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Abstract—In the last decade, the Internet has been experienc-
ing a gradual transition from a hierarchical network of networks
to a content-driven network. This refactoring of the Internet’s
architecture is heavily based on the deployment of massive data
centers whose basic services are computing, storage, and replica-
tion. This type of data centers may scale up to hundreds of thou-
sands of servers, therefore, demanding a communication scale
and bandwidth much higher than the historical Internet WAN
traffic. Specific data center routing and forwarding solutions are
needed to cope with the stringent communication requirements
in this context. We are experimenting with different routing
protocols to understand each one’s characteristics, advantages,
and disadvantages, focused on measuring convergence time and
behavior under different failure scenarios. A key requirement for
experimentation is to have the ability to decode protocol mes-
sages, typically analyzing control-plane traffic captures. While
this is straight forward for established protocols such as BGP
and IS-IS, it is challenging for newer, under development ones,
such as RIFT (Routing in Fat Trees). In this work, we present an
implementation of a RIFT packet dissector for Wireshark, which
permits to analyze control-plane traffic under different scenarios.
We tested the dissector with two different RIFT implementations,
and it successfully dissected them both. Moreover, our analyzer
can be easily extended to parse any RIFT generated Thrift code.

Index Terms—data center, routing protocol, network-traffic
analyzer, dissector.

I. INTRODUCTION

Internet has been experiencing a gradual transition from a
hierarchical network of networks, with strong Tier-1 and Tier-
2 Transit Providers, to a content-driven network [1], given
Content Providers’ capacity to create user-targeted content and
deploy the needed infrastructure to distribute it. There are dif-
ferent roles in this content-driven Internet; namely: i) Content
Delivery Networks (CDNs), which are built over a mix of
public and private infrastructure, seeking to replicate content
as close to the user as possible for improving their Quality
of Experience; ii) Over The Top (OTT) providers, which run
media applications such as TV streaming, voice, and video
calls; and iii) Cloud Providers, which provide virtualized re-
sources for deploying online applications. These actors (which
frequently play more than one role) have Points of Presence
all over the world. They exchange two types of traffic: i)
public traffic with their users; and ii) private traffic, mostly
related to replicating content and application data storage. This
refactoring of the Internet’s architecture is heavily based on

the deployment of massive data centers with similar basic
functions. These functions include computing, storing, and
replicating, using message exchange among servers over the
supporting communication infrastructure. It is worth noticing
that this type of data center may scale up to hundreds of
thousands of servers. Therefore, conveying packets in these
infrastructures (or among them and the Internet) demands a
vast communication scale and bandwidth much higher than the
historical Internet WAN traffic. Consequently, it is necessary to
design and develop specific data center routing and forwarding
solutions to meet such communication requirements.

Data-center traffic is usually classified as East-West and
North-South. East-West traffic refers to traffic between server
racks, namely, the result of internal applications requiring data
transfers. In contrast, North-South traffic refers to traffic as a
result of external requests from the Internet.

A fundamental requirement for state-of-the-art data cen-
ters is to guarantee constant bisection bandwidth (i.e., the
same capacity available for any-to-any communication among
servers), leading to the resurgence of non-blocking Clos net-
works [2]. These networks are built up from multiple stages
of switches, where each switch in a stage is connected to all
the switches in the next stage, which provides extensive path
diversity. A Fat-tree data-center topology is a particular case
of a Clos network, where high bisection bandwidth is achieved
by interconnecting commodity switches. The Fat-tree topology
idea was originally proposed in [3] for supercomputing and
has been adapted by [4] for data center networks. Further
information can be found in [5] and [6].

Different routing algorithms for Fat-tree topologies have
been proposed, namely BGP in the data center [7], Openfabric
(IS-IS with flooding reduction) [8], and a couple of routing
protocols under active development by the IETF. These new
proposed protocols, Routing in Fat Trees (RIFT) [9] and
Link State Vector Routing (LSVR) [10], seek to combine
the valuable features from both link-state and distance-vector
algorithms. Furthermore, many solutions based on Software
Defined Networking (SDN) have been explored [11]–[13].

While a couple of implementations of RIFT are acces-
sible [14], [15], ongoing LSVR implementations are still
unavailable [16]. Trying to understand the different alterna-
tives, we have been experimenting with the routing protocols
mentioned above, mainly measuring convergence time and
behavior under different failure scenarios.978-3-903176-32-4 © 2021 IFIP
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Fig. 1. Pcap file format

In order to enable experimentation with the RIFT protocol,
in this article, to the best of our knowledge, we present the
first implementation of a RIFT traffic analyzer.

The rest of the paper is organized as follows: in Section II,
we briefly review traffic analysis tools. Then, in Sections III
and IV, we describe the implementation of a RIFT dissector
for Wireshark [17]. Finally, in Section V, we discuss some
aspects of the implementation and possible future work.

II. TRAFFIC ANALYSIS TOOLS

Network protocols are designed for communication between
network devices, and they define mechanisms to identify and
establish connections, and formatting rules and conventions
specified for data transfer. Traffic analyzers (also known as
packet sniffers) are specific software tools that intercept and
log network traffic traversing a network link by means of
packet capturing. The captured packets can then be analyzed
by decoding their raw data and visualized via displaying
various fields to interpret the content, using, for example, the
Wireshark tool [17].

Network packet analysis is usually helpful to gather and
report network statistics, debug application behavior, and
network forensics, typically using traffic aggregations based
on the TCP/IP network headers; inspecting the packet payload
may contribute to further investigate application behavior, and
is particularly useful to identify (and intercept) security threats,
such as DDoS (Distributed Denial of Service). Deep Packet
Inspection (DPI) techniques are implemented in middleboxes
such as Intrusion detection systems (IDSs).

The de facto standard capture format is pcap, implemented
by the libpcap API, originally developed by the tcpdump
team [18]. Pcap is a binary format, which general structure
comprises a global header that contains the magic number (to
identify the file format version and byte order), the GMT off-
set, the timestamp precision, the maximum length of captured
packets (in octets), and the data link type. This information
is followed by zero or more records of captured packet data.
Each captured packet starts with the timestamp in seconds,
the timestamp in microseconds, the number of octets of the
packet saved in the file, and the actual length of the packet.
The general structure is shown in Figure 1.

A comprehensive guide on practical usage of Wireshark and
Tcpdump, including discussion of traffic formats and other
tools, can be found in [19], [20].

III. RIFT DISSECTOR DESIGN AND IMPLEMENTATION

The RIFT dissector was designed as a Wireshark plugin
packet dissector and implemented in C language following
the API provided by this tool.

A. Design

RIFT packets are transported over UDP. The design of our
dissector is guided by the RIFT packet security envelope,
shown in Figure 2, which led us to define three stages in order
to dissect the RIFT packet content:

1) Outer Security Envelope Header: here the dissector must
identify a set of specified and static fields.

2) TIE Origin Security Envelope Header: as well as the
previous stage, here the dissection must identify a set of
specified and static fields. The only difference between
this stage and the previous one is that this set of fields is
present if and only if the RIFT packet type is a Topology
Information Element (TIE).

3) Serialized RIFT Model Object: in this stage, the dissec-
tor must process a set of dynamic fields that follows the
Thrift Binary protocol encoding1 defined for RIFT.

The first two stages are designed with a classical approach,
i.e., the dissector must follow a static definition that assigns a
range of bytes to a field. The third stage represents a change
of paradigm. Thrift is an interface definition language and
binary communication protocol used for defining and creating
services for numerous languages [21]. Thrift allows defining
service interfaces and data-types in a specification file. The
latter permits a dynamic operation of the services and appli-
cations, letting the modeler extend the data-types in a simple
manner by modifying the definition file. This mechanism
provides a rapid process for aggregating or modifying data.

Hence, with this new approach, a RIFT packet needs to be
decoded knowing in advance how the data is specified in the
Thrift definition files and how the data-types and structures
are encoded. It is important to mention that there is a Thrift
compiler that generates a Thrift decoder based on a given
model. Consequently, we can identify two options to design
the dissection of the Serialized RIFT Model Object: i) passing
this part of the binary packet to a Thrift back-end; or ii) write
the C code following the encoded defined in Thrift for the
data-types involved. The latter needs to be done following the
schema for information elements, whose Interface Definition
Language (IDL) is Thrift.

Wireshark’s user interface lets the user highlight some par-
ticular fields in the decoded packet. Furthermore, it highlights
the corresponding bytes in the hex dump of the binary packet.
To that end, the Thrift decoder that is used in Wireshark is
required to (a) have knowledge of the precise order in which
the fields were encoded in the binary message, that could
potentially not be the same sequence as in the model; and
(b) have knowledge of the correspondence between the bytes
in the binary message and the fields in the decoded message.
Currently, the generated code by the Thrift compiler does not
produce this information, so the dissector presented on this
paper follows option (i).

1https://github.com/apache/thrift/blob/master/doc/specs/thrift-binary-
protocol.md



Fig. 2. Security Envelope, extracted from [9]

B. Implementation

The dissector is implemented in C language. Additionally,
we coded a partial dissector for the outer security envelope
header in Lua language following the Wireshark’s Lua API
reference. The implementation is open source and available at
[22].

All the RIFT packets are conveyed on UDP. Hence, the
presented implementation inherits the UDP header dissection
and builds a complete dissection for the UDP payload.

First, the dissection of the security envelope header is
processed. This implementation follows a static representation
of the bits mapped to each field, e.g., the first four bytes
represent the RIFT Magic value for the packet followed by
the other four bytes that represent the Packet Number value.

Considering that the protocol was not associated with any
particular range of ports at the time of the development of
the dissector, it was implemented as a Wireshark heuristic
dissector, i.e., the dissector recognizes a packet as RIFT if the
field RIFT Magic contains the appropriate value defined as the
hexadecimal 0xA1F7 in the current draft of the protocol.

After the RIFT Magic value check, the dissector is in charge
of decoding all the fields of the security envelope header in the
established order: Packet Number, Reserved bytes, RIFT Major
version, and so on. Then, following the presented design, if
the TIE Origin Security Envelope Header fields are included
in the packet, they are identified.

At the end of this stage, the dissection process contin-

ues with the serialized RIFT Model Object, encoded with
Thrift, is divided in a (header, payload) structure too. In the
Thrift encoding, this tuple is defined as PacketHeader
and PacketContent respectively. By dissecting the former,
fields such as the protocol major and minor version, or the
sender identification can be obtained. The PacketContent
has the content of a RIFT packet, i.e., this structure can be
filled with one of the packets defined in the protocol specifica-
tion: Link Information Element (LIE), Topology Information
Element (TIE), Topology Information Description Element
(TIDE), or Topology Information Request Element (TIRE).
It is worth remarking that the implemented dissector identifies
and performs a complete dissection of all these types of RIFT
packets.

TIE messages are exchanged between RIFT nodes to adver-
tise the network topology (e.g., links and address prefixes). For
instance, with the identification and dissection of all the TIEs
exchanged between RIFT nodes, we can study the protocol
convergence in a given topology.

LIE messages are equivalent to HELLOs in IGPs, and
permit to observe the exchanged messages over all the links
between systems running RIFT to form three-way adjacencies,
as defined by the protocol draft.

Finally, RIFT nodes exchange TIDE and TIRE messages,
which are equivalent to CSNP and PSNP (Complete and
Partial Sequence Number PDU) in IS-IS, respectively.

Our dissector can fully decode all the aforementioned mes-
sages, which enables both to have a complete analysis of the
behavior of the protocol and, since the implementation is work
in process, serve as a debug tool for the RIFT developers.

To translate into bytes a given struct defined with the Thrift
IDL, it must be considered that for each field a byte indicating
the type must be decoded. Afterward, the decoding continues
with the two bytes indicating its identifier, and finally its value.
Finally, a null-byte indicates that we finished traversing that
struct.

IV. TOOL TESTING

In this section, we will present how the RIFT dissector
works in a set of selected scenarios set up on the Fat-tree
topology presented in Figure 3. The available RIFT implemen-
tations are, on the one hand, an open-source python project led
by Bruno Rijsman [14] (for now on “rift-python”), one of the
RIFT draft co-authors, and on the other hand, a proprietary
implementation under development by Juniper [15]. We run
the simulated scenarios, capturing rift-python network-control
traffic, using the Kathará framework [23], [24], while Juniper
implementation was tested using their own simulation environ-
ment. We will show and explain the output of relevant packets
useful for debugging the protocol implementation and helping
to understand its behaviour.

A. Bootstrap

The first scenario is aimed at verifying the standard behavior
of RIFT at bootstrap. In this sense, when the fabric starts,
the protocol in the first place tries to set up the adjacencies



Fig. 3. Multi-plane Fat-tree topology

Fig. 4. RIFT TIE message dissection

between the nodes by interchanging LIEs packets, which have
been completely dissected by our tool.

After the LIE interchanges, the nodes running RIFT are
capable of start to share the routing information by sending
TIE messages. The dissector recognizes the TIE security
envelope and parses the serialized RIFT Model Object that
contains the routing information (e.g., TIE prefixes).

With the dissection of this type of packets we are capable of
debugging the implementation by, for instance, checking the
correct values for the fields presented in Figure 2 or verifying
the correctness of the prefixes distribution. The dissection of
TIE messages is shown in Figure 4.

B. Link Failure

The Link Failure scenario permits to verify the ability of the
RIFT protocol to converge after a single link failure. The link
failure was particularly selected in order to cause the called
“Fallen leaf problem”. A “Fallen Leaf” is defined as a leaf that
can be reached by only a subset, but not all, of Top-of-Fabric
nodes due to incomplete connectivity. This particular scenario
triggers a mechanism to prevent black-holing called “negative

disaggregation”. This feature was recently incorporated in the
python-rift implementation and tested using our dissector.

Fig. 5. RIFT negative disaggregation advertised prefixes

After a link failure that causes a fallen leaf, as shown in
the Figure 5, we can observe how our dissector is capable
of dissecting the negative-disaggregation messages. Notably,
the negative disaggregation is advertised with a particular TIE
Element in the TIE’s header.

V. CLOSING REMARKS

In this work, we presented an implementation of a RIFT
Wireshark dissector, which was successfully tested with two
different RIFT implementations.

Using our dissector, we have been able to parse the whole
security envelope for the RIFT messages. This allows us
to identify all RIFT packet types, including the negative-
disaggregation ones, which are relevant for some specific types
of failures in the Fat-tree fabric.

One of our dissector’s main advantages is that it was
designed to facilitate the addition of new RIFT Thrift models.

The dissector is being used to perform scalable RIFT
experiments over the Kathara emulated environment, being
very helpful to understand and debug the RIFT protocol imple-
mentation. Moreover, we are performing live classification and
statistical analysis of RIFT messages using the Python module
pyshark2, which permits to use wireshark functionalities from
Python code.
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