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Abstract. Motion capture techniques play an important role in computer anima-

tion. Because the cost of motion capture data is relatively high and the virtual en-

vironment changes frequently in actual applications, researchers in this area focus

their work on developing algorithms for editing the capture motion data, and syn-

thesizing new motions from available motion database. Although abundant work

has been done on motion editing and synthesis, few of them obviously take mo-

tion styles into consideration. Meanwhile, existing style editing algorithms either

need an obvious definition of “style”, or need a time-consuming training process.

In this paper, we propose a fast and convenient algorithm for human-motion style

editing. We define the style of motion as statistic properties of mean and standard

variance of joint quaternions in 4D unit sphere space. The proposed algorithm can

transfer the style of a motion to another by transferring these properties. Experi-

ment results demonstrate that our approach has the advantages of fast execution,

low memory occupation, and easy implementation. It can be widely applied to

various real-time entertainment-computing applications, such as gaming and dig-

ital movie producing.
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ance

1 Introduction

Motion capture techniques have been widely adopted in digital movie producing, gam-

ing and other digital entertainment applications. Creating animations with motion cap-

ture techniques commonly consists of the following three steps: First, acquire 3D mo-

tion data from real actors or actress with available commercial motion capture devices.

Second, map the acquired data onto virtual characters. Finally, edit and fine-tune the



mapped motion until satisfactory results are obtained. Compared with traditional key-

framing techniques and procedure-based methods, motion capture techniques provide a

more reliable and convenient way for creating realistic character animation.

The key issue with motion capture techniques is: how to process the captured mo-

tion data so that it can satisfy the constraints of specific applications. Abundant work

has been done on this issue. We can classify them into two categories: motion editing

and motion synthesis. Among those works, few of them take motion style into consid-

eration, despite that motion style is an important issue for motion editing and synthesis.

Meanwhile, existing motion style editing approaches either rely on procedural defini-

tion of the motion styles [1,2,3], or explicit input of style parameters of the user [2,3],

or even a model-training process [4,5].

In this paper, we propose a new on-line algorithm for motion style transfer. The

proposed algorithm does not need any user’s input, or expensive training process. The

basic idea of the proposed algorithm is to encode motion style in a statistic distribution

model, and transfer the style of one motion to another by transferring the according

model parameters. As illustrated in Fig. 1, the proposed approach in this paper can

transfer the style of the reference motion Mr to the source motion Ms, resulting in

a new motion Mt which preserves the motion details of Ms and inherits the style of

Mr. For example, we can transfer the “stride” style from a stride-working motion Mr

to a normal running motion Ms, resulting a new “stride running” motion Mt.

Among the existing motion style editing approaches, Hsu et al.’s [5] work is most

related to ours. Our work differs from theirs in the following aspects: First, Hsu et al.

use two motions (one basic motion and one motion with style) for defining a motion

style, while we use only one motion and abstract the style directly from that motion.

This difference is very similar to the difference between the work of Reinhard [6]’s and

of Hertzmann [7]’s in the field of image processing. Another difference between our

work and Hsu’s is that their method use time-consuming N4SID algorithm to train a

LTI (linear time identification) model. Our approach does not need this process, thus

can transfer the style from one motion to another on the fly.

2 Related work

Many techniques have been proposed for modifying captured motion data so that it

can meet different requirements of actual applications. In general, these techniques can

be classified into two categories: motion editing and motion synthesis. Here we only

review motion editing techniques because it is more related to our work.

Spline fitting [8,9], signal processing [10] and constrained optimization [11,12,13]

have been successfully applied to motion editing. Although these methods are useful

for editing kinematic and dynamic properties of motions, they do not explicitly take

motion style into consideration.

Among the motion editing techniques, motion retargetting mainly focuses on de-

signing a mapping function which can be used to map the motion of a figure to another

one who has identical skeleton topology but different segment length [14,15,16], or

even has different skeleton topology [17,18] as the first one. Our work differs from

them in that their work focus on processing kinematic and dynamic constraints when



retargetting a motion of a character to another, while our work concentrates on transfer-

ring the style from one motion to another. Meanwhile, motion retargetting techniques

treat style and motion as a whole, and do not treat the style of motion separately. Our

method separates style from motion, and treats style and motion details as two different

layers.

Comparing to motion editing techniques, few work have been done for motion style

editing. Amaya et al. [1] introduce an algorithm which can transform the emotion of a

motion to another. Unuma et al. [2] successfully use Fourier series expansions of the

motion data sets to do expansion, smooth transition, interpolation, and even extrapola-

tion between different types of motions. Brand et al. [4]’s style machine can be trained

to create motions with different styles. Urtasun et al. [3] propose an algorithm which

can be used to change the style of a motion by projecting it onto a PCA space generated

by pre-existing motion data. More recently, Hsu et al. [5] use linear space identification

analysis to obtain a style translation model between two motions.

Style editing is also explored by researchers in the filed of image processing. Two

representative image style transfer approaches are respectively proposed by Reinhard et

al. [6] and Hertzmann et al. [7]. Our work is inspired by Reinhard’s work [6] which has

obtained convincing results for transferring the color characteristics of one image onto

another with an efficient statistical analysis.

3 Overview
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Fig. 1: Overview of our approach

The overview of our approach is illustrated in Fig. 1. The goal of our approach is

to transfer the style of the reference motion Mr to the source motion Ms, producing

a target motion Mt. The target motion can preserve the details of the source motion

and can inherit the style of the reference motion. The style transfer pipeline works as

follows: First, Ms and Mr are input directly into the time warping module to setup

frame correspondence. Then, the time-warped motions are fed into the statistic style

transfer module for style transferring. In the post-processing stage, we apply a reverse-

time-warping to the target motionMt and then remove artifacts such as footskate which

is introduced during the style translation process. After that, we can obtain the target

motion that inherits the style of the reference motion and preserve the details of the

source motion.



4 Time Warping

The frame correspondences are vitally important for motion style transfer. Without

proper frame correspondence, unnatural results may be produced. We use the IMW

(iterative motion warping) algorithm proposed by Hsu et al. [5], because it performs

better then other proposed DTW (dynamic time warping) algorithms when dealing with

stylistically different motions.

The IMW algorithm process one DOF (degree of freedom) each time. Suppose the

frame numbers of the source motion Ms and the reference motion Mr are Ns and

Nr respectively. We further suppose that Ns < Nr. When Ns ≥ Nr, we only need to

exchange the position of S and r in equation 1. The IMW algorithm aims at minimizing

the following energy equation:

E(a,b,W) = ‖W(Sa + b) − r‖
2

+ ‖Fa‖
2
+ ‖Fb‖

2
+ ‖Gb‖

2
(1)

Here, S is a diag(s), whose diagnose elements contains one DOF data of Ms. W is a

warp matrix used to perform a nonuniform time warp. The terms ‖Fa‖2 and ‖Gb‖2

measure the smoothness of a and b. F and G provide weighted finite-difference ap-

proximations to the first derivative of a and b.

The IMW algorithm works as following:

First, initialize a = 1 and b = 0.

Second, calculate matrix W with dynamic time warping, i. e., solve the following

linear equation:
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W
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where p = Sa + b and q = r.

Third, solve scale vector a and offset vector b with the following equation which is

transformed from equation 1:
[

ST WTWS + FT F ST WTW

WTWS WTW + GTG

] [

a

b

]

=

[

STWT r

WT r

]

(3)

The above steps are performed iteratively until the change of a and b between two

consecutive iteration is below a pre-defined threshold. For more detailed description of

the IMW algorithm, please refer to the original paper [5].

5 Statistic style transfer

In this section, we first introduce the representation of the motion and the statistic com-

ponents which will be utilized for designing the style transfer pipeline. And then, we

introduce the style transfer algorithm for the root joint, followed by a detailed descrip-

tion of the style transfer algorithm in the Euclidean space and in the 4D quaternion

space. For convenience and clarity of description, we only discuss one joint in this sec-

tion. Other joints can be processed in the same way, except that the root joint should be

considered separately because it contains global translation components.



5.1 Motion Representation and Style Definition

A motion can be denoted by m(t) = (p(t),q1(t), ...,qn(t))T , where p(t) ∈ R
3 and

q1(t) ∈ S
3 represent the translation and rotation of the root joint. qi(t) ∈ S

3 denotes

the rotation of the i-th joint for 2 ≤ i ≤ n.

In the research community of image processing, Reighar et al. [6] define the style of

an image as the mean and standard variance of color components in a linearized color

space lαβ, and has successfully transfer the style of an image to another by transferring

the mean and standard variance of color components in this space. Inspired by Reighar’s

work, we also use mean and standard variance to represent the style of a motion. In the

remaining part of this paper, we briefly describe “standard variance” as “variance”. With

this representation, motion style can be transferred by modifying the mean and variance

of the source motion Ms according to that of the reference motion Mr. However, our

experiment results demonstrate that straightforwardly apply the style transfer algorithm

to Euler angles produces poor results, while applying the algorithm to quaternion do-

main can give us smooth results. And since the mean and variance have no unified

meanings for quaternions, we give our definition of quaternion mean and variance in

Section 5.4.

In our implementation, we assume that each joint is independent of the others,

following [10,8,5]. While doing the style transfer, we translate one joint at a time. All

joints are passed through the style transfer stage one by one.

5.2 Transfer for the Root Joint

We treat the root joint separately because it encodes a transformation with respect to the

global coordinate system. The translation part of the root joint is translated separately

for each dimension. Because motion style is invariant to ground plane translation, we

encode the translation of the root joint of each frame in its previous frame [5,19]. We

first calculate the mean and variance of the translations of the root joints of the source

motion Ms and the reference motion Mr respectively, and then transfer each of the

three translation DOFs as:

pi

t
= σr/σs · (p

i

s
− p̄s) + p̄r, 1 ≤ i ≤ Ns (4)

where Ns is the frame number of Ms after time warping. pi
s

and pi
t

denote the i-th
DOF of the root joint of Ms and Mt. p̄s and p̄r denote the mean of the root joint

angle of Ms and Mt. σs and σr denote the variance of the root joint of Ms and Mt,

respectively. The vertical rotation is preserved by encoding the root orientation in the

previous frame, as suggested by Kovar [19] and Hsu [5].

5.3 Transfer with Euler Angles

Transfer with Euler angles is straightforward. Our algorithm transfers each DOF indi-

vidually. Specifically, let θ̄s and σs denote the mean and variance of the source motion

Ms, and θ̄r and σr denote the mean and variance of the reference motion Mr. The

transferred angle is calculated as

θt = σr/σs · (θs − θ̄s) + θ̄r (5)



Fig. 2: Style translation with Euler angles produces unnatural results, shown in red.

where θt represents the transferred angle of the target motion Mt.

Our experiments demonstrate that style transfer with Euler angles does not produce

smooth results in most cases (Fig. 2), because interpolation of Euler angles may result

in poor rotations [20].

5.4 Transfer with Quaternions

Representing rotations and orientations by quaternions is widely adopted in computer

animation as it is free of gimbal lock and has good interpolation behavior [21,22,23,9].

Quaternion is also an ideal representation for our style transfer operation. However, we

should carefully choose the meaning of “mean” and “variance” in quaternion space.

Although quaternions can be linearly interpolated and we can define the mean with

linear interpolation. This definition will result in inconsistent velocities [24]. By using

a recursive definition based on the sphere linear interpolation (Slerp) [21], we can

obtain a well defined centroid, or the mean of a sequence of quaternions. Meanwhile,

we define the distance between two quaternions on the 4-D hypersphere, and use this

definition to derive the variance of quaternions.

Mean and Variance of Quaternions Let qi for 0 ≤ i ≤ n denotes a sequence of n
quaternions. The mean of qis can be recursively defined as:

q̄n =







q1 , for n = 1
Slerp(1

2 ,q1,q2), for n = 2
Slerp(n−1

n
, q̄n−1,qn), for n ≥ 3

(6)

Here, Slerp is a sphere linear interpolation function [21] which can be defined by:

Slerp(t,q1,q2) = sin(1−t)θ
sin θ

q1 + sin uθ

sin θ
q2, θ = cos−1(q1 · q2). When doing Slerp

between two quaternions q1 and q2 during the mean calculation process, one should

make sure that the angle between q1 and q2 are not larger than π

2 for consistent repre-

sentation. This can be done by checking the sign of the dot product of two quaternions

d = q1 · q2. If d < 0, we reverse the sign of q1, because q1 and −q1 represent the

same rotation.

We should mention that besides this definition, other definitions can also be adopted

for calculating the mean of quaternions, because mean is a special case of weighted sum.

We use the above definition because it is simple and efficient, and can produce reason-

able results. Other more rigorous methods exist, such as global linearization [23] and



functional optimization [25]. Those algorithms follow more rigorous definition of mean

of quaternions, but are more computationally expensive. We have found that equation 6

works well in all of our experiments.

The variance of quaternions is defined similar to its definition for real numbers, ex-

cept that the distance is defined in S
3 as: dist(q1,q2) = ||log(q−1

1 ,q2)||. The variances

of quaternion sequence of the joint of the source and reference motion, denoted by σs

and σt, are calculated under this definition.

Transfer Algorithm With the definition of mean and variance of quaternion, we can

calculate the mean and variance of the source motion, denoted by q̄s and σs, and that

of the reference motion, denoted by q̄r and σr .

The first step of motion style transfer is to transfer the mean of the reference mo-

tion to the source motion. This can be implemented by applying a qT transformation

(Fig. 3). qT is defined by: qT = (q̄s)
−1 ∗ q̄r.

By applying transformationqT to all the quaternion sequence of the source motionMs,

we can obtain the aligned version of quaternions whose mean is equal to that of the ref-

erence motion Mr.

s
q

r
q s

q

T
q

'

Fig. 3: The mean of the joint quaternions of the source motion, denoted by q̄s, is aligned

with that of the reference motion q̄r by applying a transform qT .

Finally, we scale the variance of the joint of the source motion according to that of

the reference motion by the following equation:

qi

t = Slerp(
σr

σs

, q̄r,q
i
′

s ) (7)

where qi
′

s and qi
t are the i-th quaternion of the joint of the source motion Ms and the

target motion Mt.

6 Post-Processing

The purpose of post-process stage is to reverse the time warping effect and process

kinematic constraints.

In the reverse-time-warping step, we apply a Slerp for the adjusted frames, in order

to bring back the normal timing.



In the kinematic constraints processing step, we apply the footskate cleaup algo-

rithm proposed by Kovar et al. [26] to Mt in order to obtain correct and smooth results.

The footskate cleanup algorithm works as follows: First, the position of each footplant

constraint is calculated. For each constrained frame, compute the ankle’s global posi-

tions and orientations. Then we determine where the root should be placed. For each

constrained ankle, adjust the leg so the ankle meets the configurations found previously.

Finally, we filter the motion in order to obtain smooth results. Readers are referred to

the original paper [26] for detailed description.

7 Results

Table 1: The running time of the main steps for four examples in our experiment.

Process Frame number Time warping Transfer time Post-processing time

(source-reference) (source-reference) (milliseconds) (milliseconds) (milliseconds)

Normal walk - Hobble walk 427-400 900 21 80

Normal walk - Stealthy walk 277-410 600 17 61

Normal running - Stride walk 135-302 300 10 22

Normal running - Jaunty walk 135-450 400 13 25

We have tested our algorithm on several captured motion pairs in order to demon-

strate its validity and efficiency. All the motion clips are obtained from CMU motion

capture library [27].

In the first example, we transfer the “hobble” style of a walk motion to a normal

walk motion (Fig. 4), producing a new “hobble walk” motion. In the second example,

we transfer the “stealthy” style of a walk motion to a normal walk motion (Fig. 5),

producing a new “stealthy walk” motion. In the third example, we transfer “stride” style

of a walk motion to a running motion, producing a “stride running” motion (Fig. 6). In

the fourth example, we transfer the “jaunty” style of a walk motion to a running motion,

producing a “jaunty running” motion (Fig. 7).

All the experiments were done on a Pentium 4 2.8G PC with 1.5GB memory. The

computation time are listed in Table 1. The memory usage is negligible, because we

only need to additionally store the time-warping parameters and the mean and variance

of the source and reference motion during the style transfer process.

According to the experimental results, our approach runs very fast, occupies negli-

gible memory, which makes it suitable for real-time motion editing applications.

8 Conclusion and Discussion

In this paper, we propose a fast and memory efficient algorithm for transferring the

style of a motion to another motion. Comparing to existing style transfer approaches,

our approach is simple to implement, runs very fast and occupies negligible memory,

making it suitable for interactive applications.



Compared with the state-of-the-art work of Hsu’s [5], our approach is more suitable

for fast prototyping. One may argue that when the training process has been carried

out with N4SID, Hsu’s LTI model can achieve very fast transfer speed. But the training

the LTI model is a time-consuming time, and if the training data is not enough, i. e.,

the frame number is relatively small, one may not obtain satisfactory results. Mean-

while, the N4SID model is sensitive to input parameters. This could be a problem with

inexperienced users. Our approach do not depends on any user input, and can run auto-

matically, with rather fast speed.

Currently, our approach can not be applied to transfer style between figures that do

not have identical structures. Existing motion retargetting algorithms [18,28] may be

helpful for solving this problem. Meanwhile, when the reference has several different

styles, e. g. hobble at the beginning then stride in the middle and stealthily run at the

end, then the reference motion should be segmented into several segments so that each

segment has a single distinguishable style.
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Fig. 4: Transfer the “hobble” style of a walking motion (middle) to another walking

motion (top) produces a new “hobble walking” motion (bottom).

Fig. 5: Transfer the “stealthy” style of a walking motion (middle) to another walking

motion (top) produces a new “stealthy walking” motion (bottom).



Fig. 6: Transfer a “stride” style of a walking motion (middle) to a running motion (top)

produces a “stride running” motion (bottom).

Fig. 7: Transfer the “jaunty” style of a walking motion (middle) to a running motion

(top) produces a “jaunty running” motion (bottom).


