ASYNCHRNOUS ARCHITECTURE FOR
SENSOR NETWORK NODES

Aurélien BUHRIG, Marc RENAUDIN, Dominique BARTHEL
TIMA Laboratory, CIS group, Grenoble, France {Aurélien.Buhrig, Marc.Renaudin} @imag.fr
France Telecom R&D - Meylan — France — Dominique.Barthel @francetelecom.com

Abstract: ‘We present an asynchronous software and hardware architecture specifically
suited for wireless sensor network nodes. To reduce power consumption
and/or increase performances, some blocks go into hardware. The whole
system is modelled using a unique asynchronous HDL before being
partitioned. The software part that is executed on an asynchronous processor is
then scheduled using a quasi-static scheduling and operates in an event-driven
way with reactive hardware through an interface controller. We use an
asynchronous analog to digital converter combined to a new approach in the
non-uniform signal processing theory to obtain an entire event-driven
platform. The use of asynchronous hardware allows to efficiently design a
fine-grained dynamic power consumption control mechanism controlling Vg4
(digital voltage scaling) and V,, (bulk biasing) in order to manage the
speed/power consumption trade-off and to go in a low-power idle mode state
with very few static leakage. Finally, to increase the lifetime of the nodes,
some scavenging techniques are added.

Key words: sensor network node, architecture, asynchronous, low-power, event-driven,
high level description, modeling.

1. INTRODUCTION

Ambient intelligence is getting more and more importance in nowadays
life and addresses a large panel of applications. This intelligence is closely
linked to the sensing of the environment that leads to the design of sensor
platforms that can be connected into wireless ad hoc networks. The possible

276 K. Al Agha, 1. Guérin Lassous and G. Pujolle

applications of sensor networks are numerous. Among them: home humidity
and temperature monitoring, seismic sensing in harsh environment,
movement detection and localization for the consumer electronic and
military purpose, analysis of chemical substance in a natural environment,
and so on.

Ad hoc networks, due to their intended support of "no-limit"
infrastructure-less communication, pose many significant new challenges in
comparison with traditional wireless networks. The improvements in
microelectronic technologies have made possible the design of small and
less consuming systems on chip, but the autonomy of such devices is still a
key issue. Indeed, these nodes are expected to sense the environment,
compute data and perform wireless communications while consuming as
little energy as possible, potentially under some application-imposed real-
time constraints. They have a limited embedded energy that consists in a
traditional battery to which it is possible to add a renewable energy source
(coming from vibrations[1], solar radiations [2] or RF power [3]).

In this context, energy saving is critical to operate the sensor network for
a long period of time. This work aims at minimizing this power consumption
at the node-level and we present in this paper our vision of such an ultra low-
power platform in which both software and hardware are designed in an
asynchronous and totally event-driven way to maximize the lifetime of the
nodes. As there is no switching activity when the circuit does not require to
perform any operation and since they allow easier dynamic power
management and are able to respond very quickly, asynchronous circuits are
ideal for sensor networks in which most of the time is spent waiting for
events on the radio interface, sensor or even timeouts from a standalone
timer.

In this paper, we give a new vision of the co-design of the
hardware/software architecture of sensor network nodes. This vision lies in
the adoption of a fully asynchronous event-driven system, especially well
suited to design for ultra low power. The nodes of the sensor network are
asynchronous systems (clock-less) in which all the processing chain,
software and hardware processes are event-driven.

The whole system is modeled using a single language or at least a single
representation. This common description, which is at the moment Petri Nets,
can be simulated and analyzed to allow an efficient co-design and an
efficient generation of the interfaces.

In order to save even more energy, a fine-grained power consumption
management is adopted. For confidentiality purpose, a low-power
cryptography operator can be used. Finally, if some applications require
dynamic hardware reconfiguration, the use of asynchronous FPGA is
considered.

Challenges in Ad Hoc Networking 277

2. CLASSICAL SENSOR NETWORK OS
COMPARISON AND LIMITATION

2.1 TinyOS vs general-purpose OS

An important problem to cope with is to make code execution efficient
by minimizing the operating system (OS) overhead without removing
traditional wireless-sensor network features. Traditional general-purpose
multitasking embedded OS were originally developed for the PC platform
and have been adapted to embedded systems. Those OS, even the most
embedded ones, are too general-purpose to be efficient and the context
switching generates expensive overhead that is tolerable for a fast and
unlimited energy PC platform or a powerful embedded processor but is not
acceptable for ultra low power embedded platforms.

A very interesting way to solve this problem is approached with TinyOS
developed at UC Berkeley [4]. TinyOS is a reactive OS that does not target a
broad range of general applications but only specific tasks for sensor
networks. It can be described as follow: external events that occur on the RF
or sensor interface propagate upward from the lowest layers till they are
handled by the upper ones in an asynchronous way between the different
blocks.

A performance and power consumption comparison between TinyOS and
the general-purpose operating system eCOS [5] is reported in [6]. The result
is that the use of TinyOS drastically reduces power consumption and
improves performances. Some features (such as virtual memory, dynamic
memory allocation, etc.) that are useless for sensor networks are not
implemented.

2.2 Limitations

The TinyOS architecture is good at reducing power consumption.
However we here-after highlight some important limitations of TinyOS [6]:
*]t would be advantageous for power consumption and/or performance to

implement some components of the application into hardware
¢ Those components could execute specific tasks whereas in TinyOS and

traditional operating systems all tasks go into software

There is no way to dispatch software tasks onto different resources

There is no global power-control mechanism; implementing dynamic

voltage scaling is a good way to reduce power consumption while

meeting the performance constraint but is hardly possible with TinyOS.

278 K. Al Agha, 1. Guérin Lassous and G. Pujolle

¢ Some events can be lost during treatment if the event queue is full.

23 Approach adopted

2.3.1 Overview

In our approach, we want to keep the advantages of TinyOS without its
drawbacks. In particular, we think that a major feature is to implement some
parts of the system into hardware. For example, if a CRC or a Viterbi
operator is needed to encode and decode messages, it is advantageously
integrated into hardware in order to reduce the power consumption that
would be engendered by the numerous computations performed by the
processor to execute equivalent software.

Furthermore, due to the reactive nature of the desired operating system
and applications, one expects the hardware part to be event-driven.
Therefore, we implement it using the asynchronous technology [7], also
known for its low-power consumption. The choice for this technology is
detailed in the next section and requires dedicated hardware/software
interfaces.

Finally, we add a global power-control mechanism, supported by a power
management unit implemented in software and hardware. This power
management is flexible enough to be applied at different granularity levels
according to the hardware processes and the node architectures.

23.2 Asynchronous technology

As mentioned previously, it is advantageous to implement some parts of
the system in hardware. We have chosen the asynchronous technology for
two main reasons.

Firstly, the asynchronous technologies allow an important power
consumption reduction. Indeed, asynchronous systems do not use any clock
and the synchronization between the different asynchronous operators is
performed by a request/acknowledgment protocol (handshaking protocol)
implemented locally as shown in Figure 1. Consequently, only the parts of
the circuit performing an operation have an activity. The rest of the circuit
consumes very little energy (only static leakage) and are immediately
woken-up when an event occurs on its inputs.

Challenges in Ad Hoc Networking 279

‘acknowledgement ‘admowiedgement ‘acknowledgement
— e
Asynchronous Asynchronous
operator operator

Data/ request Data/ request Data/request

Figure 1. Asynchronous principle

Secondly, due to the reactive nature of the software, it is interesting to go
further with the asynchronous architecture so that the whole system behaves
in a totally event-driven way. With such an architecture, an event (from the
radio interface for instance) will propagate between different asynchronous
blocks regardless of the software or hardware nature of the crossed blocks.
This communication type requires specifying a communication interface
between software and hardware. This interface is not as complex as an
interface between synchronous hardware and event-driven software.

233 Communications

The synchronous and asynchronous notions can be tricky and depends on
the context. Indeed, these notions apply at different levels (hardware
technology, communication specification, communication implementation).
At hardware technology level, an asynchronous system is a clock-less
system where the synchronization between two asynchronous blocks is
performed as mentioned previously. Figure 2 shows the four phases
protocol.

Data X valid o inbalid ,,X valid
1\
NN

|phase | phase 2 | phase 3| phase 4

L ant®
"

Eachange i Exchange i+

Figure 2. Four phases protocol

Therefore, in asynchronous technology, since both communicating
processes exchange information using requests and acknowledgements, both
are synchronized and hence the asynchronous hardware implements a
synchronous communication.

280 K. Al Agha, 1. Guérin Lassous and G. Pujolle

3. SOFTWARE ARCHITECTURE

3.1 Modelling of the whole system and partitioning

Both software and hardware have an identical asynchronous event-driven
architecture and this is very interesting to model the whole system and to
abstract the implementation of the processes. At top level, the system is
designed using a single concurrent description model. At the moment, this
description is done with an asynchronous HDL, the CHP (Communicating
Hardware Processes [8], derived from the CSP [9]). This HDL being not
very convenient to describe software and another description language
capable of being translated into Petri Nets will be used in the future.

The concurrent description of the system is then automatically translated
into Petri Nets [10] and each concurrent process of the high level description
is translated into a Petri Net.

The complete description of the system is obtained by the composition of
the Petri Nets of every top level processes are composed at the
communication level.

Once the system is described, the partitioning can occur according to
some criteria such as performance, power consumption (that can be
simulated and analyzed with adequate tools such as TAST [11] using the
Petri Net representation of the system) or modularity.

Finally, the software part is scheduled, whereas the hardware parts are
synthesized into gates using appropriate tools [11].

3.2 Scheduling

An important part of operating system overheads and hence power
consumption comes from the dynamic scheduling of the software tasks. In
dedicated software operating systems such as TinyOS [4], or in hardware OS
parts implemented in low-power processors such as SNAP [12] or bitSNAP
[13], the scheduling is ensured using a FIFO. In our case, we have chosen to
implement a static scheduling to cope with this problem. This scheduling is
found using an algorithm whose core is based on the algorithm proposed in
[14] and applied to the Petri Net model of the whole system. The limitations
of the algorithm proposed in [14] is that the communications cannot be
probed and are implemented with infinite FIFO. Our method does support
probing operation and does not assume infinite memory communication
channels.

Challenges in Ad Hoc Networking 281

4. HARDWARE FEATURES

4.1 CPU

As seen before, asynchronous hardware has an event-driven architecture
that allows the system to be clock-less and to reduce power consumption.
The class of asynchronous circuit we use to design the nodes is Quasi Delay
Insensitive (QDI) circuits. A QDI circuit behaves correctly regardless of the
delay of the gates and wires under the weak assumption of isochronic fork.
A fork (a wire that connects a sender to several receivers) is isochronic when
the delays between the sender and the receivers are about the same. This
architecture is data-driven. In other words, the asynchronous block is asleep
when no data comes in. As soon as a data is present on its input, the
hardware wakes up.

The processing unit is not defined yet. Enhanced versions of the
asynchronous 8-bit microcontroller MICA [15] or the 16-bit processor
ASPRO [16, 17] can be used as well as an asynchronous 32-bit RISC
processor currently under development. The data width can be selected to
enable the best power consumption/computational power trade-off for a
given sensor network.

4.2 Power management

A different way to make power savings is to use dynamic voltage scaling
(DVS) to control power consumption at run time. With synchronous circuits,
decreasing the voltage makes the signal transition slower to establish and
hence imposes a decrease of the clock frequency. Changing the clock
frequency introduces delay overhead due to the synchronization of the phase
lock loop (PLL) and extra power consumption. With asynchronous circuits,
modifying the voltage does not introduce any overhead. The speed of the
circuit changes on its own since the circuit behavior is not sensitive to the
rising and falling times of the signals (delay insensitivity).

So it is easy to add to the processor a hardware part that smoothly
manages power consumption. This power manager is able to increase or
decrease the supply voltage (V4q) of one or several parts of the system
according to the performances required. With the evolution of the
technologies, a more and more important part of the power consumption is
due to static leakage. To reduce the static leakage, we use a technique called
“back biasing” which consists in biasing the bulk to affect the transistors
threshold V1 [18]. The bulk biasing is a feature that is integrated to the

282 K. Al Agha, 1. Guérin Lassous and G. Pujolle

power management unit. Therefore this unit is able to control V44 and Vy, to
reduce power consumption, and this at different granularity levels. In
practice, the software is controlling the power management unit in order to
optimize the speed/power

According to the application, it is possible to define different policies.
For instance, if the node has to perform real time operation, one chooses the
power management to enable the application to meet the real time
constraints. On the contrary, if the node must have the longest lifetime as
possible, the speed will be chosen according to the power consumption and
the remaining battery energy.

4.3 Hardware-Software Interface

A controller is designed to operate correctly between software and
hardware tasks. This Hardware-Software Interface (HIS, Figure 3) will
manage communications between hardware and software in order to prevent
the microprocessor from being interrupted by each hardware bloc that would
generate software handler calls and extra power consumption. This
controller wakes up the microprocessor when a desired hardware event
income.

< Control

Sotvar PN
processes —2=—) Hsl . .

Figure 3. Hardware Software Interface Scheme

4.4 Signal processing chain - AADC

A new approach in the signal processing which leads to a significant
energy saving is to use an asynchronous analog to digital converter (AADC)
[19]. This one takes samples only if the sensed physical characteristic
changes more than a predefined quantum. The samples and the date are
saved altogether. This enables a saving on samples. Then a non uniform
sampling theory [20] is applied to the samples to take advantage of the
AADC. Such a converter is hence totally data driven.

As for the performances of such a method, for the same number of
points, the processing of the measures needs more computations than a
traditional ADC with classical signal theory. Nevertheless, since these

Challenges in Ad Hoc Networking 283

computations are performed on a smaller set of points, the computational
complexity is globally reduced. In comparison with traditional synchronous
ADC on a voice signal application, the computational complexity is reduced
by one order of magnitude by using asynchronous processing chain with non
uniform sampling theory [20].

S. CONCLUSION AND FUTURE WORK

This paper presents an entire event-driven platform for sensor networks.
This platform aims at drastically reducing power consumption thanks to the
reactivity of every parts of the system, from the analog to digital converter to
the radio frequency interface and through a data-driven asynchronous
processor executing software processes that communicates with hardware
with an interface controller (HSI). This platform is able to operate in a large
range of power supply making possible a fine-grained power consumption
management by controlling the voltage and the bias of the bulk.

Now, the asynchronous platform is specified and a first prototype is
being designed. Our future works will focus on the design of CAD tools in
order to describe the whole using system level language or model. Those
CAD tools will have to integrate features to help the designers to co-design
the system at best, taking into account the required performances and power
consumption.

Future work will also focuses on the modeling of performance
requirement of the software tasks after the scheduling in order to know
statically the speed the system needs at runtime. This aims at controlling
dynamically the voltage supply of the CPU according to its orders
(expressed in MIPS) using a feedback system [21].

ACKNOWLEDGMENT

This work is partially supported by France-Telecom R&D department.

REFERENCES

1 S. Meninger, J. O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and J. Lang,
"Vibration-to-electric energy conversion,” presented at International Symposium on Low
Power Electronics and Design, San Diego, California, USA, 1999.

2 B. A. Warneke, M. D. Schott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J. M.
Kahn, B. E. Boser, and K. S. J. Pister, "An autonomous 16 mm3 solar-powered node for

284 K. Al Agha, 1. Guérin Lassous and G. Pujolle

distributed wireless sensor networks," presented at Sensors'02, Orlando, Florida, USA,
2002.

3 A. Bayrashev, A. Parker, W. P. Robbins, and B. Ziaie, "Low frequency wireless powering
of microsystems using piezoelectric-magnetostrictive laminate composites,” presented at
12th International Conference on Transducers, Solid-State Sensors, Actuators and
Microsystems., Boston, USA, 2003.

4 TinyOS Group, "TinyOS tutorial," 2003.

RedHat, "eCOS."

6 S.F. Li, R. Sutton, and J. M. Rabaey, "Low Power Operating System for Heterogeneous
Wireless Communication Systems," presented at PACT 01, Barcelona, Spain, 2001.

7 M. Renaudin, "Asynchronous Circuits and Systems : A Promising Design Alternative," in
Microelectronic Engineering, vol. 54, 2000, pp. 133-149.

8 A. Martin, "Programming in VLSI: from communicating processes to delay-insensitive
circuits," in Developments in concurrency and communication. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1991, pp. 1-64.

9 C. A. R. Hoare, "Communicating Sequential processes," Communication of the ACM, vol.
21, pp. 666-677, 1978.

10 M. Renaudin and A. Yakovlev, "From Hardware Processes to Asynchronous Circuits via
Petri Nets: An Application to Arbiter Design,” presented at Workshop on Token Based
Computing, Bologna, Italy, 2004.

11 K. Slimani, Y. Rémond, G. Sicard, and M. Renaudin, "TAST profiler and low energy
asynchronous design methodology," presented at International Workshop on Power And
Timing Modeling Optimization and Simulation, Santorini, Greece, 2004.

12 V. Ekanayake, C. Kelly, and R. Manohar, "An Ultra-low-power Processor for Sensor
Networks," presented at Eleventh International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston, USA, 2004.

13 V. Ekanayake, C. Kelly IV, and R. Manohar, "BitSNAP: Dynamic Significance
Compression For a Low-Energy Sensor Network Asynchronous Processor,” presented at
Eleventh IEEE International Symposium on Asynchronous Circuits and Systems, New
York City, USA, 2005.

14 J. Cortadella, A. Kondratyev, and L. Lavagano, "Quasi-static scheduling for concurrent
architectures," presented at Third International Conference on Application of Concurrency
to System Design (ACSD'03), Guimardes, Portugal, 2003.

15 A. Abrial, J. Bouvier, M. Renaudin, P. Senn, and P. Vivet, "A New Contactless Smartcard
IC using an On-Chip Antenna and an Asynchronous Micro-controller,” presented at
ESSCIRC'00, Stockholm, Sweden, 2000.

16 M. Renaudin, P. Vivet, and F. Robin, "ASPRO : an Asynchronous 16-bit RISC
Microprocessor with DSP Capabilities,” presented at ESSCIRC, Duisburg, Germany,
1999.

17 M. Renaudin, P. Vivet, and F. Robin, "ASPRO-216: A Standard-Cell Q.D.I. 16-Bit RISC
Asynchronous Microprocessor,” presented at 4th International Symposium on Advanced
Research in Asynchronous Circuits and Systems, San Diego, California, USA, 1998.

18 E. Labonne, G. Sicard, and M. Renaudin, "Dynamic Voltage Scaling and Adaptive Body
Biasing Study for Asynchronous Design." Grenoble: TIMA - INPG, 2004.

19 E. Allier, G. Sicard, L. Fesquet, and M. Renaudin, "A new class of Asynchronous A/D
Converters Based on Time Quantization," presented at ASYNC'03, Vancouver, 2003.

20 F. Aeschlimann, E. Allier, L. Fesquet, and M. Renaudin, "Asynchrounous FIR filters:
Towards a new digital procession Chain," presented at ASYNC'04, 2004.

21 D. Rios, A. Buhrig, and M. Renaudin, "Power Consumption Reduction using dynamic
control of Microprocessor performance”, presented at PATMOS, Leuven, Belgium, 2005.

wn

