
Creating Private Network Overlays for High
Performance Scientific Computing

Edward Walker1

1 Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas

78758, USA
ewalker@tacc.utexas.edu

Abstract. In this paper we describe an approach in creating private network
overlays in user-space to support the dynamic creation of personal clusters on-
demand. These personal clusters are created by submitting job proxies to High
Performance Computing (HPC) clusters. Job proxies contribute CPU resources
back to the personal cluster when they eventually run, allowing application jobs
to execute on them in a system call virtualized run-time environment. The
virtualized run-time environment enables additional personal cluster-wide
services to be interposed, including a private network overlay instantiated for
each personal cluster created. The interposed private network overlay allows
the personal clusters to tunnel IP traffic thorough gateway nodes at each
contributing HPC cluster site in order to provision resources across private
networks, survive transient network outages, support critical services like
distributed filesystems, and in some cases, improve network transfer throughput
across the wide-area network. This paper describes our design and
implementation strategy, and concludes with some general guiding principles to
aid other projects of a similar nature.

Keywords: High performance computing, resource management, cluster
computing, overlay networks.

1 Introduction

We describe our experience in implementing a user-space private network overlay
across High Performance Computing (HPC) clusters to support a TeraGrid production
software system called MyCluster [1][2].

TeraGrid is a multi-year, multi-million dollar, NSF funded project to build the
world’s largest HPC cyberinfrastructure for open scientific research [3]. The project
currently links nine resource provider sites across the continental United States,
providing in aggregate over 200 teraflops of compute resource and four petabytes of
online disk storage. Resources on the TeraGrid include HPC clusters, visualization
clusters, and online data collections, accessible through a 30 Gbps wide-area network
(WAN) backbone.

MyCluster is a system for provisioning resources from distributed HPC sites into
personal clusters created on-demand. These personal clusters can be created on a per-

user, per-experiment, basis, allowing them to be used as job containers for
experiments conducted within a personalized computing laboratory. In 2006, the
system was used to acquire over 800,000 CPUs for researchers on the TeraGrid to
support computational experiments across a broad range of scientific disciplines
[5][6].

The MyCluster system provisions resources for building personal clusters by
deploying semi-autonomous agents at each HPC site. These semi-autonomous
agents, reacting to local and global load conditions, submit and manage job proxies
through the local scheduler at each HPC site. Job proxies then contribute CPUs back
to the personal clusters when they are run by the local scheduler. Job proxies also
allow application jobs, submitted into the personal cluster, to execute in a system call
virtualized run-time environment where additional cluster-wide services are
interposed in user-space.

MyCluster enables users to select a commodity job management system to
aggregate the provisioned CPU resources into their personal clusters. Job
management systems that are supported, in various stages of prototype to production
form, include Condor [7][8], Sun Grid Engine (SGE) [10] and OpenPBS [9]. Users
therefore benefit from using a single, well-known interface to interact with their jobs
across the heterogeneous clusters on the TeraGrid. Users also benefit from the ability
to reuse the plethora of tools that have been developed for these systems over the
years.

Finally, MyCluster is a completely user-space system, with no requirement for
administrator privilege for deployment. This choice allows the system deployment
model to easily scale, allowing it to aggregate any HPC cluster accessible across the
internet. A user can simply invoke a self-installer at a site, boot-strap a personal
version of the system, and enable the provisioning of resources from that site for
computational experiments.

Within the context of the MyCluster project, we have been developing a system for
building private network overlays across HPC clusters to enable the seamless creation
of personal clusters. Like MyCluster, the system is deployable in user-space, without
administrator privilege. It allows the creation of a class B network, enabling compute
nodes in internal networks to acquire a virtual IP address, advertise it, and exchange
messages between each other using the standard BSD network socket interface.
Programs do not have to be recompiled to use the network overlay. Our system
transparently tunnels IP (TCP and UDP) traffic through a series of packet relays in the
overlay to deliver message packets between addresses in the private network.

The network overlay instills some critical properties to the MyCluster system.
First, the network overlay enables MyCluster to provision resources from HPC
clusters with compute nodes in internal networks, allowing its deployment on most
HPC cluster configurations. Second, the network overlay allows MyCluster to
survive transient WAN outages, providing increased quality of service guarantees for
long running experiments executing in the personal clusters. Third, the network
overlay allows the WAN distributed filesystem XUFS [4] to be deployed within the
personal cluster. This allows jobs running in the personal cluster to transparently
access files from the submission directory across remote sites, emulating the shared
filesystem in a real cluster. Fourth, in some cases, the network overlay improves

transfer throughput across the WAN, enabling more efficient bulk data transfers
across remote sites.

The rest of this paper will be as follows. Section 2 compares our work against
other similar projects described in the literature. Section 3 describes the design and
implementation of our network overlay in detail. In particular, it describes the
mechanisms used to transparently interpose our overlay behavior into unmodified
applications, the algorithm used to provide fault-tolerance to applications using our
overlay, an optional kernel patch to improve the potential performance of one version
of our system, and a brief overview of how a distributed filesystem is enabled by our
overlay. Section 4 describes the experimental evaluation of our network overlay on
the local area network (LAN) and on the TeraGrid WAN. It also describes some
apparent anomalies in our experimental results, and determines their cause. The
section also examines how much overhead is introduced to HPC applications running
in our virtualized run-time environment. Finally, section 5 derives some important
guiding principles from our experience, and concludes this paper.

2 RELATED WORK

MyCluster creates personal clusters using resources across the WAN. It is
therefore related to the projects like Cluster-On-Demand (COD) [12][13], VioClusters
[14], In-VIRGO [15], WOW [16] and Virtual Workspaces [17]. In particular,
VioClusters, InVirgo and WOW also create network overlays using the technologies
VIOLIN [26], Virtuoso [24][25], and IPOP [27] respectively.

At the risk of over simplifying, these systems adopt the same basic approach of
instantiating a system virtual machine with its network device bridged to a TAP
device, configured in promiscuous mode, on the host computer. Marshalling
processes on the host computer then forward Ethernet frames from the TAP device,
originating from the system virtual machine, to the external network as UDP packets
or, more interestingly, as packets to a P2P overlay like Brunet [29]. Conversely, un-
marshalling processes on the host computer forward Ethernet frames it receives from
the external network back to the TAP device into the system virtual machine.

The use of system virtual machines provides many useful properties to these
projects. In particular, system virtual machines ensure resource, fault and security
isolation between applications running on the same server. These isolation properties
are important in IT hosting environments and infrastructures like PlanetLab [28]
where multiple applications may be consolidated on the same server hardware.
System virtual machines also offer the opportunity for users to ensure a correct
operating system environment for their running jobs. This guarantees some level of
quality of service, in terms of expected operating system environment, when jobs run.
Our system however does not use system virtual machines for a number of reasons.

The first reason why we do not use system virtual machines is because the isolation
properties offered by them are not as compelling a reason for their use in HPC
clusters. This is because running jobs are already naturally resource isolated by the
job schedulers on HPC clusters. These job schedulers fairly allocate time and space

on the cluster nodes to jobs requesting them. Thus, for the period of time when the
job runs, no other users are consuming resources on the same nodes. Also, HPC jobs
are user-level processes that do not require kernel modifications, i.e. the installation of
kernel modules. Unlike IT hosting environments where applications with special
kernel module requirements may cause crashes and affect other running applications
on the same server, HPC jobs run on dedicated compute nodes in isolation from other
jobs in the cluster. Thus, a fault in a HPC job does not affect other running jobs in a
cluster. Finally, the compute nodes in many HPC clusters are within private
networks, completely isolated from the corporate and external network. Also, these
nodes are re-imaged on a weekly or bi-weekly basis. Thus compute nodes already
offer good security isolation.

The second reason why we do not use system virtual machines is because of the
finely tuned execution environments in HPC clusters. HPC clusters have many
software packages that are compiled and configured by HPC specialist to run well at
the site. Also, these HPC clusters have operating system environments that are
configured to reduce phenomena like operating system jitter [11], and to function well
with internal components like the high-speed interconnect and parallel filesystem.
For example, the IBM GPFS [30] and Lustre [31] filesystems on many HPC clusters
work with only a small subset of Linux kernel versions which need to be further
patched with vendor-specific modifications. These site-specific requirements
severely restrict the choice of operating systems that can be instantiated by the user
anyway.

The third reason why we do not use system virtual machines is because they often
require the pre-installation of administrator-level components like virtual machine
monitors, and/or hypervisors. Even with type II virtual machine monitors [18] (e.g.
VMWare Workstation and User-Mode-Linux) setting up external networking for
these virtual machines require bridge devices like TUN/TAP to be set up and
configured in promiscuous mode. These actions require administrator permission,
limiting the broad applicability of the approach only to sites that have agreed to
deploy the appropriate configuration.

The fourth reason why we do not use system virtual machines is because each
virtual machine instance requires a root filesystem image to boot. Root filesystem
images are typically at least 500 megabytes in size, and this needs to be distributed
across the WAN and replicated for every virtual machine instance created. For large
HPC computational runs, there could be many thousands of virtual machines in use,
requiring the replication and management of multiple gigabytes of image files.

Our network overlay project is also related to other tools that support IP traffic
tunneling between private networks and the WAN. These tools include SOCKS [19],
GCB [22], OpenSSH, OpenVPN [20] and PPTP [21]. All these tools have at least
one deficiency which prevented their use in our system. SOCKS does not allow
connections from an external network to a node in a private address space, while GCB
assumes that the node in the private address space has at least outbound external
network connectivity in order to operate correctly. In many cluster configurations,
compute nodes have no external network connectivity in any direction. Also,
OpenSSH, OpenVPN and PPTP represent point-to-point solutions, i.e. from a client to
a gateway node. They do not easily cater for the scenario our network overlay
supports, i.e. multiple nodes behind multiple gateways joining a private network

infrastructure, without requiring extensive scripting and additional coding effort.
Also, all the above technologies do not assign virtual IP addresses to the compute
nodes in the private network. This is needed to prevent addressing conflicts for nodes
from multiple internal networks.

Realm-Specific IP (RSIP) [23] is an experimental IETF proposal that is very
similar to our network overlay solution. RSIP allows nodes in a private address space
to register and temporarily lease a public IP address from a RSIP gateway. These
nodes can then advertise their addresses and have external connections to them
relayed through the RSIP gateway. There are however a number of problems with
RSIP. First RSIP it is not widely implemented. It is intended as a replacement for
NAT, but this has not occurred. Second, RSIP leases public IP addresses to the nodes
in the private address space. This approach limits the number of available addresses
that can be used.

3 DESIGN AND IMPLEMENTATION

3.1 MyCluster Overview

MyCluster builds Condor, SGE or OpenPBS clusters when a user creates a virtual
login session. Within this virtual login session, users can submit, monitor and
manage jobs through a single job management interface, emulating the experience of
a traditional cluster login session. Fig 1 shows an example of a SGE virtual login
session.

Fig 1. Formatted snapshot of a SGE virtual login session.

A high level overview of the MyCluster processes relevant to the discussion in our
paper is shown in Fig 2. When a user first starts a virtual login session, the system
remotely spawns a proxy manager at the head node of each of the clusters
contributing resources to the session. These proxy managers submit and manager job

proxies to the local scheduler at the site. When the local scheduler runs the job proxy,
it starts the job starter daemon for the job management system selected for the
session, i.e. Condor, SGE or OpenPBS. The job starter daemon then registers back to
the master processes at the job submission host across the WAN. Jobs submitted to
the personal cluster can then be dispatched to the newly registered job starter, with the
user seeing an expanding and shrinking cluster as these job starter daemons register
and terminate over time.

Fig 2. MyCluster process architecture overview

3.2 Private Network Overlay Architecture

The MyCluster system requires the provisioned compute nodes in a virtual login
session to have full bi-directional access to the external network. This is to allow the
job starter to register and accept jobs from the job management master processes in
the personal cluster. Many of the TeraGrid clusters have compute nodes with full
network connectivity to the TeraGrid WAN, and thus MyCluster is easily supported
on these systems.

However, to enable MyCluster to be deployed on HPC clusters with the more
traditional configuration where compute node are within a private network, a network
overlay has been implemented to enable external network connectivity for these job
starters.

The network overlay we have implemented allows a private class B network to be
deployed, instantiated, and destroyed by user–level processes, requiring no
administrator privilege, pre-installed virtual machine or outbound WAN connectivity
for the compute nodes. Using interposition methods, our solution overrides the socket
system calls in the application process to allow connections between privately
assigned class B IP addresses to be tunneled through a series of subnet routers. These
subnet routers run as user-level processes and are strategically located at the head (or
some gateway) node of the clusters with access to the external network.

Subnet routers initialize their internal route tables by reading a route table file
.uvpn_route_<id> created for each virtual network instance. This file specifies,
for a particular session, the subnet to which the host cluster belongs and the contact
addresses for routers of other subnets in the network overlay.

Fig 3 shows the augmented MyCluster process architecture with the network
overlay support for routing IP traffic between compute nodes provisioned by a virtual

login session. When a user starts a virtual login session, each host cluster is allocated
a subnet in a virtual class B network and a subnet router is spawned at the head node.
Each node provisioned by a job proxy is then assigned a virtual IP address in the
subnet, with the home router (at the cluster head node) keeping a database of real to
virtual IP address mapping.

Fig 3. MyCluster process architecture with a network overlay

When the application process in a job proxy, i.e. the job starter, invokes the
connect() system call to an address within the private network, a series of
connections are made to establish an IP packet relay path between the source and
destination addresses. First, the interposed connect() makes a connection to the
home router and sends a connection header containing the source and destination
address end-points associated with the desired virtual connection. The format of the
connection header is shown in Fig 4.

Fig 4. Network overlay connection header

The home router then searches its route table for the location of the peer router
responsible for the subnet associated with the virtual destination address. A
connection is then made to the peer router and the connection header forwarded.
The peer router, on receiving the connection header, looks up the real IP address
associated with the virtual destination address, and makes a connection to this real
address. The connection header is then forwarded to the destination process, which
then stores the information contained in the connection header for future reference.

When the relay path is finally created from the home router, through the peer
router, to the real IP address, the connect() call returns the socket descriptor for
this relay. Equivalently, the accept() call, which is also interposed at the
destination, returns the socket descriptor for the other end of this relay. This relay
connection simulates a dedicated leased-line, allowing the processes at both ends to
issue send (or write) and recv (or read) calls to exchange bytes between them.
If a process decides to query information associated with the socket connection, we

interpose the getsockname() and getpeername() calls to return the
information associated with the virtual connection, instead of information associated
with the real connection to the home routers.

3.3 Interposition Mechanisms

The system supports two mechanisms for interposing our network overlay
functionality into the BSD socket call interface. The first uses the UNIX shared
object preloading mechanism available in most UNIX variants. For example, on
Linux this involves defining the location of a shared object in the LD_PRELOAD
environment variable. This shared object will then be used by the linker to override
the system shared library implementation of the socket interface, allowing our overlay
behavior to be interposed.

Table 1. Interposed socket system calls

PRELOAD PTRACE

Connection-less based protocols
sendto, recvfrom sendto, recvfrom

Connection based protocols
connect, accept connect, accept

Shadow socket management
 socket, listen, bind,

setsockopt

Connection information
getsockname,
getpeername

getsockname,
getpeername

Connection termination
close close

Shadow socket duplicate tracing
 dup, dup2, fctnl, fork

The shared library preloading mechanism however only works on dynamic linked

executables. Furthermore, some UNIX variants, in particular AIX, do not support the
preloading mechanism. To remedy this, we provide an alternative mechanism to
interpose our overlay functionality. This alternative mechanism uses the UNIX ptrace
debugging interface. The ptrace interface allows a parent process to monitor the
execution of its children processes, allowing system calls in the children processes to
be traced and modified by manipulating the CPU architecture registers prior to and
after their invocation.

The socket calls interposed by the two mechanisms are shown in Table 1. The
preloading mechanism interposes the connect() and accept() calls to support

the creation of the virtual connection relay for connection based protocols. For
connection-less protocols, the sendto() and recvfrom() calls are also
interposed. The getsockname() and getpeername() calls are interposed to
return the correct information about the virtual connection as explained before.
Finally, the close() system call is interposed to allow the managed termination of
virtual connections.

The preloading mechanism allows our system to directly query and manipulate
socket descriptors in the interposed application. Interposing the overlay functionality
using the ptrace mechanism however requires additional effort. The ptrace
monitoring process runs in a separate process image, making querying and
manipulating socket descriptors in the monitored application process difficult.

To overcome this difficulty, our strategy for the ptrace mechanism is to implement
the overlay functionality in the parent monitoring process itself. Overlay connections
are established between shadow sockets in the ptrace monitoring processes that
exactly mirror the sockets created in the application processes. Fig 5 illustrates the
basic idea.

Fig 5. Shadow sockets negotiate relay connection between ptrace parent processes

For every successful socket() invocation in the interposed application process,
the ptrace monitoring process also creates an equivalent shadow socket. Subsequent
calls to bind(), listen(), and setsockopt() on a socket in the application
process causes the same action to be performed on its associated shadow socket in the
ptrace monitoring process.

To avoid clashes in the local network port namespace, the application requested
port number for the bind() call on the original socket is replaced with a free port in
the range [51000, 52000]. Only the shadow socket is allowed to bind to the
application requested port number instead. Note in particular that the shadow socket
at the receiving peer is now set to listen to the application requested port instead of
the original socket. To avoid confusing the user application, the getsockname()
call is interposed to return the application requested port for the original socket when
it is invoked.

When a TCP connection is initiated in a network overlay using the ptrace
mechanism, the connecting application process is redirected to connect to a
dynamically created relay thread in the monitoring parent. The shadow socket that is
associated with the original socket then creates the virtual connection relay to the
monitoring parent at the receiving peer as described before. The monitoring parent at
the receiver peer then connects to the socket in the application process which is
listening on the alternative port we had previously assigned it to.

Messages to/from the virtual connection are then routed through the additional
relay thread in the monitoring parent to/from the subnet routers. The information
contained in the connection header for the virtual connection is maintained in the
monitoring parent at either end-point, and the getpeername() and
getsockname() calls in the application are interposed to return this information as
necessary.

3.3.1 Tracing duplicate socket descriptors
In order to properly terminate virtual connections, the ptrace mechanism also needs

to closely trace socket descriptors that are duplicated within and across processes. To
do this, our network overlay system also traces the dup(), dup2(), fcntl() and
fork() system call. For the fork() call in particular, our system will check if
any shadow sockets has the FD_CLOEXEC flag set. If it is not set, the socket
descriptor is expected to be duplicated in the new process.

When a socket descriptor is duplicated, we increment a reference count to a
structure record we maintain for each shadow socket. Subsequent close() calls on
the duplicated socket descriptor decrements this shared reference count. When the
reference count reaches 0, the shadow socket is then closed, and any associated virtual
connection terminated.

3.4 Tolerating WAN Outages

An important benefit of creating our network overlay is the WAN fault tolerant
properties it instills to the end-points in the virtual connection. The IP packet relay
created by our network overlay effectively isolates the connected application
processes at either end-points from the less reliable WAN. When a network outage
causes the connection between peer subnet routers to be temporarily disconnected,
this disconnection is not propagated to the end-points.

To prevent the lose of in-flight messages during a WAN outage, Fig 6 details the
WAN recovery algorithm used in our network overlay. Messages that are sent from
the application to the subnet router are immediately forwarded to the destination
socket connected to a peer subnet router in the connection relay. If the forwarding is
successful, a count s_bytes is incremented with the number of bytes sent, while at
the destination peer subnet router, the count r_bytes is incremented with the
number of bytes received. The message itself is also appended to a circular buffer of
sent messages. The size of this circular buffer is equal to the size of the socket’s
internal send buffer size, i.e. SO_SNDBUF.

If the subnet router fails to forward an application message, the message is
appended to an unsent message file and the subnet router periodically (every 5
minutes) attempts to reconnect with the peer subnet router in the connection relay.

When the connection with the peer subnet router is re-established, a hand-shake is
performed to ensure recovery of any lost in-flight data. First, the peer router sends its
r_bytes count to the reconnecting router. Second, the reconnecting router
compares this against its s_bytes count. Third, if the s_bytes value is larger
then the received r_bytes value, the reconnecting router sends s_bytes-

r_bytes bytes from the circular buffer of sent messages. Fourth, the reconnecting
router then forwards the content of the unsent message file to the peer router, after
which the connection relay resets back to its original fault-free state.

Fig 6. WAN outage recovery algorithm

3.5 Personal Global File Namespaces

The network overlay allows compute nodes provisioned in the virtual login session to
communicate with the submission workstation from which the personal cluster is
created. An important collateral benefit is that this provides the ability for compute
nodes, provisioned from an internal private network, to mount the XUFS distributed
filesystem enabling jobs running on them to access files from the submission
directory. XUFS allows the submission directory to be mounted in user-space and,
like our network overlay, can be deployed, instantiated and destroyed without
administrator privilege. Also, similar to our network overlay solution, XUFS uses
interposition mechanism to allow this transparent remote access to files and
directories. More details about XUFS can be found in our prior publications [3].

3.6 “ptrace is slow”

In adopting the ptrace debugging mechanism as one method of imposing our
network overlay functional into the socket interface, we have often encountered the
comment “ptrace is slow”. This is usually accompanied by anecdotal stories
supporting the claim. Later in section 4.4, we examine the overhead of running a
collection of HPC benchmarks representing different workload types in our ptrace
interposed environment. We will see later that for many HPC workloads this
assertion is not necessarily true.

In this section we look at the degenerate case where a program’s execution time is
dominated by many repeated system calls. An example of such a degenerate case is a
program whose only task is reading and writing a very large file using very small
read/write message buffers. Later we show in section 4.1 an example of such a
degenerate case in one of our scenarios in the experimental evaluation of the TCP
throughput of our network overlay solution

In these degenerate cases, the ptrace mechanism is expected to introduce large
overheads. This is because the ptrace mechanism causes the operating system to stop
the application process every time a system call is invoked. This allows the
monitoring parent process to examine and modify the execution of the application as
necessary. Furthermore, this stop-start behavior occurs twice for every system calls
invoked in the application process; once prior to a system call invocation and once
after it has been completed by the operating system.

We have implemented an optimization to the ptrace mechanism in Linux to allow
the monitoring process to selectively decide what system calls are of interest to it.
For example, our network overlay mechanism is only interested in a subset of the
socket system calls. Often repeated system calls like send(), write(), recv(),
and read() do not need to be interposed by our system. This design choice is
deliberate to ensure we introduce as little overhead to the original application as
possible.

The optimization we have implemented in Linux introduces a new
PTRACE_SYSCALL_MASK option to the ptrace system call. We allow the
monitoring process to use a bit-mask data structure to selectively set the bits
associated with system calls of interest to it. The monitoring process then uses this
bit-mask as the input parameter to the ptrace() system call when the
PTRACE_SYSCALL_MASK option is used. The ptrace mechanism then only stops
the application processes when a system call defined in this bit-mask is invoked. A
code fragment illustrating how this option is used by a monitoring process who is
only interested in the open() system call is shown below:

scall_set syscall_mask;

SC_ZERO(&syscall_mask);
SC_SET(__NR_open, &syscall_mask);
ptrace(PTRACE_SYSCALL_MASK,pid,&syscall_mask,__NR_open+1);

We have implemented this ptrace enhancement in the Linux kernel version 2.6.16
[32]. We show in our experimental evaluation section later that this improves the
performance in all our scenarios when comparing the TCP connection throughput
performance in our network overlay against the native socket connection throughput.
We are encouraged by this, and also by the fact that this option is already under
discussion by the mainline Linux development community, albeit in a different
implementation version [33].

4 EXPERIMENTAL EVALUATION

4.1 Local area network TCP throughput evaluation

In this section, we describe results from experiments comparing the TCP transfer
throughput of a native connection versus a connection through the proposed network
overlay on a local area network (LAN). The experiments were conducted between
two Linux 2.6.16 X86_64 hosts connected through a 100 Mbs switch. Each host was
designated a subnet, with a subnet router running on each. For all experiments, the
TCP throughput was measured using NETPERF [34]. Fig 7 illustrates the LAN
experiment setup for the network overlay.

Fig 7. LAN experiment setup for the network overlay.

Table 2 shows the TCP throughput on the LAN using a native TCP socket
connection versus a connection made through the network overlay using the
preloading mechanism. The network overlay connection shows no degradation in
throughput performance compared to the native connection.

Table 2. TCP throughput (Mbs) of native connection versus connection
through the overlay using the preload mechanism

Send
size
(bytes)

100 200 300 400 500 600 700 800 900 1000

Native 93.95 94.03 94.03 94.03 94.03 94.03 93.99 94.02 94.03 94.02

preload 94.2 94.25 94.3 94.27 94.31 94.28 94.28 94.3 94.29 94.3

Fig 8 shows the TCP throughput on the LAN using a native TCP socket connection

versus a connection made through the network overlay using the ptrace mechanism.
The experiment show the throughput performance degrading considerably for small
send sizes. This experiment demonstrates the degenerate case expounded on in
section 3.6. For small send sizes, many more send() system calls are invoked,
causing the application process to be stopped much more frequently then when large
send sizes are used.

0
10
20
30
40
50
60
70
80
90

100

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Send Size (bytes)

Th
ro

ug
hp

ut
 (M

bs
)

native
ptrace

Fig 8. TCP throughput (Mbs) of native connection versus network overlay

connection using the ptrace mechanism

Table 3 shows the TCP throughput on the LAN using a native socket connection
versus a connection made through the network overlay using the ptrace mechanism
with the PTRACE_SYSCALL_MASK enhancement enabled. We see that the
network overlay connection shows no degradation in throughput.

Table 3. TCP throughput (Mbs) of native connection versus connection
through the overlay using the ptrace mechanism (PTRACE_SYSCALL_MASK
enhancement enabled)

Send size
(bytes)

100 200 300 400 500 600 700 800 900 1000

Native 93.95 94.03 94.03 94.03 94.03 94.03 03.99 94.02 94.03 94.02

Ptrace+enh 94.29 94.28 94.3 94.28 94.28 94.31 94.3 94.3 94.29 04.3

4.2 Wide area network TCP throughput evaluation

In this section, we describe results from experiments comparing the TeraGrid
WAN TCP transfer throughput of a native connection versus that of a connection
through our network overlay. The experiments were conducted between an SDSC
cluster compute-node and the NCSA cluster head node, with the network overlay
subnet routers deployed at the cluster head nodes. All IP traffic was tunneled through
the firewall at each site using one of the free ports in the range [50000,51000] open
for traffic between the two sites. For all experiments, the TCP throughput was
measured using NETPERF. Fig 9 illustrates the experimental setup. The
PTRACE_SYSCALL_MASK ptrace option was not tested in the experiments in this
section because we did not have to the opportunity to patch the running kernels at
these sites.

Fig 9. TeraGrid WAN experimental setup for the network overlay.

Fig 10 shows the TCP throughput on the TeraGrid WAN using a native connection
versus connections through the network overlay using the different interposition
mechanisms. The TCP throughput through the network overlay show no perceptible
overhead, except for the degenerate case for small send sizes when the ptrace
interposition mechanism is used. The throughput in the network overlay using the
ptrace mechanism shows a 21% degradation in performance for the 100 byte send size
scenario. However, we note that because of the lower bandwidth of the WAN, this
degradation is not as pronounced as that observed in the LAN experiments.

15

20

25

100 200 300 400 500 600 700 800 900 1000

Send Size (bytes)

Th
ro

ug
hp

ut
 (M

bs
)

native
preload
ptrace

non-zero
origin

Fig 10. TCP throughput of native connection versus network overlay connections

between NCSA and SDSC.

4.3 TCP throughput anomaly

An experiment was conducted on the TeraGrid WAN between TACC and NCSA
with the setup similar to Fig 9, except with the SDSC cluster replaced with the TACC
cluster. Fig 11 shows the TCP throughput of a native connection and a network
overlay connection between a TACC cluster compute-node and the NCSA cluster
head node. The network overlay configuration tunnels the TCP connection through
a relay between subnet routers located at the TACC and NCSA cluster head nodes.
Surprisingly, the results show a 500% improvement in the TCP throughput using the
network overlay compared to the native TCP socket connection.

After some investigation, this apparent anomaly was explained by the different
network device configurations at the compute and head nodes on the TACC cluster.
The TACC cluster compute nodes had their network device MTU (Maximum
Transmission Unit) set to the default 1500. This MTU value is optimized for the
LAN rather than the WAN, because the network device was also used for mounting
the internal NFS (network file system) home directories on the compute node.

However, the TACC cluster head node had its network device MTU set to 9000,
optimized for sending jumbo packets across the WAN. Therefore, rerouting IP traffic
through the head node improved the TCP throughput performance across the WAN
significantly.

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

Send Size (bytes)

Th
ro

ug
hp

ut
 (M

bs
)

native
VPN

Fig 11. TCP throughput of native connection versus network overlay connection

between TACC and NCSA.

4.4 Execution overhead

In this section, we investigate the overhead introduced when HPC applications are
executed in the system call virtualized environment where the network overlay and
distributed filesystem (XUFS) services are interposed.

Fig 12 (a) and (b) show the run-time of the applications in the NAS [35] and
BioBench [36] benchmarks respectively. We ran the benchmarks in our virtualized
environment and compared the run-times when executed natively. All benchmarks
were run on a Linux 2.6.16 kernel X86_64 host with one gigabyte of memory.

Most of the benchmark applications show no perceptible overhead when executed
in our system call virtualized run-time environment. Only the FASTA application in
the BioBench benchmark exhibited a 19% degradation in performance when executed
in the ptrace interposed environment.

0
2
4
6
8

10
12
14
16
18

bt cg ep is lu mg sp

Ru
n-

tim
e

(m
in

s)

native ptrace preload ptrace-enh

0

5

10

15

20

25

30

35

40

mummer tigr clustalw hmmer blast phylip fasta

Ru
n-

tim
e

(m
in

s)

native ptrace preload pretrace-enh

(a) (b)

Fig 12. Run-times of NAS (a) and BioBench (b) benchmarks in the system call
virtualized run time environments

All the benchmark applications, except FASTA, have system call profiles similar
to the BLASTP system call invocation histogram shown in Fig 13 (a). The BLASTP
profile illustrates the read, compute, and write phases common to most HPC

applications. The profile also shows that the majority of the run time is dominated by
the compute cycle.

In contrast, for FASTA we see a more evenly spread system call invocation profile
across the entire run-time of the application, as shown in Fig 13 (b). But because of
the compute bound nature of FASTA, this mitigates the overhead introduced by the
ptrace mechanism to only 19% in our case.

BLASTP

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5 6 7 8

Time Buckets (32 secs)

FASTA

0

1000000

2000000

3000000

4000000

5000000

1 2 3 4 5 6 7 8

Time Buckets (256 secs)

(a) (b)

Fig 13. Histogram of system call frequency for BLASTP (a) and FASTA (b)

5 CONCLUSIONS

We have described our mechanism for providing a network overlay to support the
creation of personal clusters in the MyCluster system. The system is unique in
providing a completely user-space solution, requiring no pre-installation of virtual
machine monitors or hypervisors. Furthermore, our solution provides additional
fault-tolerance to application processes communicating over the WAN and throughput
benefits in certain deployment scenarios.

Some general principles can be derived from our experience to help guide other
projects building similar widely distributed system call virtualized run-time
environments.

First, user-space interposition mechanisms do not provide the properties of
resource, fault, and security isolation, but they are highly appropriate for augmenting
the properties of the native system to enable more productivity for the user. Consider
if the required level of isolation guarantees is already satisfied by the system, and if
needed, consider the range of alternative mechanisms for providing this, such as QoS
schedulers [38], kernel-level interposition techniques [39][40] or full system virtual
machines. For example, MyCluster currently provides isolation properties through
personal cluster containers with HPC cluster QoS schedulers assigning dedicated
resources for each instance.

Second, shared object preloading is a very efficient user-space interposition
mechanism and should be used where possible to implement overlay behavior.
Where appropriate this can be used in conjunction with other techniques for providing
isolation properties to the system.

Third, the ptrace debugging interface is an acceptable mechanism to interpose
overlay behavior for compute-bound applications. For non compute-bound
applications which frequently invoke system calls, high execution overheads can be
expected. However, new ptrace system call options like
PTRACE_SYSCALL_MASK can be implemented to mitigate this.

Fourth, WAN fault-tolerant properties can be transparently added into network
applications by isolating the connection end-points from the WAN in an overlay.
This can be used to ensure legacy applications, originally developed for the LAN, are
able to survive transient network outages in the less reliable WAN.

Finally, network bulk transfer throughput across a WAN can be improved by
routing network connections through WAN optimized intermediaries in an overlay.
The cost of implementing additional connection hops can sometimes be more then
compensated by the gain in transfer throughput.

References

[1] E. Walker, J. P. Gardner, V. Litvin, and E. L. Turner, “Personal Adaptive Clusters as Containers for
Scientific Jobs”, Cluster Computing, vol. 10(3), September 2007.

[2] E. Walker, J. P. Gardner, V. Litvin, and E. L. Turner, “Creating Adaptive Clusters in User-Space for
Managing Scientific Jobs in a Widely Distributed Environment”, in Proc. of IEEE Workshop on
Challenges of Large Applications in Distributed Environments (CLADE’2006), Paris, July 2006.

[3] NSF TeraGrid, http://www.teragrid.org
[4] E. Walker, “A Distributed File System for a Wide-Area High Performance Computing

Infrastructure”, in Proc. of the 3rd USENIX Workshop on Real, Large Distributed Systems
(WORLDS’06), Seattle, Nov 2006.

[5] E. Walker and C. Guiang, “Challenges in Executing Large Parameter Sweep Studies Across Widely
Distributed Computing Environments”, in Proc. of IEEE Workshop on Challenges of Large
Applications in Distributed Environments (CLADE’2007), Monterrey, CA, June 2007

[6] E. Walker, “How to Run A Million Jobs in Six Months on the NSF TeraGrid”, in Proc. of
TeraGrid’07, Madison, WI, June 2007.

[7] Condor, High Throughput Computing Environment, http://www.cs.wisc.edu/Condor/

[8] M. Litzkow, M. Livny, and M. Matka. Condor – A Hunter of Idle Workstations, In Proc. of the
International Conference of Distributed Computing Systems, pp. 104—111, June 1988.

[9] Portable Batch System, http://www.openpbs.org

[10] Sun Grid Engine, http://gridengine.sunsource.net/

[11] D. J. Kerbyson, S. Pakin, and F. Petrini, “The Case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q”, in Proc. of ACM/IEEE
Conference on High Performance Networking and Computing (SC03), Phoenix, Arizona, Nov. 15-
21, 2003.

[12] J. Chase, L. Grit, D. Irwin, J. Moore and S. Sprenkle, “Dynamic Virtual Clusters in a Grid Site
Manager”, in Proc. of the 12th Intl Symp on High Performance Distributed Computing (HPDC-12),
2003.

[13] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A. Yumerefendi and J. Chase, “Toward a Doctrine
of Containment: Grid Hosting with Adaptive Resource Control”, in Proc. Of the ACM/IEEE
Conference on High Performance Networking and Computing (SC06), Tampa, FL, Nov. 2006.

[14] P. Ruth, P. McGachey, X. Jiang, and D. Xu, “VioCluster: Virtualization for Dynamic Computational
Domains”, in Proc. of the IEEE International Conference on Cluster Computing (Cluster 2005),
Boston, MA, Sept. 2005.

[15] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M. Tsugawa, J.
Zhang, M. Zhao, L. Zhu, and X. Zhu, “From Virtualized Resources to Virtual Computing Grids: The
In-VIGO System”, Future Generation Computer Systems, 2004.

[16] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, “WOW: Self-Organizing Wide Area
Overlay Networks of Virtual Workstations”, in Proc. of the 15th IEEE Intl. Symp. On High
Performance Distributed Computing (HPDC-15), Paris, 2006.

[17] K. Keahey, K. Doering, and I. Foster, “From Sandbox to Playground: Dynamic Virtual Environments
in the Grid”, in Proc. of the 5th International Workshop in Grid Computing, 2004.

[18] R. Goldberg. Architectural Principles for Virtual Computer Systems. PhD thesis, Harvard University,
February 1973.

[19] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, “SOCKS Protocol Version 5”, IETF
RFC 1928, March 1996.

[20] OpenVPN, http://www.openvpn.net

[21] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn, “Point-to-point Tunneling
Protocol (PPTP)”, IETF RFC 2637, July 1999.

[22] S. Son and M. Livny, “Recovering Internet Symmetry in Distributed Computing”, in Proc. of the 3rd
Intl. Symp. On Cluster Computing and the Grid (CCGrid), Tokyo, Japan, May 2003.

[23] M. Borella, J. Lo, D. Grabelsky, G. Montenegro, “Realm Specific IP: Framework”, IETF RFC 2102,
July 2000.

[24] P. Dinda, A. Sundaraj, A. Gupta, “Dynamic Topology Adaption of Virtual Networks of Virtual
Machines”, in Proc. of the 7th Workshop on Languages, Compilers and Run-time Support for Scalable
Systems, Oct. 2004.

[25] A. Sundararaj and P. Dinda, “Towards Virtual Networks for Virtual Machine Grid Computing”, in
Proc. of the 3rd USENIX Virtual Machine Research and Technology Symposium, San Jose, CA, May
2004.

[26] X. Jiang and D. Xu, “Violin: Virtual Internetworking on Overlay Infrastructure”, in Proc. of the 2nd
International Symposium Of Parallel and Distributed Processing and Applications, Dec. 2004.

[27] A. Ganguly, A. Agrawal, P. Oscar Boykin, and R. Figueiredo, “IP Over P2P: Enabling Self-
Configuring Virtual IP Networks for Grid Computing”, in Proc. of the 20th IEEE Intl. Parallel and
Distributed Processing Symposium (IPDPS), Rhodes Island, Greece, 2006.

[28] PlanetLab, http://www.planet-lab.org/

[29] P. O. Boykin, J. Bridgewater, J. Kong, K. Lozev, B. Rezaei, and V. P. Roychowdhury. Brunet
software library, http://brunet.ee.ucla.edu/brunet/

[30] F. Schmuck, and R. Haskin, “GPFS: A Shared-Disk File System for Large Computing Clusters”, in
Proc. of the 1st USENIX Conference on File and Storage Technologies (FAST), Monterey, CA, 2002

[31] P. Schwan, “Lustre: Building a File System for 1,000-node Clusters”, in Proc. of Ottawa Linux
Symposium, 2003.

[32] PTRACE_SYSCALL_MASK Linux 2.6.16 patch,
http://www.tacc.utexas.edu/~ewalker/syscall_mask.patch

[33] “Virtual Time” posting, LWN.net, http://lwn.net/Articles/179829/

[34] NETPERF, http://www.netperf.org/netperf/

[35] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg, P.
Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga, “The
NAS Parallel Benchmarks”, RNR Technical Report, RNR-94-007, March 1994.

[36] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C. W. Tseng, and D. Yeung,
“BioBench: A Benchmark Suite of Bioinformatics Applications”, in Proc. of the 2005 IEEE Intl.
Symp. on Performance Analysis of Systems and Software (ISPASS 2005), Austin TX, March 2005.

[37] Globus Security Infrastructure, http://www.globus.org/toolkit/docs/4.0/security/

[38] C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A Survey of QoS Architectures”, Multimedia
Systems, vol. 6, no. 3, May 1998.

[39] R. Davoli, M. Goldweber, and L. Gardenghi, “UMView: View-OS implemented as a System Call
Virtual Machine”, in Poster at USENIX Operating System Design and Implementation (OSDI06),
2006, http://www.usenix.org/events/osdi06/posters/davoli.pdf

[40] S. Soltesz, H. Poltzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-based Operating
System Virtualization: A Scalable, High-performance Alternative to Hypervisors”, in Proc. of 2nd
ACM EuroSys Conference, Lisbon, Portugal, March 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

