AUTONOMIC SERVICE CONFIGURATION BY A
COMBINED STATE MACHINE AND
REASONING ENGINE BASED ACTOR

Paramai Supadulchai and Finn Arve Aagesen
NTNU, Department of Telematics, N-7491 Trondheim, Norway

Abstract: Service systems constituted by service components are considered. Service
components are executed as software components in nodes, which are physical
processing units such as servers, routers, switches and user terminals. A
capability is an inherent property of a node or a user, which defines the ability
to do something. Status is a measure for the situation in a system. A service
system has defined requirements to capabilities and status. Because of
continuous changes in capabilities and status, dynamic service configuration
with respect to capabilities and status is needed. Software components are
generic components, denoted as actors. An actor is able to download, execute
and move functionality, denoted as a role. Configuration is based on the
matching between required capability and status of a role and the present
executing capabilities and status of nodes. We propose an approach for role
specification and execution based on a combination an Extended Finite State
Machine and a rule based reasoning engine. Actor execution support
consisting of a state machine interpreter and a reasoning engine has been
implemented, and has also been applied for a service configuration example.

1. INTRODUCTION

Service systems constituted by service components are considered.
Service components are executed as software components in nodes, which
are physical processing units such as servers, routers, switches and user
terminals such as phones, laptops, PCs, and PDAs. Traditionally, the nodes
as well as the service components have a predefined functionality. However,
changes are taking place. Nodes are getting more generic and can have any
kind of capabilities such as MP3, camera and storage. The software

54 Paramai Supadulchai and Finn Arve Aagesen

components have been also changed from being static components to
become more dynamic and be able to download and execute different
functionality depending on the need. Such generic programs are from now
on denoted as actors. The name actor is chosen because of the analogy with
the actor in the theatre, which is able to play different roles play defined in
different plays.

To utilize the flexibility potential, the attributes of services, service
components, software components and nodes must be appropriately
formalized, stored and made available. As a first further step towards this
formalization, the concepts status and capability are introduced.

Status is a measure for the situation in a system with respect to the
number of active entities, the traffic situation and the Quality of Service. A
capability is an inherent property of a node or a user, which defines the
ability to do something. A capability in a node is a feature available to
implement services. A capability of a user is a property that makes the user
capable of using services. An actor executes a program, which may need
capabilities in the node. Capabilities can be classified into:

e Resources: physical hardware components with finite capacity,

e Functions: pure software or combined software/hardware component
performing particular tasks,

e Data: just data, the interpretation, validity and life span of which depend
on the context of the usage.

The functionality to be played by an actor participating in the constitution
of a service is denoted as its role. We use the role-figure as a generic concept
for the actor which is playing a role. So services and service components are
realized by role-figures. Service configuration is here the configuration of
services with respect to the required capability and status of the roles.

The Role of an actor is defined in a manuscript, which consists of an
EFSM (Extended Finite State Machine) extended with rule-based policies.
Using a local rule-based reasoning engine adds the ability to cope with
various situations more flexible than is possible by the pure EFSM. Actors
can locally take place in the configuration and reconfiguration of the
services, in which they are a part of. The reasoning engine is based an XET
(XML Equivalent Transformation) rule-based language.

The work presented in this paper has been related to the Telematics
architecture for Play-based Adaptable System (TAPAS) [2]. Section 2
discusses related work. Section 3 presents the model used for the combined
EFSM and reasoning engine based actor. Section 4 gives a short presentation
of the TAPAS architecture with focus on the elements relevant for the
autonomic service configuration. Section 5 presents the data model. Section
6 presents a simple scenario where an actor actively participates in service
reconfiguration. Section 7 gives a summary and presents our conclusions.

Autonomic Service Configuration by a Combined State Machine and 55
Reasoning Engine Based Actor

2. RELATED WORK

The mobility of service components have been dealt within a number of
approaches. An example is the Intelligent Agent, which is the most related to
our work. DOSE [4] is an agent-based autonomic platform that uses
Semantic Web to come up with response to failures. However, the behavior
of each service component must be fixed along with the moving codes that
cannot be downloaded or changed. A technique to overcome this
shortcoming has been proposed using Java Reflection [5]. The behavior of
server components can be downloaded or changed based up on a reasoning
mechanism. However, the reasoning mechanism itself cannot be downloaded
or altered. In our approach, the behavior of service components and the rules
used in the reasoning mechanism are downloadable and can be changed
upon needs.

3. THE ACTOR MODEL

The actor role is defined as an Extended Finite State Machine (EFSM)
extended with policies. The mechanism interpreting the manuscript is an
EFSM interpreter extended with a reasoning mechanism. The data structure
applied for the representation of an EFSM is shown in Figure 1. An EFSM
contains the EFSM name, initial state, data and variables and a set of states.
The state structure defines the name of the state and a set of transition rules
for this state. Each transition rule specifies that for each input, the actor will
perform a number of actions, and/or send a number of outputs, and then go
to the next state. Actions are functions and tasks performed during a specific
state: computation on local data, role session initialization, message passing,
etc. The structure of the <ACTIONS> list specifies the name, the parameters
and the classification of an action.

-

i
"J
|
i

™
| {#] =Oneormore {x" =Zeroormore

Figure 1. Data structure of EFSM-based manuscript

Rule-based reasoning is considered as a special type of EFSM action that
executes policies. Policies are expresses in the XML Equivalent
Transformation language (XET) [3]. The reasoning engine can directly
operate and reason about XET descriptions.

56 Paramai Supadulchai and Finn Arve Aagesen

The XET language is an XML-based knowledge representation, which
extends ordinary, well-formed XML elements by incorporation of variables
for an enhancement of expressive power and representation of implicit
information into so-called XML expressions. Ordinary XML elements, XML
expression without variables, are denoted as ground XML expressions.
Every component of an XML expression can contain variables as shown in
Table 1. Every variable is prefixed with ‘Tvar_’ where T denotes its type.

Table 1. Types of XML variables

Type . : Instantiation and examples -

N XML elemem or attribute names Ex: <Nvar_X>..</Nvar_X> can be instantiated to
_ <div>...</div>or... o
S XML \mng Ex: can be instantiated into

- o0r<a nme— fep://..00 />
P Sequence of zero or more atmbute value pairs
Ex:<p Pvar_Z='NULL'/> canbe 1mtant1ated into<p/>or<p style=' />

E Sequence of zero or more XML expressions Ex: <p>Evar P</p> can be msLannated into <p/> or

) <p><div>...</div>

</p> e

I Part of XML expressions Ex: <Ivar_X><hr/></IvarX> can be instantiated into
<body><hr/></body> or <hr/>

A rule is an XML clause of the form:
H {C),..Cy} > B, ..B

where m, n > 0, H and B; are XML expressions. And each of the C; is a
predefined XML condition used to limit the rule for a certain circumstances.
This allows constraints modeling for a rule. Axioms are defined from one or
more rule(s). The XML expression H is called the head of the clause. The B;
is a body atom of the clause. When the list of body atom is empty, such a
clause is referred to an XML unit clause, and the symbol ‘>’ will be
omitted. Hence ordinary XML elements or documents can be mapped
directly onto a ground XML unit clause.

The reasoning process begins with an XML expression-based query. An
XML clause will be formulated from the query in form:

020

XML expression Q represents the constructer of the expected answer
which can be derived if all the body atoms of the clause hold. However, if
one or more XML expression body atoms still contain XML variables. These
variables must be matched and resolved from other rules.

A body from the query clause will be matched with the head of each rule.
At the beginning, there is only one body Q. Consider a rule R, in the form:

R]Z H, {C]} > B], Bz

If the XML structure of the body Q of the clause and the head H of the
rule R; match without violating condition C, the body Q will be transformed
into B; and B;. All XML variables in the head Q and the new bodies B, and
B; of the query clause will be instantiated. The query clause will be in the
form:

Autonomic Service Configuration by a Combined State Machine and 57
Reasoning Engine Based Actor

O* > B,* By*

Where X* means the one or more variables in the XML expression X has
been instantiated and removed.

The transformation process ends when either 1) the query clause has been
transformed into a unit clause or 2) there is no rule that can transform the
current bodies B; of the query clause. If the constructor Q is transformed
successfully into Qy that contain no XML variable, the reasoning process
ends and a desired answer is obtained.

4. TAPAS ARCHITECTURE

“Adaptable service systems” are service systems that adapts dynamic to
changes in both time and position related to Users, Nodes, Capabilities,
Status and Changed Service Requirements. Adaptability can be modeled as a
property consisting of 3 property classes: 1) rearrangement flexibility, 2)
failure robustness and survivability, and 3) QoS awareness and resource
control. The Telematics Architecture for Play-based Adaptable System
(TAPAS) intends to meet these properties [2]. In analogy with the TINA
architecture [6], the TAPAS architecture is separated into a system
management architecture and a computing architecture as follows:

e The system management architecture is an architecture showing the
structure of services and services components.

e The computing architecture is a generic architecture for the modeling of
any service software components.

These architectures are not independent and can be seen as architectures
at different abstraction layers. The system management architecture,
however, has focus on the functionality independent of implementation, and
the computing architecture has focus on the modeling of functionality with
respect to implementation, but independent of the nature of the functionality.

4.1 Computing architecture

TAPAS computing architecture has three layers: the service view, the
play view and the network view as illustrated in Figure 2. For details see [1].

A service system consists of service components and the network system
consists of nodes. The play view is the intended basis for designing
functionality that can meet the adaptability properties as defined above. The
play view is founded on the theater metaphor introduced in Sec.1. TAPAS
actors are software components in nodes that can download manuscripts. An
actor that does not have a role assigned is denoted as a free actor. An actor
playing a role in a manuscript is denoted as a role figure. A service system is

58 Paramai Supadulchai and Finn Arve Aagesen

constituted by a play, and leaf service component are constituted by role
figures. A role session is the dialog between two executing role figures. A
role figure can move between nodes and its role sessions can be re-
instantiated automatically. This mechanism, however, is not the focus of this
paper. It is referred to [7].

reqauires
[V

: Executing Service Required Service View
ice Vi Service Syst H 2 4
Service View ervice Sysiem ha View Capabilities and Capabilities and Status
S

constitutes i qui

Play S i Required Play View
. ay System i i b iliti
Plav View has Executing Play View Capabilities and Status

Capabilities and Status

/i\

A
gives

Executing Network View N |
; Network Syst Users
Network View ‘ ctwork Sysiem > | Capabilities and Status l |

l is connected to [

Figure 2. The TAPAS computing architecture
4.2 System management architecture

The main functionality components of the system management
architecture are illustrated in the Figure 3. The primary service providing
functionality comprises the ordinary services offered to human users.

Capability and status repository Configuration Policies:
— Manag < Role Configuration Manuscript
Capability and

Requirements Rules

Status Management

N4
Service

e__m Management Play repository

Figure 3. The TAPAS system management architecture

Primary Service
Providing
Functionality

Mobility
Management

In addition, the architecture has two repositories: the Play repository and
the capability and status repository and fours management components:
Configuration, Service, Capability and status, and Mobility management.

The play repository stores manuscripts and policies, which are the
required status and capability of a role as well as local configuration rules.
Local configuration rules describe configuration and constraints of a role
which must always be maintained. In addition, these rules define policies for
handling of reconfiguration related events such as the decision of an actor to
move a role when a failure happens. The capability and status repository
stores executing capability and status information.

Configuration management makes the initial configuration and re-
configures the service systems when needed. The Service management is
responsible for deployment and invocation of services. Capability and status
management registers, de-registers, updates and provide access to capability

Autonomic Service Configuration by a Combined State Machine and 59
Reasoning Engine Based Actor

and status repository and the Mobility management handles the various
mobility types.

To fulfill the failure robustness and survivability requirements, the
architecture must be dependable and distributed. The proposed actor model
creates a distributed configuration management by adding reasoning
functionality to actors.

S. DATA MODEL

This section presents XML based approaches to the representation of the
elements of the Play repository as well as the Capability and status
repository.

5.1 Manuscript

A manuscript consists of EFSM-based behavior of individual roles. An
XML-based EFSM given to an actor is executed by a state machine
interpreter. A sample fragment of the XML-base manuscript is shown in
Figure. 4.

<s:ate "ame='g°““e°:i°"2"m'e°“"><-'</5‘a'9> % After the state ConnectionTimeout is visited infinitely often,
<state name="ConnectionLost'> A . . " .
<Transition name='RoleFigureMove's ot the actor pFaymg this mangscnpll w1ll' move< to
<input msg="'RoleFigureMoveReq' source=""/> % ConnectionLost state. If there is an incoming message
<action class='Reasoning' name="'SearchFreeActor'> % RoleFigureMoveReq, the actor will execute the
d;g:;anm name="role_name' value="role1/> a9 RoleFigureMove transition and perform two subsequent
>

% actions. The first action uses the built-in reasoning machine

<output><variable name='Dest_Variable/></output> N
% to find out a free actor where the role should be moved to.

<action class='Communication' name='PluginActor'>

<param name='actorList' value='Dest_Variable'/> % The second action installs the role to a free actor suggested
</<a‘:‘;i':r"';“ame="°'e-“a"‘e' value='role1’/> Z;’ by the first action. At the end of the transition, the actor
<next_state name="PlugoutPending’/> 9 moves to PlugoutPending state and wait for a plugout
</Transition> a, ~ message from the newly instantiated role figure.
%
</state>

Figure 4. Fragment of an example XML manuscript showing a transition of state
ConnectionLost

SMI interprets the downloaded manuscript. SMI uses action libraries.
Policy related actions are platform independent constraints expressed in XET
(see Section 2). For non-policy actions, the actions are platform-specific
(such as C++) or platform-independent (such as Java) executable codes from
the local action library cache to execute the actions in the transition. If the
required action libraries cannot be found, SMI will download the actions
from an action library database.

60 Paramai Supadulchai and Finn Arve Aagesen

5.2 Executing Capability and Status

Nodes possess particular Network View Capabilities and Status, from
now on abbreviated as NV-capabilities and -status. They are represented in a
network information model such as Common Information Model (CIM) or
Universal Plug-and-Play. We have chosen the XML representation of CIM
(CIM-XML) to implement our test systems.

Actors have Play View capabilities and status abbreviated as PV-
capabilities and -status. The idea is to hide the complexity of the network
view. PV-capabilities and -status of an actor are derived from one or more
NV-capabilities and -status. PV-capabilities and -status are represented in
Resource Definition Framework (RDF) [9], which can be used to either
define pointers to NV-capabilities and -status or define derived PV-
capabilities and -status from NV-capabilities and -status [8].

5.3 Policies

The policies comprises: role requirements, local configuration rules.
These are modeled by the XET language (See Section 3).

5.3.1 Role requirements

Role requirements consist of PV-capabilities and -status required by a
role. These PV-capabilities and -status are represented in RDF and XML
variables.

5.3.2 Local configuration rules

The heads of the XET clauses identify components of the outcome of the
configuration or reconfiguration, while the body describes the configuration,
composition and dependency conditions. A sample local configuration rule
is illustrated in Fig. 5.

Autonomic Service Configuration by a Combined State Machine and 61
Reasoning Engine Based Actor

<xet=?l;'le r?me='SearchFreeActor' priority='3'> % Intuitively, this rule looks for free actors that have

<xet:Head> % . : 5 toh i

<tapas:Actor rdf-resource='Svar_ActorD/> by a secured connection }V.llh {IbServer., which is a database
</xet:Head> o ~ Server providing sensitive information. The head of the
<xet:Body> o, rule will be derived as answer(s) if both body atoms can

r...sxrn:F.ac.tQuem):fnwj;.b_sm?.\/.-.ﬂepos:uorw.xm:quesism:: o be successfully executed.
<tapas:Actor rd '?qo:"r:fx;a'{;ﬁﬁg!gb;ewerb % Namespace xfn refers to built-in atoms providing
P rdf: $='Status_Active'/> :ﬁ mathematic operations and database query, etc. These
<tapas:connType rdf:resource='Svar_connType'/> i °/° atoms will not be further matched with other rules.
fg:’a},‘f‘:‘:ﬁggaz&? VA FactQuery queries actors from the capability and status
B o . : X d

<tapas:actorStatus rdf:resource='Status_FreeActor/> | o repository. The query exprCSSl(?n'SImply . lgnf)res the
Evar_otherActorProps o order of XML elements when it is working in mode
i <Mtapas:Actor> Query Expression % “set”. Some irrelevant PV-capabilities and -status of

- xfn:F Y o, . f -~ .
<xfn:StringlsMember xfn:string='Svar_connType' i ‘y/: actors are ignored py using two E-variables.
xin:list="Secured SecuredWireless' o Evar_otherConnProperties and Evar_otherActorProps.
</xet:Body> o/" The actors must have Status_FreeActor as
</xet:Rule> o/: specified in the query expression. They must have only

o active secured or secured wireless connectivity with
% dbServerl, which will be checked by the builtin atom,
% StringlsMember.

Figure 5. An example XET clause to search for free actors

6. DEMONSTRATION

A scenario of a secured database system is considered as an example. A
database server contains sensitive information and will automatically blocks
incoming requests from nodes that could possibly have malicious software
such as viruses or trojans.

® = free actor e " =role database server
Ry .|/ Database \ [Femere— i
_ . db > Eensitive (manuscript)
= role figure s
. ,g Server RF Information s
® = malicious R; ' =rolel
dbServer (manuscript)
Blotik_cd secured connecfion Wireless
‘Ié“' Secured|Connection non-secured connectivit
DO ()
Node,QF,l | @ Fs Node, @ @ Node;

Figure 6. A sample scenario showing the survivability of a role figure.

The goal of this demonstration is to show how a role figure in a blocked
node can survive, move to other one other node, identified as harmless by
the database server, and continue working with the database server. How the
role figure proves itself as non-malicious software is not the focus and will
not be further explained.

Fig. 6 illustrates a role figure RF; in Node 1, which is presently blocked
by a database server role figure (DB RF). After RF, visits a state
ConnectionTimeout infinitely often, it will move to ConnectionLost state. At
ConnectionLost, RoleFigureMove transition will initiated by a

62 Paramai Supadulchai and Finn Arve Aagesen

RoleFigureMoveReq message. The manuscript describing this transition has
been presented in Figure 4.

6.1 R1 role requirement (required PV-capabilities and -
status)

The PV-capabilities and -status required by the role R; are illustrated in
Fig. 7. R, explicitly needs status Status_FreeActor. The connectivity
between R; and dbServer must be a member of set {“Secured”,
“SecuredWireless”}. Actors trying to play R; may have other PV-capabilities
and -status (as represented by Evar_otherActorProps and
Evar_otherConnProps). These PV-capabilities and -status will be ignored by
the reasoning engine.

; < Status_Active_> | <tapas:Role rdf:about="R1'> ‘
{ connStatug.~7 @ : ivity h G, " |
| oy i Status ‘Status_Active’> E
i nnectivi < dbServer 3 oo ; P Type rdf: 'Svar_connType'/> |
| o:_'/mz Bvar C°> i Evar_otherConnProps !

5 Status_FreeActor | </tapas:connectivity>
; rdf: ‘Status_FreeActor/>

R, actorStatus

ﬁ\ Evar_otherActorProps . Evar_otherActorProps
O" . </tapas:Actor>

] :Stringls| xfn:string=" Type'
Svar_connType E {“Secured”, “Secured Wireless”) : <xin:StringlsMember xfn:i ._.?: Svar:&cmn ype

" Figure 7. The required PV-capabilities and -status of the roleR1

6.2 Offered PV-capabilities and -status

Fig. 8 shows the offered PV-capabilities and -status of actor F;, F, and
F, The PV-capabilities and -status of F; are identical to F, while the
capabilities and status of Fs and Fs are identical to F,. For lack of space, they
will not be presented.

actorStatus <tapas:Actor rdf:about="F1'>
dbServers
nectivity connType | tive!:
~3C__dbServer : Fune rdt Status_Active!>
S P ype

¥ N T, .

*"“‘5!,5.‘ <Aapas:connectivity>

i Status_FreeActorls...

<Mtapas:Actor>
<tapas:Actor rdf:about="F2'>

s _A_Status_FreeActor > p >
“ T capnStatus - </tapas:connectivity>
rStatus ‘Status_FreeActor...
<Mapas:Actor>

<tapas:Actor rdf.about='F4'>

>
actorStatus A Status_FreeActor P ‘Status_Active'/>

<_gonnectivi connType P ype
@mﬂ Ev -x__NonSecuredWireless
v ER -.. onnStatus rStatus rdf s="Status_FreeActor’>...

[
Figure 8. The offered PV-capabilities and -status of actor F1, F2 and F4

v

Autonomic Service Configuration by a Combined State Machine and 63
Reasoning Engine Based Actor

6.3 Query clause

The query clause in Fig. 9 is constructed from a query expression. As
already explained in Section 3, the body of the clause will be initially
matched with a configuration rule, which will be defined in the Section 5.4.

H <x;i:0mty>)
i <xet:QueryClause>

’ i consistsOf Evar_actors 2 Head of <xet:Head>
A ([the clause <tapas:AvallableActors>

P <tapas:consistsOf rdf:parseType='Collection'>

i Evar_actors
<Mapas:consistsOf> :
. i consisisOf P Nap A
e] e |
- T Cﬁo 1. <xet:Body> t
<tapas:AvailableActors> i
H] of ype='Ci > i
{ Body of the clause Evar_actors I
* <Napas:consistsOf> !
{ % The query clausc explains that AvailableActors isting an wpg:g.m.n.mmm,‘,
! % unknown sct of actors will be derived if the reasoning engine can </xet:Body>
i % find a rule that matches the body of the clause. </xet:QueryClause>
: </xet:Query>

" F ;gure 9. Graphlcal notation of the query to search for available actors

6.4 Local configuration rules

Local configuration rules as illustrated in Fig. 10 indicate that the
connection status and the connection type of the link between R; and DB RF
must be maintained in a secured manner. The only QoS parameter defined
here is Svar_connType.

6.5 The configuration result

The configuration result is shown in Fig 11. Based on the offered PV-
capability and -status provided in Fig. 8 and the role requirement defined in
Fig. 7, actors F, and F; are the most appropriate actors to play R;.

The reasoning process is conducted by Native XML Equivalent
Transformation reasoning engine (NxXET) implemented as a Java-based
action for the state machine interpreter (SMI). NxXET is used by SMI to
execute SearchFreeActor action defined in Fig. 5. The parameter actorList
of the PluginActor action will be substituted with the available actors in Fig.
11. PluginActor will try to move R, to F, first. If the moving is not
successful, PluginActor will try again with F;. Subsequently, RF; will move
to PlugoutPending state after R; has been successfully moved to either R; or
R;. At this state, R, will be plugged out from RF;, which will become a new
free actor.

64 Paramai Supadulchai and Finn Arve Aagesen

<xet:Rule name="SearchFreeActor’ priority="3">
Head>

<xet:|
<tapas:AvailableActors>
of ype='Cx >

Evar_actors
<Mapas:consistsOf>
<Mapas:AvailableActors>
</xet:Head>
<xet:Body>
<xtn:SetOf xin:mode="Set’>
<xtn:Set>Evar_actors</xfn:Set>
<xfn:Constructor>
<tapas:Actor rdf.resource="Svar_ActoriD'/>
</xfn:Constructor>
<xfn:Condition>
<tapas:Actor rdf:resource="Svar_ActoriD'/>
</xtn:Condition>
</xtn:SetOf>
</xet:Body>
</xet:Rule>
<xet:Rule name="R1Requirement’ priority="4'>
<xet:Head>
<tapas:Actor rdf:resource="Svar_ActoriD'/>
</xet:Head>
<xet:Body>
<xfn:FactQuery xin:uri='ds/Play-Repository’ xin:mode="Set'>
<tapas:Role rdf.about='Svar_RoleIlD'>

</xtn:FactQuery>
<xfn:FactQuery xfn:uri='ds//PV-Repository' xin:mode='Set’>
<tapas:Actor rdf:about="Svar_ActoriD*>
Evar_properties
<Rapas:Actor>
</xfn:FactQuery>
<xfn:MatchD xfn:mode="Set'>
<Expression>

‘Svar_| >
<tapas:connType rdf:resource='Svar_connType'/>
Evar_otherConnProps

<Mapas:connectivity>
Evar_otherActorProps
</Expression>

</xtn:MatchD>
<xfn:StringlsMember xin:string="Svar_connType'
xfn:list="Secured SecuredWireless’>
</xet:Body>
</xet:Rule>

/E:

B R R 3 33 P PR IR

Rule SearchFreeActor will be matched with the body
of the query clause defined in Section 5.3. After the
matching, the body of the query clause will be re-written
with xfn:SetOf, which is the only body atom of the rule.
xfn:SetOf will to try to construct the list of available actors
and add them into Evar_actors variable. Each members of
Evar_actors will have the structure similar to the expression
in xfn:Constructor. To actually instantiate the possible
values for the constructor, the condition expression in
xfn:Condition will be matched with other rules (clearly
RIRequirement).

RIRequirement queries the R1 role requirement
(required PV-capabilities and -status), which have been
defined in Section 5.1. The rule again queries actors
offering the same PV-capabllmes and -status, which R,

i The hi quired and offers PV-
capabnhtlcs and -status are accomplished though the
instantiation of variable Evar_properties. The actors queried
from the capability and status repository needs
Status_Active and Status_FreeActor. The actors can also
have other PV-capabilities and -status because they are
allowed by the role requirement.

The structure of PV-capabilities and -status of each
actor will be matched with xfn:MatchD function so that PV-
capabnhty cannType with a value Svar_connType can be

d. Fi StringIsMember verifies the instantiated
valuc of Svar_connType to make sure that it is a member of
the list “Secured SecuredWireless". Actors that do not offer

d or d wireless will be filtered out.
Only qualified one will be selected. R/Requirement can
return many answers.

The answers returned by RI/Requirement will be
aggregated and added to Evar_actors list in the rule
SearchFreeActor. The value of Evar_actors will be
instantiated to the head of the query clause, which will be
the answer of the reasoning process.

Figure 10. Local configuration rules in XET

%‘:®

. <tapas:AvailableActors>
<tapas:consistsOf rdf:parseType='Collection'>
<tapas:Actor rdf.resource="F2'>
<tapas:Actor rdf:resource="F3'/>
dhpn consistsOf>
ailableActors>

Figure 11. "R'DF-based graphical notation and XML-serialization of the configuration result

7. CONCLUSION

This paper presents an approach to model the behavior of service systems
by actors playing roles defined in manuscripts. The actor is a combination of
an Extended Finite State Machine (EFSM) and a rule based reasoning

engine.

A service system has defined requirements to capabilities and status.
Because of continuous changes in capabilities and status, dynamic service
configuration with respect to capabilities and status is needed. Configuration
is based on the matching between required capability and status of a role and
the present executing capabilities and status. Roles are allowed to be moved
to increase failure robustness and survivability of a service system. This role

Autonomic Service Configuration by a Combined State Machine and 65
Reasoning Engine Based Actor

mobility can be achieved through EFSM behavior. However, using a rule-
based reasoning mechanism allows actors to use local configuration rules to
take decisions based on the current executing capabilities and status. The
actor model improves actor functionality, increases survivability and makes
the configuration management distributed.

Generic actor execution support consisting of a state machine interpreter
and a reasoning engine has been implemented and applied for the presented
example. All capability and status related data as well as actor behavior is
based on XML representations, with exceptions of the EFSM actions.
Normal EFSM actions are platform-specific (such as C++) or platform-
independent (such as Java) executable codes while reasoning-based EFSM
actions are XML-based. The reasoning engine is based on Native XML
Equivalent Transformation.

REFERENCES

[1] Aagesen, F.A., et al., Configuration Management for an Adaptable Service System, [FIP
Open Conference on Metropolitan Area Networks Architecture, protocols, control, and
management, Viet Nam, 4/2005

[2] Aagesen, F.A,, et al.,, On Adaptable Networking. ICT’2003, Assumption University,
Thailand, 4/2003.

[3] Anutariya, C., et al., An Equivalent-Transformation-Based XML Rule Language. Int’l
Workshop Rule Markup Languages for Business Rules in the Semantic Web, Italy, 6/2002.

[4] Bonino, D., et al., An agent based autonomic semantic platform, Proc. Int’l Conf. on
Autonomic Computing 2004, 5/2004.

[5] Huang, G., et al., Towards autonomic computing middleware via reflection, Proc. of the
28th Annual International COMPSAC 2004. 9/2004.

[6] Inoue, Y., et al., The TINA Book. A Co-operative Solution for a Competitive World.
Prentice Hall, 1999.

[7] Shiaa, M.M., Mobility Support Framework in Adaptable Service Architecture. IEEE/IFIP
Net-Con’2003, Oman, 10/2003.

[8] Supadulchai, P., Aagesen, F.A., An Approach to Capability and Status Modeling, NIK
2004, Norway, 11/2004.

[9] World Wide Web Consortium, Resource Description Framework (RDF): Concepts and
Abstract Syntax, Available online at http://www.w3.org/TR/rdf-concepts/.

