Design of a Real-Time Traffic Mirroring
System

Tim Miskell
Intel Corp
timothy.miskell@intel.com

Liang-Min Wang
Intel Corp
liang-min.wang@intel.com

Abstract—Network monitoring and analysis is a vital
component of network infrastructure reliability, availability, and
sustainability. As network bandwidth consumption continues to
grow exponentially, real-time traffic data analysis becomes
increasingly challenging and expensive. In many cases, monitoring
can only be achieved via hardware Test Access Point (TAP)
devices. Due to the intrusiveness and inflexibility of deploying such
hardware, this approach is intractable in an SDN environment,
where network resource allocation programmability is key to
network orchestration and deployment. In our prior work we
developed a technology to improve VIRTIO port mirroring via
network device mirror offloading. In this paper, we extend our
mirror offloading work to include a novel mirror tunnel design.
Mirror tunneling technology transports traffic from any device
capable of supporting a software TAP to a mirror tunnel device
that supports mirror hardware offloading. In addition, we develop
a mirror controller based upon SR-IOV technology and the kernel
netdev interface. With minimal changes required for the traffic
source network function, the host system can dynamically
reconfigure traffic mirror management settings via pre-existing
kernel-based Internet Protocol (IP) management tools.

Keywords— SDN, Port-Mirroring, SR-IOV, NETDEYV.

1. INTRODUCTION

Network bandwidth demand continues to grow
exponentially, particularly with the sudden surge in employees
and students working remotely due to the COVID-19 pandemic,
further increasing strains on limited networking resources.
Resource virtualization 1is critical to sustain network
infrastructure deployments, e.g. factoring in peak time demand
along with resource allocation. This requirement has further
amplified adoption of SDN-based designs [1]. Moreover,
network service deployments based upon SDN orchestration
allows services to be deployed on-demand. Dynamic resource
allocation drives the need for real-time resource auditing, which
is usually achieved by means of monitoring services. Prior art
presented in [16, 17, 20, 21] have provided ample use cases on
how monitoring can be used for the purposes of network
management. Nevertheless, real-time monitors demand
dedicated hardware (HW) resources for the purposes of
capturing traffic. As a result, existing monitoring tools are
mostly implemented on routers and switches. Monitoring
protocols and RFCs including SNMP [2], RMON [3], and
NetFlow[4] all propose methods for traffic mirroring via a router
or switch system. Implementing traffic monitoring over a non-

978-3-903176-32-4 ©2021 IFIP

John Morgan
Intel Corp
john.m.morgan@intel.com

Edwin Verplanke
Intel Corp
edwin.verplanke@intel.com

router device continues to be a challenge due to the requirements
of real-time packet capture services [7,8]. In addition, deploying
a traffic monitor in an SDN environment adds another layer of
complexity given that the traffic source and the mirroring
service may reside in two different virtualized environments, i.e.
VMs or containers. The challenges related to real-time mirroring
between network services of different virtualized address
domains can be summarized as follows:

(1) Source Traffic Mirroring. The mirroring service should
introduce minimal impact on the source network function.

(2) Transporting Mirrored Traffic. The mirroring service
should be able to deliver packets to monitoring devices via intra-
domain networking.

(3) Monitoring Service Provisioning. The network monitor
function (NMF) should deployable on-demand based upon the
run-time workload and throughput level requirements.

Hardware based approaches including routers, switches, and
Field Programmable Gate Arrays (FPGAs) can provide
dedicated resources to meet the first two requirements.
However, deploying scalable monitoring services on-demand
over fixed function accelerators is challenging and requires
separate resources for each TAP request. On the other hand,
software (SW) implementations provide greater flexibility,
particularly in the available approaches for meeting the third
requirement. However, the incurred overhead, in terms of
mirroring along with encapsulation and decapsulation for
transportation [19] may be excessive depending on the source
network service. As a result, these approaches either are
relegated to low throughput environments or require the use of
down sampling, e.g. sFlow, prior to analysis. For of our
approach we expand on prior work [5] by leveraging
improvements to VIRTIO mirroring performance via hardware
offloading (HWOL). We present a novel “mirror tunneling”
technique that extends HWOL to virtually any device.

The remainder of this paper is organized as follows. Section
I provides context for the advanced NIC features that our design
is based upon. Section III provides details regarding our design,
followed by Section IV which contains our performance results.
Section V concludes the paper with a summary of our key
contributions along with our future work.

II. BACKGROUND FOR NIC OFFLOADING

In this section, we provide a description of key HW and SW
technologies for which our design is based upon. In this case, we
employ three advanced NIC features and one SW feature
available in user-space drivers, e.g. the Data Plane Development
Kit (DPDK) [18].

(1) Device level network function traffic mirroring. This
is an advanced feature supported by the network devices
discussed in [12]. This mirroring feature occurs between ports,
1.e. network functions, in the same device. As expounded in [6],
HWOL can be used to improve VIRTIO port mirroring
performance. As described in [9], traffic from the network
service function (NSF) residing in one VM, VM1, is mirrored to
the NMF in another VM, VM2, for analysis. With para-
virtualization technology [11], each virtual device, i.e. VIRTIO,
is hosted by a backend driver, i.e. VHOST. As a result, port
mirroring is achieved through packet copy operations that occur
in the backend driver. Compared to the case when mirroring is
disabled, the associated overhead results in an approximately
70% decrease in packet forwarding throughput [6,9], which can
be reduced by employing device level network function traffic
mirroring. The throughput improvement is achieved by
replacing the VIRTIO-based NMF with a SR-IOV NMF and
replacing data copy with device mirroring. As a result, traffic is
mirrored from the NSF to the NMF without costly data copying.
To take advantage of this feature the backend driver must
execute on a network device that inherently supports traffic
mirroring. Since port mirroring is triggered whenever there are
ingress or egress packets, this approach can result in artifacts,
1.e. the mirrored traffic generated in the backend device. To
resolve the issue, the design presented in [9] introduces a
VLAN-based traffic mirroring transportation framework that
allows the switch to discard or forward the mirrored traffic
depending on a pre-defined set of flow table rules.

(2) Device network function transmit loopback. Our
design employs transmit loopback, a device level feature, so that
mirror operations via HWOL no longer require the use of routers
and switches, as in the aforementioned VLAN-based approach
[9]. Transmit loopback is a standard NIC feature that is designed
primarily for self-test purposes. For devices that support
transmit loopback on a per-VF basis [13], this feature can be
used to gate the artifacts back to the RX interface rather than
continually transmitting the traffic over the external interface.
With the mirror tunnel approach introduced in this design, the
tunnel device effectively becomes a passive device. Specifically,
since we loop TX traffic back to the RX interface, our design
introduces no change to the actual traffic in the network.

(3) Device network function link event communication.
We employ the PF-to-VF link status change event notification
mechanism to implement a centralized traffic mirroring
controller that can be used by any SR-IOV capable device along
with a hypervisor. The notification system available in the Linux
kernel allows an SR-IOV enabled NIC device to configure each
Virtual Function into one of three link modes: enabled (always
on), disabled (always off) or auto (the VF follows the PF link
state). Our design leverages the first two modes to enable and
disable mirror tunneling. By combining this PF management
capability with a SW TAP we can realize the first requirement,

1.e. mirroring traffic while minimizing impact on the source
network function. When ingress and/or egress traffic are
captured via a SW TAP the metadata of the source traffic is
modified as the traffic is mirrored. The metadata enables HW to
perform per-packet VLAN insertion upon transmission. To
avoid introducing artifacts on the source traffic, the metadata is
restored after the packets are transmitted via the mirror tunnel
device.

(4) DPDK pre-TX and post-RX packet processing. For
the current design, the SW TAP is achieved through the pre-TX
and post-RX driver callback interface provided by DPDK [18].
However, the same technique can be applied through other user-
space or kernel-space drivers, e.g. drivers that employ eBPF
filters [10] to process pre-TX and post-RX traffic for other
network functions. The SW TAP includes a per-descriptor, i.e.
per-packet, VLAN insertion transaction that is supported by
HWOL to the network device. By leveraging programmable
VLAN insertion, our design enables efficient scaling of the
NMEF. Specifically, by allowing applications to insert different
VLAN tags the monitoring service can leverage this for the
purpose of scaling computational resources. As a result, our
design meets the third requirement, i.e. providing the ability to
scale resources in support of the NMF. As described further in
[9], VLAN tags can also be used to support the intra-domain
transportation of mirrored traffic. Therefore, our design
effectively meets the second requirement for a real-time
monitoring system.

III. DESIGN

Figure 1 presents the framework for the implementation of a
traffic mirroring system via mirror tunnel devices. In this case,
the traffic from the NSF is captured and sent to the NMF. For an
SDN or cloud environment, the NSF and NMF can reside in
different VMs, or one may reside on the host while the other
resides in the guest. This diversity in configuration requirements
makes deploying HW TAP devices challenging if not
impossible. In our design, the service network interface, which
forwards traffic to the NSF, can be either a physical or logical
network interface. For the purposes of this paper, we refer to a
network interface that is directly supported by a NIC as a
physical network interface, which includes both PF and VF
functions, i.e. in the case where device virtualization technology
is applied. By contrast, a logical network device is a SW
emulated network device, e.g. a VIRTIO interface, indirectly
managed by a backend physical device driver [11]. With
reference to Fig. 1, there are two ethernet bus devices: (1) the
NSF interface and (2) the NMF as well as the mirror tunnel
device interface.

Mirroring traffic through a passive “mirror tunnel” device is
an innovation that serves as an extension to our prior work [5]
involving active devices. The use of a passive interface, i.c. a
tunnel device, is distinct from traditional deployments, in which
each active network device is provided a certain amount of
computational resources to manage traffic for one or more
NSFs. A passive device is a network instance that does not
consume any computational resources, e.g. cores normally
assigned to DPDK PMD drivers [18] or interrupt service
routines normally allocated for kernel drivers. As described in
Fig. 1, a passive device acts as a “tunnel” that allows SW TAPs

to transmit packets. The packet transmission is executed via the
NSF driver; therefore, the tunnel device requires no dedicated
resources. Mirroring begins with the capture process, after
which the packets are transmitted via the passive mirror tunnel
interface. When mirror HWOL is enabled and configured, the
transmit logic inside the mirror tunnel network interface triggers
a HW copy of the packet stream to the pre-configured
destination network interface allocated to the NMF. The final
component of the design is an innovative run-time mechanism
designed to enable and disable forwarding mirrored traffic to an
external interface, e.g. Ethernet bus 2. In contrast, the design
presented in [5] always forwards mirrored traffic.

As shown in Fig. 1, our design introduces three control
elements:

(1) Software TAP controller. The controller is designed to
manage enabling and disabling SW TAPs. The mechanism is
created via [P management tools supported by the Linux kernel
and the underlying user-space DPDK libraries [18]. Specifically,
the controller leverages ip commands to update the link state
setting for the mirror tunnel interface, i.e. the VF. The PF sends
link state change event notifications to the appropriate VF. Our
design adds a pre-registered link status change callback routine
to the driver. Our design registers and unregisters the SW TAP
depending upon the current setting for the VF link status.

(2) Mirror offloading controller. This feature controls
mirror HWOL of the NIC and is accomplished by means of a
Virtual Function daemon (VFd) [14]. VFd is a kernel sysfs
extension designed to allow the PF to manage VF configuration.
There are three mirror HWOL features supported in VFd:
ingress, egress and VLAN based mirroring. Our design employs
VLAN mirroring to enable traffic classification, for which the
mirroring logic in the NIC inspects the tags of the traffic and
forwards packets with matching VLANS to the pre-configured
VE(s).

(3) Outbound mirrored traffic controller. As depicted in
Fig. 1, HW mirroring is only triggered when we enable
transmission from the mirror tunnel network interface. This
control provides administrators the ability to loopback outbound
traffic. In the work presented in [10], we discuss a VLAN based
L2 switching algorithm to forward mirrored traffic to a remote
site according to a coordinated flow forwarding policy. For
cases where mirrored traffic is to remain in the local network,
this control prevents outbound traffic by enabling transmit
loopback via VFd.

Host
= -
/| Network Service

| Network Interface
Function ! T
) | | NI Network Monwoﬂ
1

Function

— — . Control Path

Outbound Mirror
Traffic Controller

2
3 - WMirror Offloading
v Controller

Ethernet #2

Ethernet #1

Figure 1 Traffic Mirroring via Mirror Tunnel Devices

i
Virtual Network
' Service Function
1: Software TAP
s 2 NIC Mirroring
rel 3t NIC Tx Loopback

—— DataPath
——— Control Path

______________________ -

—‘ OILYIA

Guest OS

4d150H

201na@ JoLIN

Ethernet #1 Ethernet #2

Figure 2 Logical Network Interface Mirror Tunneling

Figure 2 presents a mirror tunneling use case over a virtual
switch (vSwitch) system where a Virtual Network Function
(VNF) is implemented via logical network devices. For this use
case, both the NSF and the NMF are deployed in a VM. The
mirror tunnel devices are collocated with the NSF, which is
necessary since the SW TAP leverages a source packet pointer
buffer that in turn removes the need for copy operations, i.e.
requirement 1. We note that inter-VM packet transfer without a
mirror tunnel requires the use of expensive L3 overlays. In a
vSwitch system, the virtual NSF manages traffic through a para-
virtualization based logical interface, i.e. VIRTIO [11]; the
backbone of many vSwitch designs [15]. For a VIRTIO
interface there are two possible TAP points for extracting virtual
NSF traffic. Specifically, the SW TAP can either be applied to
the front-end interface, i.e. virtio-net, or the backend driver, i.e.
vhost net. Figure 2 presents both options. Based on our prior
work [5], mirror HWOL is implemented through a backend
driver to take advantage of the centralized mirroring
configuration interface provided by the vSwitch controller. The
de-centralized approach of implementing a SW TAP through a
front-end driver has the advantage of not requiring
modifications to the vSwitch implementation.

IV. PERFORMANCE BENCHMARK

In this section we present the performance data collected for
our mirror tunnel design when realizing the topology presented
in Fig. 3, i.e. VHOST mirroring via vSwitch. For this case,
which involves the use of VNFs with logical network interfaces,
we modify OvS [9] to support our mirror tunnel design.
Furthermore, we leverage the DPDK 12 fwd application as our
VNF, and compare the baseline results with enabling mirroring
on the backend and frontend drivers. For completeness, we also
collect results using the unmodified, built-in OvS mirroring
mechanism. For VIRTIO mirroring, we continue to leverage
12 fwd. In this case, we extend the application to accept mirror
configuration settings as input parameters. As mentioned in the
previous section, VFd serves as an aid for our management
interface.

Figure 3 presents the test setup for VHOST mirroring. In this
case, we use the Maximum Receiver Rate (MRR) test results for
a unidirectional flow to measure the overhead under worst-case
scenario conditions. Specifically, since each VIRTIO port by
default trains to 10 Gbps full duplex, we wish to sufficiently

stress the device under test. Note that VIRTIO interface vnic3 is
used for default mirroring while interfaces VF2, i.e. the mirror
tunnel interface, and VF3, i.e. the mirror network interface, are
used for our design. The topology for VIRTIO mirroring is
identical with the exception that VFO is attached to the vProbe
VM.

DUT Legend
Mirrored Traffic

— =% Traffic

Traffic Generator

pktgen 20.02

d2599€S T XXV710 | xxv710
Dal‘.aplane Mirror Tunnel .4
it NIC2
EER ero o 1 | L ero v

Figure 3 Test Network Topology for VHOST Mirroring

Note that the measured overhead for mirroring includes two
data sets: (1) VIRTIO and (2) VHOST mirroring. We observe
that traffic mirroring through the backend (BE) driver produces
twice as much overhead as the frontend (FE) driver. We plan to
investigate this issue further with the HW performance monitors
supported by x86 processors. Based upon the results shown in
Fig. 4 we observe that although throughput significantly
degrades for the default OvS port mirroring configuration,
performance markedly improves and is ostensibly restored by
means of our design.

DPDK 20.05 I2fwd, 2x Ixgbe VFs, Uni-directional
1C1T / Virtio, RX throughput
OvS-DPDK, OvS 2.13.90,DPDK 19.11.0
1x RX Port Mirror, 2x 10 Gbps PF, 1x Virtio / PF

Mirroring Disabled ® Default Mirroring Enabled Mirror HWOL Enabled FE ~ — Mirror HWOL Enabled BE

80
70
60
50

256 512 1024
Packet Size (B)

Figure 4 VHOST (OvS) and VIRTIO Port Mirroring

V. CONCLUSION

In this paper, we demonstrate a novel approach to the design
of a SW-based monitoring system that reimagines a NIC with
mirror HWOL capabilities as a portable, scalable SW TAP, thus
enabling high throughput mirroring on virtually any system.
This design takes advantage of HWOL features to capture traffic
in high throughput environments with minimal impact to the
source NSF. Our mirroring service is run-time reconfigurable

and can be deployed either on the host or guest domains. We
present a mirroring service management system that can be
deployed in several environments since it is based upon common
Linux networking tools available in most kernels, i.e. ip. We
showcase the ability of our mirror tunnel design to be deployed
over both physical and logical devices. Currently, we are
actively engaged with various communities and exploring
upstreaming our contributions to the corresponding mainstream
Open Source projects.

REFERENCES

[1] D. Kreutz, et al., Software-Defined Networking: A Comprehensive
Survey, Proceedings of the IEEE, vol. 103, no. 1, Jan 2015

[2] SNMP, Simple Network Management Protocol, RFC 1157

[3] RMON, Remote Monitoring, RFC 1757

[4] Cisco Systems, Introduction to Cisco I0S NetFlow — A Technical
Overview, Whitepaper, May 2012.

[5] L.M. Wang, T. Miskell, P. Fu, C. Liang and E. Verplanke, Port mirroring
via NIC oftloading, IEEE NOMS 2020

[6] Cisco Switch Design, https://www.cisco.com/c/en/us/support/docs/
switches/catalyst-6500-series-switches/10570-41.html

[7] A. Cecil, A Summary of Network Traffic Monitoring and Analysis
Techniques,https://www.cse.wustl.edu/~jain/cse567-
06/net_monitoring.htm

[8] C. So-In, A Survey of Network Traffic Monitoring and Analysis Tools,
https:/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.448.4989&re
p=repl &type=pdf

[9] T. Miskell, L.M. Wang, E. Finn and M. Mehan, Port Mirroring Offload,
Open vSwitch and OVN 2020 Fall Conference

[10] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak and G. Carle,
Performance Implications of Pakcet Filtering with Linux eBPF, 2018 30"
Int. Teletraffic Congress ITC30, Vienna, Austria.

[11] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices.”
ACM SIGOPS Operating Systems Review, July 2008.

[12] Intel Ethernet Controller X710/XXV710/XL710 Datasheet

[13] README in i40e driver, https://sourceforge.net/projects/e1000/files/
i40e%20stable/2.11.25/

[14] L.M. Wang, A. Zelezniak, E. S. Daniels, T. Miskell and L.D. Chen, Build
an SR-IOV Hypervisor, IEEE IFIP 2019

[15] P. Emmerich, d. Raumer, F. Wohlfart and G. Carle, Peformance
Characteristics of Virtual Switching, 2014 IEEE Int. Conf. on Cloud
Netowrking

[16] S.Jeong,J. You and J. W.K Hong, Design and Implementation of virtual
TAP for SDN-based OpenStack Networking, IEEE IFIP 2019.

[17] TAP as a Service, https://docs.openstack.org/dragonflow/latest/specs/
tap_as_a_service.html.

[18] DPDK, http://www.dpdk.org

[19] Cisco, Implementing ~ Data Center ~ Overlay Protocols,
https://www.ciscopress.com/articles/article.asp?p=2999385&seqNu

[20] E.S. Daniels, Reflections on Mirroring with DPDK, DPDK Summit 2017,
https://www.slideshare.net/LF_DPDK/Ifdpdk17reflections-on-
mirroring-with-dpdk

[21] Y.Y. Yang, W.H. Chen, C.T. Yang, S.T. Chen, and F.C. Jiang,
Implementing of a Real-Time Network Traffic Monitoring Service with
Network Functions Virtualization, 2015 Int. Conf. on Cloud Comp. and
Big Data.

[22] PCI-SIG, SR-IOV Specification, https:/pcisig.com/sites/default/files

/specification_documents/ECN_SR-IOV_Table Updates 16-June-2016
.pdf

