the personal clusters to tunnel IP traffic thorough gateway nodes at each 
contributing HPC cluster site in order to provision resources across private 
networks, survive transient network outages, support critical services like 
distributed filesystems, and in some cases, improve network transfer throughput 
across the wide-area network.   This paper describes our design and 
implementation strategy, and concludes with some general guiding principles to 
aid other projects of a similar nature.  

Keywords: High performance computing, resource management, cluster 
computing, overlay networks. 

1   Introduction 

We describe our experience in implementing a user-space private network overlay 
across High Performance Computing (HPC) clusters to support a TeraGrid production 
software system called MyCluster [1][2].    

TeraGrid is a multi-year, multi-million dollar, NSF funded project to build the 
world’s largest HPC cyberinfrastructure for open scientific research [3].  The project 
currently links nine resource provider sites across the continental United States, 
providing in aggregate over 200 teraflops of compute resource and four petabytes of 
online disk storage.  Resources on the TeraGrid include HPC clusters, visualization 
clusters, and online data collections, accessible through a 30 Gbps wide-area network 
(WAN) backbone.   

MyCluster is a system for provisioning resources from distributed HPC sites into 
personal clusters created on-demand.  These personal clusters can be created on a per-



user, per-experiment, basis, allowing them to be used as job containers for 
experiments conducted within a personalized computing laboratory.   In 2006, the 
system was used to acquire over 800,000 CPUs for researchers on the TeraGrid to 
support computational experiments across a broad range of scientific disciplines 
[5][6].   

The MyCluster system provisions resources for building personal clusters by 
deploying semi-autonomous agents at each HPC site.  These semi-autonomous 
agents, reacting to local and global load conditions, submit and manage job proxies 
through the local scheduler at each HPC site.  Job proxies then contribute CPUs back 
to the personal clusters when they are run by the local scheduler.  Job proxies also 
allow application jobs, submitted into the personal cluster, to execute in a system call 
virtualized run-time environment where additional cluster-wide services are 
interposed in user-space.  

MyCluster enables users to select a commodity job management system to 
aggregate the provisioned CPU resources into their personal clusters.  Job 
management systems that are supported, in various stages of prototype to production 
form, include Condor [7][8], Sun Grid Engine (SGE) [10] and OpenPBS [9].   Users 
therefore benefit from using a single, well-known interface to interact with their jobs 
across the heterogeneous clusters on the TeraGrid.  Users also benefit from the ability 
to reuse the plethora of tools that have been developed for these systems over the 
years.   

Finally, MyCluster is a completely user-space system, with no requirement for 
administrator privilege for deployment.  This choice allows the system deployment 
model to easily scale, allowing it to aggregate any HPC cluster accessible across the 
internet.  A user can simply invoke a self-installer at a site, boot-strap a personal 
version of the system, and enable the provisioning of resources from that site for 
computational experiments.   

Within the context of the MyCluster project, we have been developing a system for 
building private network overlays across HPC clusters to enable the seamless creation 
of personal clusters.  Like MyCluster, the system is deployable in user-space, without 
administrator privilege.  It allows the creation of a class B network, enabling compute 
nodes in internal networks to acquire a virtual IP address, advertise it, and exchange 
messages between each other using the standard BSD network socket interface.  
Programs do not have to be recompiled to use the network overlay.  Our system 
transparently tunnels IP (TCP and UDP) traffic through a series of packet relays in the 
overlay to deliver message packets between addresses in the private network.   

The network overlay instills some critical properties to the MyCluster system.   
First, the network overlay enables MyCluster to provision resources from HPC 
clusters with compute nodes in internal networks, allowing its deployment on most 
HPC cluster configurations.   Second, the network overlay allows MyCluster to 
survive transient WAN outages, providing increased quality of service guarantees for 
long running experiments executing in the personal clusters.  Third, the network 
overlay allows the WAN distributed filesystem XUFS [4] to be deployed within the 
personal cluster.  This allows jobs running in the personal cluster to transparently 
access files from the submission directory across remote sites, emulating the shared 
filesystem in a real cluster.  Fourth, in some cases, the network overlay improves 



transfer throughput across the WAN, enabling more efficient bulk data transfers 
across remote sites.   

The rest of this paper will be as follows.  Section 2 compares our work against 
other similar projects described in the literature.  Section 3 describes the design and 
implementation of our network overlay in detail.  In particular, it describes the 
mechanisms used to transparently interpose our overlay behavior into unmodified 
applications, the algorithm used to provide fault-tolerance to applications using our 
overlay, an optional kernel patch to improve the potential performance of one version 
of our system, and a brief overview of how a distributed filesystem is enabled by our 
overlay.  Section 4 describes the experimental evaluation of our network overlay on 
the local area network (LAN) and on the TeraGrid WAN.  It also describes some 
apparent anomalies in our experimental results, and determines their cause.  The 
section also examines how much overhead is introduced to HPC applications running 
in our virtualized run-time environment.   Finally, section 5 derives some important 
guiding principles from our experience, and concludes this paper.   

 

2   RELATED WORK 

MyCluster creates personal clusters using resources across the WAN.  It is 
therefore related to the projects like Cluster-On-Demand (COD) [12][13], VioClusters 
[14], In-VIRGO [15], WOW [16] and Virtual Workspaces [17].   In particular, 
VioClusters, InVirgo and WOW also create network overlays using the technologies 
VIOLIN [26], Virtuoso [24][25], and IPOP [27] respectively.  

At the risk of over simplifying, these systems adopt the same basic approach of 
instantiating a system virtual machine with its network device bridged to a TAP 
device, configured in promiscuous mode, on the host computer.  Marshalling 
processes on the host computer then forward Ethernet frames from the TAP device, 
originating from the system virtual machine, to the external network as UDP packets 
or, more interestingly, as packets to a P2P overlay like Brunet [29].   Conversely, un-
marshalling processes on the host computer forward Ethernet frames it receives from 
the external network back to the TAP device into the system virtual machine.    

The use of system virtual machines provides many useful properties to these 
projects.  In particular, system virtual machines ensure resource, fault and security 
isolation between applications running on the same server.  These isolation properties 
are important in IT hosting environments and infrastructures like PlanetLab [28] 
where multiple applications may be consolidated on the same server hardware. 
System virtual machines also offer the opportunity for users to ensure a correct 
operating system environment for their running jobs.  This guarantees some level of 
quality of service, in terms of expected operating system environment, when jobs run.  
Our system however does not use system virtual machines for a number of reasons. 

The first reason why we do not use system virtual machines is because the isolation 
properties offered by them are not as compelling a reason for their use in HPC 
clusters.  This is because running jobs are already naturally resource isolated by the 
job schedulers on HPC clusters.  These job schedulers fairly allocate time and space 



on the cluster nodes to jobs requesting them.   Thus, for the period of time when the 
job runs, no other users are consuming resources on the same nodes.   Also, HPC jobs 
are user-level processes that do not require kernel modifications, i.e. the installation of 
kernel modules.  Unlike IT hosting environments where applications with special 
kernel module requirements may cause crashes and affect other running applications 
on the same server, HPC jobs run on dedicated compute nodes in isolation from other 
jobs in the cluster.  Thus, a fault in a HPC job does not affect other running jobs in a 
cluster.  Finally, the compute nodes in many HPC clusters are within private 
networks, completely isolated from the corporate and external network.  Also, these 
nodes are re-imaged on a weekly or bi-weekly basis.  Thus compute nodes already 
offer good security isolation.   

The second reason why we do not use system virtual machines is because of the 
finely tuned execution environments in HPC clusters.  HPC clusters have many 
software packages that are compiled and configured by HPC specialist to run well at 
the site.  Also, these HPC clusters have operating system environments that are 
configured to reduce phenomena like operating system jitter [11], and to function well 
with internal components like the high-speed interconnect and parallel filesystem.  
For example, the IBM GPFS [30] and Lustre [31] filesystems on many HPC clusters 
work with only a small subset of Linux kernel versions which need to be further 
patched with vendor-specific modifications.  These site-specific requirements 
severely restrict the choice of operating systems that can be instantiated by the user 
anyway.     

The third reason why we do not use system virtual machines is because they often 
require the pre-installation of administrator-level components like virtual machine 
monitors, and/or hypervisors.  Even with type II virtual machine monitors [18] (e.g. 
VMWare Workstation and User-Mode-Linux) setting up external networking for 
these virtual machines require bridge devices like TUN/TAP to be set up and 
configured in promiscuous mode.  These actions require administrator permission, 
limiting the broad applicability of the approach only to sites that have agreed to 
deploy the appropriate configuration. 

The fourth reason why we do not use system virtual machines is because each 
virtual machine instance requires a root filesystem image to boot.  Root filesystem 
images are typically at least 500 megabytes in size, and this needs to be distributed 
across the WAN and replicated for every virtual machine instance created.  For large 
HPC computational runs, there could be many thousands of virtual machines in use, 
requiring the replication and management of multiple gigabytes of image files. 

Our network overlay project is also related to other tools that support IP traffic 
tunneling between private networks and the WAN.  These tools include SOCKS [19], 
GCB [22], OpenSSH, OpenVPN [20] and PPTP [21].  All these tools have at least 
one deficiency which prevented their use in our system.  SOCKS does not allow 
connections from an external network to a node in a private address space, while GCB 
assumes that the node in the private address space has at least outbound external 
network connectivity in order to operate correctly.  In many cluster configurations, 
compute nodes have no external network connectivity in any direction.   Also, 
OpenSSH, OpenVPN and PPTP represent point-to-point solutions, i.e. from a client to 
a gateway node.  They do not easily cater for the scenario our network overlay 
supports, i.e. multiple nodes behind multiple gateways joining a private network 



infrastructure, without requiring extensive scripting and additional coding effort.  
Also, all the above technologies do not assign virtual IP addresses to the compute 
nodes in the private network.  This is needed to prevent addressing conflicts for nodes 
from multiple internal networks. 

Realm-Specific IP (RSIP) [23] is an experimental IETF proposal that is very 
similar to our network overlay solution.  RSIP allows nodes in a private address space 
to register and temporarily lease a public IP address from a RSIP gateway.  These 
nodes can then advertise their addresses and have external connections to them 
relayed through the RSIP gateway.  There are however a number of problems with 
RSIP.  First RSIP it is not widely implemented.  It is intended as a replacement for 
NAT, but this has not occurred.  Second, RSIP leases public IP addresses to the nodes 
in the private address space.  This approach limits the number of available addresses 
that can be used. 

3   DESIGN AND IMPLEMENTATION 

3.1   MyCluster Overview 

MyCluster builds Condor, SGE or OpenPBS clusters when a user creates a virtual 
login session.  Within this virtual login session, users can submit, monitor and 
manage jobs through a single job management interface, emulating the experience of 
a traditional cluster login session.  Fig 1 shows an example of a SGE virtual login 
session. 

 

 
Fig 1. Formatted snapshot of a SGE virtual login session. 

A high level overview of the MyCluster processes relevant to the discussion in our 
paper is shown in Fig 2.  When a user first starts a virtual login session, the system 
remotely spawns a proxy manager at the head node of each of the clusters 
contributing resources to the session.  These proxy managers submit and manager job 



proxies to the local scheduler at the site.  When the local scheduler runs the job proxy, 
it starts the job starter daemon for the job management system selected for the 
session, i.e. Condor, SGE or OpenPBS.  The job starter daemon then registers back to 
the master processes at the job submission host across the WAN.  Jobs submitted to 
the personal cluster can then be dispatched to the newly registered job starter, with the 
user seeing an expanding and shrinking cluster as these job starter daemons register 
and terminate over time.   

 

 
Fig 2.   MyCluster process architecture overview 

3.2   Private Network Overlay Architecture 

The MyCluster system requires the provisioned compute nodes in a virtual login 
session to have full bi-directional access to the external network.  This is to allow the 
job starter to register and accept jobs from the job management master processes in 
the personal cluster.  Many of the TeraGrid clusters have compute nodes with full 
network connectivity to the TeraGrid WAN, and thus MyCluster is easily supported 
on these systems.   

However, to enable MyCluster to be deployed on HPC clusters with the more 
traditional configuration where compute node are within a private network, a network 
overlay has been implemented to enable external network connectivity for these job 
starters.    

The network overlay we have implemented allows a private class B network to be 
deployed, instantiated, and destroyed by user–level processes, requiring no 
administrator privilege, pre-installed virtual machine or outbound WAN connectivity 
for the compute nodes.  Using interposition methods, our solution overrides the socket 
system calls in the application process to allow connections between privately 
assigned class B IP addresses to be tunneled through a series of subnet routers.  These 
subnet routers run as user-level processes and are strategically located at the head (or 
some gateway) node of the clusters with access to the external network.   

Subnet routers initialize their internal route tables by reading a route table file 
.uvpn_route_<id> created for each virtual network instance.  This file specifies, 
for a particular session, the subnet to which the host cluster belongs and the contact 
addresses for routers of other subnets in the network overlay. 

Fig 3 shows the augmented MyCluster process architecture with the network 
overlay support for routing IP traffic between compute nodes provisioned by a virtual 



login session.  When a user starts a virtual login session, each host cluster is allocated 
a subnet in a virtual class B network and a subnet router is spawned at the head node.  
Each node provisioned by a job proxy is then assigned a virtual IP address in the 
subnet, with the home router (at the cluster head node) keeping a database of real to 
virtual IP address mapping.   

 

Fig 3. MyCluster process architecture with a network overlay 

When the application process in a job proxy, i.e. the job starter, invokes the 
connect() system call to an address within the private network, a series of 
connections are made to establish an IP packet relay path between the source and 
destination addresses.  First, the interposed connect() makes a connection to the 
home router and sends a connection header containing the source and destination 
address end-points associated with the desired virtual connection.   The format of the 
connection header is shown in Fig 4.   

 

Fig 4. Network overlay connection header 

The home router then searches its route table for the location of the peer router 
responsible for the subnet associated with the virtual destination address.  A 
connection is then made to the peer router and the connection header forwarded.    
The peer router, on receiving the connection header, looks up the real IP address 
associated with the virtual destination address, and makes a connection to this real 
address.  The connection header is then forwarded to the destination process, which 
then stores the information contained in the connection header for future reference. 

When the relay path is finally created from the home router, through the peer 
router, to the real IP address, the connect() call returns the socket descriptor for 
this relay.  Equivalently, the accept() call, which is also interposed at the 
destination, returns the socket descriptor for the other end of this relay.  This relay 
connection simulates a dedicated leased-line, allowing the processes at both ends to 
issue send (or write) and recv (or read) calls to exchange bytes between them.   
If a process decides to query information associated with the socket connection, we 



interpose the getsockname() and getpeername() calls to return the 
information associated with the virtual connection, instead of information associated 
with the real connection to the home routers. 

3.3   Interposition Mechanisms 

The system supports two mechanisms for interposing our network overlay 
functionality into the BSD socket call interface.  The first uses the UNIX shared 
object preloading mechanism available in most UNIX variants.  For example, on 
Linux this involves defining the location of a shared object in the LD_PRELOAD 
environment variable.  This shared object will then be used by the linker to override 
the system shared library implementation of the socket interface, allowing our overlay 
behavior to be interposed.  

Table 1.  Interposed socket system calls 

PRELOAD PTRACE 

Connection-less based protocols 
sendto, recvfrom sendto, recvfrom 

Connection based protocols 
connect, accept connect, accept 

Shadow socket management 
 socket, listen, bind, 

setsockopt 

Connection information 
getsockname, 
getpeername 

getsockname, 
getpeername 

Connection termination 
close close 

Shadow socket duplicate tracing 
 dup, dup2, fctnl, fork 

 
The shared library preloading mechanism however only works on dynamic linked 

executables. Furthermore, some UNIX variants, in particular AIX, do not support the 
preloading mechanism. To remedy this, we provide an alternative mechanism to 
interpose our overlay functionality.  This alternative mechanism uses the UNIX ptrace 
debugging interface.  The ptrace interface allows a parent process to monitor the 
execution of its children processes, allowing system calls in the children processes to 
be traced and modified by manipulating the CPU architecture registers prior to and 
after their invocation.  

The socket calls interposed by the two mechanisms are shown in Table 1.  The 
preloading mechanism interposes the connect() and accept() calls to support 



the creation of the virtual connection relay for connection based protocols.   For 
connection-less protocols, the sendto() and recvfrom() calls are also 
interposed.  The getsockname() and getpeername() calls are interposed to 
return the correct information about the virtual connection as explained before.  
Finally, the close() system call is interposed to allow the managed termination of 
virtual connections. 

The preloading mechanism allows our system to directly query and manipulate 
socket descriptors in the interposed application. Interposing the overlay functionality 
using the ptrace mechanism however requires additional effort.  The ptrace 
monitoring process runs in a separate process image, making querying and 
manipulating socket descriptors in the monitored application process difficult.   

To overcome this difficulty, our strategy for the ptrace mechanism is to implement 
the overlay functionality in the parent monitoring process itself.  Overlay connections 
are established between shadow sockets in the ptrace monitoring processes that 
exactly mirror the sockets created in the application processes.  Fig 5 illustrates the 
basic idea.   

 
Fig 5. Shadow sockets negotiate relay connection between ptrace parent processes 

For every successful socket() invocation in the interposed application process, 
the ptrace monitoring process also creates an equivalent shadow socket.  Subsequent 
calls to bind(), listen(), and setsockopt() on a socket in the application 
process causes the same action to be performed on its associated shadow socket in the 
ptrace monitoring process.    

To avoid clashes in the local network port namespace, the application requested 
port number for the bind() call on the original socket is replaced with a free port in 
the range [51000, 52000]. Only the shadow socket is allowed to bind to the 
application requested port number instead.    Note in particular that the shadow socket 
at the receiving peer is now set to listen to the application requested port instead of 
the original socket.  To avoid confusing the user application, the getsockname() 
call is interposed to return the application requested port for the original socket when 
it is invoked.  

When a TCP connection is initiated in a network overlay using the ptrace 
mechanism, the connecting application process is redirected to connect to a 
dynamically created relay thread in the monitoring parent.   The shadow socket that is 
associated with the original socket then creates the virtual connection relay to the 
monitoring parent at the receiving peer as described before.  The monitoring parent at 
the receiver peer then connects to the socket in the application process which is 
listening on the alternative port we had previously assigned it to.   



Messages to/from the virtual connection are then routed through the additional 
relay thread in the monitoring parent to/from the subnet routers.  The information 
contained in the connection header for the virtual connection is maintained in the 
monitoring parent at either end-point, and the getpeername() and 
getsockname() calls in the application are interposed to return this information as 
necessary. 

3.3.1   Tracing duplicate socket descriptors 
In order to properly terminate virtual connections, the ptrace mechanism also needs 

to closely trace socket descriptors that are duplicated within and across processes.  To 
do this, our network overlay system also traces the dup(), dup2(), fcntl() and 
fork() system call.  For the fork() call in particular, our system will check if 
any shadow sockets has the FD_CLOEXEC flag set.  If it is not set, the socket 
descriptor is expected to be duplicated in the new process.   

When a socket descriptor is duplicated, we increment a reference count to a 
structure record we maintain for each shadow socket.  Subsequent close() calls on 
the duplicated socket descriptor decrements this shared reference count.  When the 
reference count reaches 0, the shadow socket is then closed, and any associated virtual 
connection terminated. 

3.4   Tolerating WAN Outages 

An important benefit of creating our network overlay is the WAN fault tolerant 
properties it instills to the end-points in the virtual connection.  The IP packet relay 
created by our network overlay effectively isolates the connected application 
processes at either end-points from the less reliable WAN.  When a network outage 
causes the connection between peer subnet routers to be temporarily disconnected, 
this disconnection is not propagated to the end-points.   

To prevent the lose of in-flight messages during a WAN outage, Fig 6 details the 
WAN recovery algorithm used in our network overlay.  Messages that are sent from 
the application to the subnet router are immediately forwarded to the destination 
socket connected to a peer subnet router in the connection relay.  If the forwarding is 
successful, a count s_bytes is incremented with the number of bytes sent, while at 
the destination peer subnet router, the count r_bytes is incremented with the 
number of bytes received.  The message itself is also appended to a circular buffer of 
sent messages.  The size of this circular buffer is equal to the size of the socket’s 
internal send buffer size, i.e. SO_SNDBUF.     

If the subnet router fails to forward an application message, the message is 
appended to an unsent message file and the subnet router periodically (every 5 
minutes) attempts to reconnect with the peer subnet router in the connection relay.   

When the connection with the peer subnet router is re-established, a hand-shake is 
performed to ensure recovery of any lost in-flight data.  First, the peer router sends its 
r_bytes count to the reconnecting router.  Second, the reconnecting router 
compares this against its s_bytes count.  Third, if the s_bytes value is larger 
then the received r_bytes value, the reconnecting router sends s_bytes-



r_bytes bytes from the circular buffer of sent messages.  Fourth, the reconnecting 
router then forwards the content of the unsent message file to the peer router, after 
which the connection relay resets back to its original fault-free state.   

  

 
Fig 6. WAN outage recovery algorithm 

3.5   Personal Global File Namespaces 

The network overlay allows compute nodes provisioned in the virtual login session to 
communicate with the submission workstation from which the personal cluster is 
created.  An important collateral benefit is that this provides the ability for compute 
nodes, provisioned from an internal private network, to mount the XUFS distributed 
filesystem enabling jobs running on them to access files from the submission 
directory.  XUFS allows the submission directory to be mounted in user-space and, 
like our network overlay, can be deployed, instantiated and destroyed without 
administrator privilege.  Also, similar to our network overlay solution, XUFS uses 
interposition mechanism to allow this transparent remote access to files and 
directories.  More details about XUFS can be found in our prior publications [3]. 

3.6   “ptrace is slow” 

In adopting the ptrace debugging mechanism as one method of imposing our 
network overlay functional into the socket interface, we have often encountered the 
comment “ptrace is slow”.  This is usually accompanied by anecdotal stories 
supporting the claim.  Later in section 4.4, we examine the overhead of running a 
collection of HPC benchmarks representing different workload types in our ptrace 
interposed environment.  We will see later that for many HPC workloads this 
assertion is not necessarily true.  



In this section we look at the degenerate case where a program’s execution time is 
dominated by many repeated system calls.  An example of such a degenerate case is a 
program whose only task is reading and writing a very large file using very small 
read/write message buffers.  Later we show in section 4.1 an example of such a 
degenerate case in one of our scenarios in the experimental evaluation of the TCP 
throughput of our network overlay solution   

In these degenerate cases, the ptrace mechanism is expected to introduce large 
overheads.   This is because the ptrace mechanism causes the operating system to stop 
the application process every time a system call is invoked.  This allows the 
monitoring parent process to examine and modify the execution of the application as 
necessary.  Furthermore, this stop-start behavior occurs twice for every system calls 
invoked in the application process; once prior to a system call invocation and once 
after it has been completed by the operating system.   

We have implemented an optimization to the ptrace mechanism in Linux to allow 
the monitoring process to selectively decide what system calls are of interest to it.  
For example, our network overlay mechanism is only interested in a subset of the 
socket system calls.  Often repeated system calls like send(), write(), recv(), 
and read() do not need to be interposed by our system.  This design choice is 
deliberate to ensure we introduce as little overhead to the original application as 
possible.   

The optimization we have implemented in Linux introduces a new 
PTRACE_SYSCALL_MASK option to the ptrace system call.  We allow the 
monitoring process to use a bit-mask data structure to selectively set the bits 
associated with system calls of interest to it.  The monitoring process then uses this 
bit-mask as the input parameter to the ptrace() system call when the 
PTRACE_SYSCALL_MASK option is used.  The ptrace mechanism then only stops 
the application processes when a system call defined in this bit-mask is invoked.   A 
code fragment illustrating how this option is used by a monitoring process who is 
only interested in the open() system call is shown below: 

scall_set syscall_mask; 
 
SC_ZERO(&syscall_mask); 
SC_SET(__NR_open, &syscall_mask); 
ptrace(PTRACE_SYSCALL_MASK,pid,&syscall_mask,__NR_open+1); 

We have implemented this ptrace enhancement in the Linux kernel version 2.6.16 
[32].  We show in our experimental evaluation section later that this improves the 
performance in all our scenarios when comparing the TCP connection throughput 
performance in our network overlay against the native socket connection throughput.   
We are encouraged by this, and also by the fact that this option is already under 
discussion by the mainline Linux development community, albeit in a different 
implementation version [33]. 



4   EXPERIMENTAL EVALUATION 

4.1   Local area network TCP throughput evaluation 

In this section, we describe results from experiments comparing the TCP transfer 
throughput of a native connection versus a connection through the proposed network 
overlay on a local area network (LAN).   The experiments were conducted between 
two Linux 2.6.16 X86_64 hosts connected through a 100 Mbs switch.  Each host was 
designated a subnet, with a subnet router running on each.  For all experiments, the 
TCP throughput was measured using NETPERF [34].  Fig 7 illustrates the LAN 
experiment setup for the network overlay. 

 
Fig 7.  LAN experiment setup for the network overlay. 

Table 2 shows the TCP throughput on the LAN using a native TCP socket 
connection versus a connection made through the network overlay using the 
preloading mechanism.   The network overlay connection shows no degradation in 
throughput performance compared to the native connection. 

Table 2. TCP throughput (Mbs) of native connection versus connection 
through the overlay using the preload mechanism 

Send 
size 
(bytes) 

100 200 300 400 500 600 700 800 900 1000 

Native  93.95 94.03 94.03 94.03 94.03 94.03 93.99 94.02 94.03 94.02 

preload 94.2 94.25 94.3 94.27 94.31 94.28 94.28 94.3 94.29 94.3 

 
Fig 8 shows the TCP throughput on the LAN using a native TCP socket connection 

versus a connection made through the network overlay using the ptrace mechanism.  
The experiment show the throughput performance degrading considerably for small 
send sizes.  This experiment demonstrates the degenerate case expounded on in 
section 3.6.  For small send sizes, many more send() system calls are invoked, 
causing the application process to be stopped much more frequently then when large 
send sizes are used.    
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Fig 8.  TCP throughput (Mbs) of native connection versus network overlay 

connection using the ptrace mechanism 

Table 3 shows the TCP throughput on the LAN using a native socket connection 
versus a connection made through the network overlay using the ptrace mechanism 
with the PTRACE_SYSCALL_MASK enhancement enabled.  We see that the 
network overlay connection shows no degradation in throughput. 

Table 3. TCP throughput (Mbs) of native connection versus connection 
through the overlay using the ptrace mechanism (PTRACE_SYSCALL_MASK 
enhancement enabled) 

Send size 
(bytes) 

100 200 300 400 500 600 700 800 900 1000 

Native 93.95 94.03 94.03 94.03 94.03 94.03 03.99 94.02 94.03 94.02 

Ptrace+enh 94.29 94.28 94.3 94.28 94.28 94.31 94.3 94.3 94.29 04.3 

4.2   Wide area network TCP throughput evaluation 

In this section, we describe results from experiments comparing the TeraGrid 
WAN TCP transfer throughput of a native connection versus that of a connection 
through our network overlay.  The experiments were conducted between an SDSC 
cluster compute-node and the NCSA cluster head node, with the network overlay 
subnet routers deployed at the cluster head nodes.  All IP traffic was tunneled through 
the firewall at each site using one of the free ports in the range [50000,51000] open 
for traffic between the two sites.  For all experiments, the TCP throughput was 
measured using NETPERF.  Fig 9 illustrates the experimental setup. The 
PTRACE_SYSCALL_MASK ptrace option was not tested in the experiments in this 
section because we did not have to the opportunity to patch the running kernels at 
these sites.        



 
Fig 9.  TeraGrid WAN experimental setup for the network overlay. 

Fig 10 shows the TCP throughput on the TeraGrid WAN using a native connection 
versus connections through the network overlay using the different interposition 
mechanisms. The TCP throughput through the network overlay show no perceptible 
overhead, except for the degenerate case for small send sizes when the ptrace 
interposition mechanism is used.  The throughput in the network overlay using the 
ptrace mechanism shows a 21% degradation in performance for the 100 byte send size 
scenario.  However, we note that because of the lower bandwidth of the WAN, this 
degradation is not as pronounced as that observed in the LAN experiments. 
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Fig 10. TCP throughput of native connection versus network overlay connections 

between NCSA and SDSC. 

4.3   TCP throughput anomaly 

An experiment was conducted on the TeraGrid WAN between TACC and NCSA 
with the setup similar to Fig 9, except with the SDSC cluster replaced with the TACC 
cluster.  Fig 11 shows the TCP throughput of a native connection and a network 
overlay connection between a TACC cluster compute-node and the NCSA cluster 
head node.    The network overlay configuration tunnels the TCP connection through 
a relay between subnet routers located at the TACC and NCSA cluster head nodes.  
Surprisingly, the results show a 500% improvement in the TCP throughput using the 
network overlay compared to the native TCP socket connection. 

After some investigation, this apparent anomaly was explained by the different 
network device configurations at the compute and head nodes on the TACC cluster.  
The TACC cluster compute nodes had their network device MTU (Maximum 
Transmission Unit) set to the default 1500.   This MTU value is optimized for the 
LAN rather than the WAN, because the network device was also used for mounting 
the internal NFS (network file system) home directories on the compute node.   



However, the TACC cluster head node had its network device MTU set to 9000, 
optimized for sending jumbo packets across the WAN.  Therefore, rerouting IP traffic 
through the head node improved the TCP throughput performance across the WAN 
significantly.   

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Send Size (bytes)

Th
ro

ug
hp

ut
 (M

bs
)

native
VPN

 
Fig 11.  TCP throughput of native connection versus network overlay connection 

between TACC and NCSA. 

4.4 Execution overhead 

In this section, we investigate the overhead introduced when HPC applications are 
executed in the system call virtualized environment where the network overlay and 
distributed filesystem (XUFS) services are interposed.   

Fig 12 (a) and (b) show the run-time of the applications in the NAS [35] and 
BioBench [36] benchmarks respectively.  We ran the benchmarks in our virtualized 
environment and compared the run-times when executed natively.  All benchmarks 
were run on a Linux 2.6.16 kernel X86_64 host with one gigabyte of memory. 

Most of the benchmark applications show no perceptible overhead when executed 
in our system call virtualized run-time environment.  Only the FASTA application in 
the BioBench benchmark exhibited a 19% degradation in performance when executed 
in the ptrace interposed environment.   
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Fig 12.  Run-times of NAS (a) and BioBench (b) benchmarks in the system call 
virtualized run time environments 

All the benchmark applications, except FASTA, have system call profiles similar 
to the BLASTP system call invocation histogram shown in Fig 13 (a).  The BLASTP 
profile illustrates the read, compute, and write phases common to most HPC 



applications.  The profile also shows that the majority of the run time is dominated by 
the compute cycle.  

In contrast, for FASTA we see a more evenly spread system call invocation profile 
across the entire run-time of the application, as shown in Fig 13 (b).  But because of 
the compute bound nature of FASTA, this mitigates the overhead introduced by the 
ptrace mechanism to only 19% in our case.   
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Fig 13.  Histogram of system call frequency for BLASTP (a) and FASTA (b) 

5 CONCLUSIONS 

We have described our mechanism for providing a network overlay to support the 
creation of personal clusters in the MyCluster system.  The system is unique in 
providing a completely user-space solution, requiring no pre-installation of virtual 
machine monitors or hypervisors.  Furthermore, our solution provides additional 
fault-tolerance to application processes communicating over the WAN and throughput 
benefits in certain deployment scenarios.   

Some general principles can be derived from our experience to help guide other 
projects building similar widely distributed system call virtualized run-time 
environments.  

First, user-space interposition mechanisms do not provide the properties of 
resource, fault, and security isolation, but they are highly appropriate for augmenting 
the properties of the native system to enable more productivity for the user.  Consider 
if the required level of isolation guarantees is already satisfied by the system, and if 
needed, consider the range of alternative mechanisms for providing this, such as QoS 
schedulers [38], kernel-level interposition techniques [39][40] or full system virtual 
machines.   For example, MyCluster currently provides isolation properties through 
personal cluster containers with HPC cluster QoS schedulers assigning dedicated 
resources for each instance.   

Second, shared object preloading is a very efficient user-space interposition 
mechanism and should be used where possible to implement overlay behavior.  
Where appropriate this can be used in conjunction with other techniques for providing 
isolation properties to the system. 



Third, the ptrace debugging interface is an acceptable mechanism to interpose 
overlay behavior for compute-bound applications.  For non compute-bound 
applications which frequently invoke system calls, high execution overheads can be 
expected.  However, new ptrace system call options like 
PTRACE_SYSCALL_MASK can be implemented to mitigate this.  

Fourth, WAN fault-tolerant properties can be transparently added into network 
applications by isolating the connection end-points from the WAN in an overlay.  
This can be used to ensure legacy applications, originally developed for the LAN, are 
able to survive transient network outages in the less reliable WAN.  

Finally, network bulk transfer throughput across a WAN can be improved by 
routing network connections through WAN optimized intermediaries in an overlay.  
The cost of implementing additional connection hops can sometimes be more then 
compensated by the gain in transfer throughput. 
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