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Abstract—The stakeholders in the Cyber-Physical System-
of-Systems (CPS, SoS, CPSoS) domains need to adopt current
methodologies that enable reliable but also flexible and timely
completion of development, integration, deployment, operation,
and even maintenance-related tasks. The so-called DevOps (De-
velopment & Operations) approach has been proven in various
other domains of IT-related service completion and operation.
Both the technology set and the management approaches of CPS
and SoS practitioners can benefit the adoption of the DevOps
toolchain success stories — the everyday life of software, cloud
and IT-service development, and operations-focused companies.
This paper proposes an expansion of the application area of
the DevOps models, toolchains, and even utilities to the CPS
and SoS domains. It proposes to create an abstraction of CPS
devices as reusable infrastructure resources, which can be then
automatically re-purposed for new workflow tasks, as well as to
fill the remaining DevOps tooling gaps with actual Systems of
the Arrowhead Framework.

I. INTRODUCTION AND MOTIVATION

LOUD and related automation technologies have changed

how software development and infrastructure operations
function in enterprises. Agile DevOps (Development & Op-
erations) [1] and security-enhanced DevSecOps [2] method-
ologies enable flexible, reliable and timely completion of
IT-related processes. This is realized by "Dev” (-plan-code-
build-test-release-) and ”Ops” cycles (-release-deploy-operate-
monitor-) circling into each other. The related supporting
software stacks provide means of working for companies for
developing and operating their IT services and infrastruc-
ture [3].

There is now a plethora of solutions available (let that
be open source or off-the-shelf) that can be combined in
numerous ways to create the technology stack required for
the agile DevOps practice. The underlying IT infrastructure
hosting these enterprise services is also mostly assembled in a
hybrid cloud manner, consisting of (i) legacy, (ii) on premises
and private or (iii) public cloud resources.

Still, such hardware heterogeneity and software diversity
are handled fairly well within these modern Dev(Sec)Ops tool
chains. Here, among others, continuous configuration automa-
tion tools play a significant role in harmonizing and creating
the Infrastructure as Code (IaC) abstraction of hybrid cloud in-
frastructures. Furthermore, virtualization and containerization
technologies enable the creation of container images, that are
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easy to maintain and deploy. Finally, deployment automation
tools make sure that the envisioned software architecture runs
”smoothly” using the developed, containerized applications.

Meanwhile, industrial and manufacturing automation re-
lated IoT systems also face similar, but unresolved challenges.
These are brought on by the diversity of hardware resources
and software development practices even more so that it is
experienced within the IT services domain. IT and OT (Oper-
ational Technologies) are converging in their functionalities to
form Industrial IoT through realizing Cyber-Physical System-
of-Systems (CPSoS). The motivation of this paper is to show
how IT and OT development and operations practices can
converge based on the DevOps approach.

There are some clear challenges that appear when mapping
DevOps methodologies and toolsets to embedded and ambient
systems. This is due to the specific nature of these projects,
such as the source code is tied to a specific hardware, which
has limited resources, or the piece of hardware may also get
produced in low quantities. Therefore automating the tests is
often painful and lacks standard tools that could ease this
process, while testing itself is considered the most important
part of an embedded project. In many cases — where it is
available — simulators are used to test the software, however
only bigger market players provide such solutions. Addition-
ally, waterfall-like models are often applied instead of agile
ones, since embedded firmware usually runs for years without
any modifications. This is especially true for safety-critical
systems, where the current software version has to be certified,
leaving no room for frequent changes regarding requirements.
Moreover, low-powered IoT nodes (e.g. sensors) usually aren’t
IP capable devices (yet), and therefore we cannot usually
assume that they’re accessible remotely via any network. While
this might still be possible for industrial nodes (within e.g.
factory sites), it keeps to be challenging in rural environment,
where permanent power supply is not available.

On the other hand, some elements of the DevOps processes
are already integral parts of modern embedded projects, i.e.
code quality checks. This is because the source code often has
to meet the requirements of a coding standard in industrial
projects (mission-critical included). Generally, adopting further
DevOps approaches and tools for embedded projects could turn
them more efficient in many ways, due to the high level of
automation. Although it is a widely accepted approach, the
lack of appropriate commercial tool chains makes it hard to
create a global standard process.
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The contributions of this paper are the following:

e It proposes to extend DevSecOps methodologies, prac-
tices and tools to the CPSoS domain.

e It proposes a concept, where a configuration man-
agement middleware layer (i.e. the Arrowhead frame-
work), together with basic DevOps practices and tool
chains create an abstraction of the industrial IoT
and CPS devices as reusable infrastructure resources,
which can then be automatically re-purposed while
provisioning new workflows.

e Based on this concept, this paper also suggests aug-
mentations for the Arrowhead framework with (i) con-
tinuous configuration automation and (ii) deployment
automation capabilities and (iii) interfaces towards
other engineering tools for creating an end-to-end
DevOps tool chain in the industrial IoT world.

II. RELATED WORKS
A. Toolchains for Cyber-Physical Systems

There are several development and operational best-
practices available for the manufacturing industry [4] — which
is one of the main endorsers of CPSoS approaches. The IEC
81346 standard [5] defines the engineering process for automa-
tion systems, which have been extended by the Arrowhead
Tools initiative. Extending the standard, this initiative proposes
various toolchains for multi-stakeholder System-of-Systems
development and integration [6] [7]. The main motivations of
that work include the idea of flexible tool-usage in the diverse
ecosystems of industrial IoT, and that input and output data of
the chosen tools can be used as automatically (without human
interaction) as possible. The Arrowhead Tools project has
already validated this model through use-case examples [8].

On the other hand, despite its widely acclaimed advantages
(i.e., agility, efficiency, time-to-market, etc.) DevSecOps-based
methodology and tooling has seemingly been neglected by
the CPSoS domain. So far there are merely a few proposals
towards this direction. One on the pioneers is the “Industrial
DevOps” initiation [9], which briefly describes a continuous
adaption and improvement process, describing the elements
and flows through organizational rather than technical pro-
cesses. Querejeta et. al. propose their approach towards using
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DevOps principles when working with Digital Twins in Cyber-
Physical Production Systems in [10]. This should be only
the beginning, since DevOps provides a myriad of solutions
for making the engineering process flowing better — even for
production systems, or for the wider CPSoS domain.

According to a current comprehensive survey [3] the major
DevOps tools can be categorized the following way based
on their main functionalities: knowledge sharing; source code
management; build process; continuous integration; deploy-
ment automation; monitoring and logging. There are various
other tool taxonomies that exist [11], [12], [13], where the
stages are defined based on the different cultures and philoso-
phies of the teams created them.

This paper considers a relevant DevOps end-to-end pipeline
as Figure 1 depicts. Here, we assume a generic tool chain that
thrives for automating most of the development, integration,
testing, deployment and release management tasks. These
toolchains are very easy to assemble on a high level — with
a mixture of open source and COTS (Commercial Off-The-
shelf) products —, but in reality it is closer to art to actually
implement it well. Nevertheless, in Industry 4.0, we need to
target such a solution for industrial and automation IoT as well.

B. DevOps Principles and Tools

In a well-designed DevOps pipeline, Continuous Integra-
tion (CI) tools and processes enable developers to collaborate
and produce good quality code, in an agile manner. This is
aided by version control tools and methods to reach consensus
on the code base (i.e. merge requests and collective code
reviews). Popular tools are Gitlab [14], Microsoft DevOps [13]
or Github Enterprise [15].

Moreover, automated code quality gates are usually hooked
up within the CI pipeline, enabling the developers to fix
the most common mistakes, easily identifiable by static code
analysis. These checks range from primitive coding issues
to conferring its dependencies with known vulnerabilities
databases. Popular products for code quality checks include
e.g. SonarQube [16], while JFrog Xray [17] is a good example
for containerized applications.

After code acceptance, the built binaries, images or con-
tainerized applications (built usually by a build server, e.g.
Jenkins [18] or Bamboo [19]), deployment automation tools
pick up the developed software artifacts from the artifactory



storage (e.g. JFrog [17]). Here, we envision a standard environ-
ments’ setup, with formalized code promotion process through
lower environments to production. Various automated test
pipelines can be created and executed related to, without being
exhaustive, (i) functional / component level, (ii) integration
tests, (iii) user acceptance, (iv) performance and (v) penetration
testing schemas.

Finally, release management needs to take care of man-
aging the production environment(s). Here, it is essential to
see the separation between infrastructure code and application
code in modern DevOps practices. In modern ecosystems,
where Infrastructure as Code (1aC) tools are deployed (see
II-B2), all infrastructure related processes are automated and
designed via descriptive programming, and applications are
deployed automatically as well, on said infrastructure.

1) Virtualization and Containerization: This paper consid-
ers virtualization and containerization as the key driver of
modern processing and cloud technologies. These technolo-
gies enable resources to be shared between workloads and
also make the deployment of new software and configuration
easier. A containerized (e.g. web) application can be deployed
automatically, in any number of instances, with customized
configuration, connectivity, persistence, with full required run
time also properly set up.

Modern virtualization techniques rely on hardware level
isolation, managed mostly by the processors themselves, run
on specialized hypervisor OS. Meanwhile, containerization
relies mostly on operating system (OS) level separation, and
containers mostly share the same OS kernel. It is worth noting
that these two solutions require very different capabilities from
applications and their hosts [20].

In embedded programming, such advanced application
packaging and execution silo mechanisms are naturally not
available (yet), neither in classic production control systems.
However, embedded firmware images and e.g. soft PLC (Pro-
grammable Logic Controllers) software can usually be built
for individual devices in an automated way, and then flashed
or configured remotely. IP networking access for industrial
IoT devices is one of the main underlying assumption of the
Industry4.0 movement as well. This paper supposes therefore
that industrial and automation IoT devices and control units
can be fully configured, updated and managed remotely, via
IP network.

2) Infrastructure as Code (IaC): Modern DevOps practices
mostly revolve around being able to define whole underlying
infrastructures (even in hybrid cloud scenarios) as high level
script code, which is then automatically compared with cur-
rently existing setup and upgraded to the desired state through
planning and approval. Here, various drivers and plugins have
been developed within these IaC tool chains to support bare
metal, on-prem cloud and public cloud IaaS, PaaS and SaaS
infrastructure components. These [aC tools take care of the
following tasks:

e  Primitive resource provisioning (availability zones,
resource and scaling groups, virtual machines, etc.)

e PaaS and SaaS resource provisioning (managed
databases, various gateways & proxies, etc.)

e Networking configuration (virtual subnets, IP ad-
dresses, firewalls, load balancing, etc.)

[aC, CCA (Continous Configuration Automation) and DA
(Deployment Automation) tools are often mixed together, or
categorized differently than how it is presented here. However,
for our purposes, this categorization helps us better visualize
and present where the proposed Arrowhead solution lies.

Terraform [21] is a popular IaC tool that allows DevOps
engineers to describe the target infrastructure using YAML
descriptors. Terraform assembles a resource graph, and confers
target architecture with current state, and plans the difference.
This plan can then be approved and executed on large scale.
Other popular alternatives are Chef [22] or Salt [23].

3) Continous Configuration Automation (CCA): Continous
Configuration Automation (CCA) tools enable the remote con-
figuration of various hosts (e.g. bare metal or virtual machines,
etc.), and in most cases they are used together within IaC plans.
These tools configure hosts via remote access, most prevalently
over Secure Shell (SSH) for Linux hosts.

As for containerized environments, CCA tools are of-
ten used to execute regular workflows over e.g. the Kuber-
netes [24] or Openshift [25] APIs, i.e. automating operations
tasks (e.g. scaling or upgrades).

Ansible [26], which is a highly popular CCA tool, defines
”playbooks” that are YAML files expressing configurations,
deployment, and orchestration, and allow Ansible to perform
operations on managed nodes.

4) Deployment Automation (DA): Deployment automation
allows to move your software to lower (i.e. development
or test) and production environments by using automated
processes. This leads to repeatable and reliable deployment
processes across the software delivery cycle.

In a generic DA tool chain, developers create containerized
applications, and place it in a build artifactory using build
servers, and tools. After that, the DA pipeline can be invoked,
and deployment starts with the available artifactory image.
Complex DA systems, such as the Openshift [25] ecosystem
(with Kubernetes [24] inside), automate container deployment
in its full extent, i.e. every step after a new version of the
image is pushed to the artifactory. A well-built CICD platform
(with DA at its end) enables quality gates, automated test
pipelines and release approvals, and takes care of the code
promotion process as well. Usually, it is can also be in scope
for DA systems (e.g. Kubernetes “extended” with Istio [27]),
to facilitate the (micro)service mesh architecture pattern.

One interesting and highly relevant concept within DA
solutions (such as in Kubernetes), is node tainting and node
affinity [28]. In general, these mechanisms allow the cluster
management system to decide where a given workload (or pod)
can be deployed. DevOps engineers can label nodes with var-
ious details, and can also specify requirements for workloads
on which nodes the workload can actually be deployed. This
concept can be used to dedicate certain nodes for a workload,
or mark nodes that have special hardware capabilities and
only those can run certain workloads. In a full Industry 4.0
corporation, such handling such device heterogeneity within
its platform is essential.
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This paper introduces CCA and IaC to industrial and
automation IoT deployments. Our solution is targeting a world,
where an entire shop floor can be reconfigured instantaneously,
through automated production code promotion to the CPSoS.
The presented concepts and tool chains aim to alleviate
hardships brought on by the manual, and individual device
update configuration tasks that are so prevalent in today’s
manufacturing world. The main assumptions we rely on:

1) Devices should be handled as reconfigurable, re-
usable resources, having various levels of capability.

2)  These devices are all Internet Protocol (IP) capable,
and their controlling software and system configura-
tions can be modified remotely.

3)  Manufacturing automation could be achieved with in-
dividual devices having appropriate software version
and configuration setup (the required physical layout
changes are considered as pre-deployment tasks).

4)  Developers who work on individual CPS and IoT
device software can code and test on lower environ-
ments, production grade software can be promoted
via release management to the manufacturing floors.

5) Industrial and automation IoT architectures can be
service-oriented, and all network communications can
be realized with IP based communications (even hard
real time applications).

6)  Runtime governance of the CPSoS and manufacturing
workflow management can be achieved, for example
via the Arrowhead framework and its related engi-
neering tool chains [6], [29], [30], [31].

Furthermore, this paper also proposes the creation of a uni-
fied infrastructure abstraction layer that handles all resources
in an enterprise, not just shop floors or IoT devices. The scope
for this paper is depicted in Fig. 2. In an Industry 4.0, all
development and operations tasks should be unified, regardless
whether it is the shop floor itself, the Manufacturing Execution
System layer (MES) or enterprise resources are involved.

The proposed tool chain enables developers to work on
their respective development and continuous integration (CI)
tools, but the assembled executables (binaries, system images,
container images, etc.) would all still "land” in the corporate
artifactory (single source of truth). Here, annotations and taints
put on the software and configuration deliverables are essential.
Not just versioning, or file naming, but other details needs to
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be affiliated with artifacts, so that a deployment middleware
can recognize their potential purpose and future usage.

Based on these taints node tolerations, the Arrowhead
configuration management middleware will take care of setting
up the required infrastructure resources in order to run the
assembled workflows, with the most up-to-date and appropriate
device software and configuration. Fig. 3 depicts the proposed
tool chaining. The purpose of this solution is to abstract
enterprise and automation resources together and homoge-
neously as a Platform as a Service (PaaS) to developers.
Developers should be able to utilize the available resources
of the enterprise on the lower, or even on the production
environments via self-service. They should be able to push and
test their code to embedded systems, industrial control units
or enterprise resources via the same platform. Moreover, but
as equally important, system architects should also be able to
choreograph resources via the same platform.

A. Resource Categories in Industry 4.0 Applications

This paper proposes a categorization for devices that are
present in industrial and automation IoT and enterprise solu-
tions, based on their capability. Table I depicts an example for
this classification, with the most important aspects considered.
Further considerations need to be on CPS and IoT device
categorization, especially in the Arrowhead context [32], [33],
but this is not in scope for this paper, as our main focus here
is related to remote software and configuration management.

1)  Restrained embedded device: devices that have very
limited resources and network connectivity. These
devices are usually sensors or small actuators, and
they serve a single purpose. Remote updates to the
firmware should still be possible, though.

2)  Basic embedded device: devices the are used for em-
bedded programming, but do not suffer from resource
constraint. They still execute simple tasks, but the
device capabilities enable for security [34], software
silo mechanisms and remote updates.

3)  Enhanced embedded device: embedded devices that
have fully fledged OS kernels, and can execute mul-
titasking or even simple containerization.

4)  Computing control units (CCU): traditional control-
ling layer in manufacturing architectures, with fully
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fledged operating systems. Cryptography services
may be implemented as well. Real time IP-based
networking is needed between CCU and embedded
systems on the shop floors.

5)  Enterprise resources: legacy enterprise applications,
usually hosted on premises, maybe virtualized.

6)  Enterprise cloud: private or public clouds, hosting
containerized app’s on virtualized infrastructure.

All these different types of resources need to be managed
and configured by a central resource management middleware,
so that changes can be deployed automatically, if selected. This
can be achieved by annotating both the software artifacts and
the devices (resources) with details related to (i) (supported)
device types, (ii) (required) target device functionality, (iii)
(target) device location - both physical and logical and (iv)
associated workflow where this artifact will be required.

For the last two device types, CCA and DA tools are
already there with industrial best practices crystallized out.
However, for embedded systems or control units, the basic
necessities for the DevOps and IaC practices are currently
not available in public tool chains. There is (usually) no
containerization involved, neither are standard mechanisms
available for configuring fleets of industrial IoT devices.

This paper proposes standardizing the mechanisms of em-
bedded systems to update their firmware and configuration
remotely, based on the assumptions made in section II-B1.
Such a requirement is feasible, and can create the same
homogeneous remote connectivity platform as SSH for Linux
(or Windows RDP) is considered for cloud or on-premises
enterprise resources. Following the industrial practice, we
commonly refer these methods and techniques with the his-
torical term “Over The Air” (OTA), even if these are wired
connections. Open source OTA tools and IoT fleet management
tools are, however, already available, even in open source
format. For example, Eclipse Hawkbit [35] or Mender.io [36]
are popular solutions of software version and configuration
management via OTA.

B. DevOps Toolchain for Industry 4.0

Figure 4 summarizes the proposed DevOps toolchain. Here,
the CI pipelines (embedded development, industrial control

& systems engineering, enterprise development) can all be
customized, to fit the domain needs. Basic testing and collabo-
ration tools can be incorporated together with the appropriate
build tools. Moreover, this solution supposes one enterprise
grade artifactory, and a related artifact annotation process.

From here, a complex DevOps toolchain is defined that
comprises of various tools, depending on the device (resource)
types where the artifact can be deployed. As shown, these refer
to OTA, CCA and IaC with DA tool chains. However, as these
tools require configuration on their own, an additional middle-
ware layer is required to mask the infrastructure heterogeneity.

Using this Arrowhead middleware, the DevOps workflow
for a developer would be independent from what is being
developed. The person must be able to annotate the artifact,
for example that it is a (i) a specific restrained embedded
system type firmware, (ii) targeting pressure sensors (iii) on
press bench workstations 4-10, (iv) as part of workflow 3
(’sedan door assembly”). Later on, for this artifact, as it is an
embedded firmware one, OTA will be used by the Arrowhead
configuration middleware to batch update the firmware on
the target nodes (i.e. update firmware and configuration on
all pressure sensors on press bench workstations 4-10 before
sedan door assembling workflow begins). Actual workflows
can then be choreographed and executed then on using other
Arrowhead tool chain solutions [6], [31], [37].

IV. CONCLUSIONS AND FUTURE WORK

Agile DevOps practices, technologies, toolchains and
frameworks enabled new form of software development and
deployment. Although, this approach is already utilized by
enterprises, it has not been adopted for the lower levels of
industrial CPSoS, due to certain reasons such as: heterogeneity
of devices and related software. This paper described a concept
of combining standard DevOps tools and practices with the
Arrowhead framework to enable a new workflow for devel-
opment and deployment of industrial IoT and CPS devices.
Next steps in this work includes creating PoC demonstrations
to showcase an Industry 4.0 enterprise and how it can benefit
from the concept drawn here.
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