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Abstract—In the Network Functions Virtualization (NFV)
environment, to successfully orchestrate a network service, first
a Virtual Network Function-Forwarding Graph (VNF-FG) must
be composed that realizes the required functionality. Second,
this VNF-FG must be embedded onto the infrastructure, that is
increasingly becoming heterogeneous. To avoid wasting precious
resources during orchestration, intelligent resource allocation
mechanisms and algorithms are needed to effectively tailor the
VNF-FG to the cloud network onto which the service will be
deployed. In this paper, we introduce an improved service model
supporting network services that have bidirectional chaining con-
straints, comprise optional VNFs, and require traffic aggregation.
Building on this service model, we propose placement algorithms
that can optimize the order and number of instances of VNFs,
to adapt the VNF-FG to the availability of resources in the
network. Numerical experiments show that through coordination
of composition and embedding tasks, our proposed algorithms
can significantly improve the acceptance ratio, compared to
algorithms that perform these tasks in two separate stages.

Index Terms—Heuristics, network function virtualization, op-
timization, orchestration, resource allocation.

I. INTRODUCTION

Broadband services are increasingly being deployed in
Network Functions Virtualization (NFV) environments. For
instance, YouTube TV [1], DIRECTV [2] and Twitch [3]
deliver real-time video streams to users world-wide. The cloud
networks onto which these services are being deployed, are
becoming more heterogeneous as services are increasingly
composed of Virtual Network Functions (VNFs) that require
specialized hardware. Moreover, cloud infrastructure is placed
near the edge of the network [4], [5], so, in order to deploy
these complex services on-demand, highly automated service
orchestration algorithms are needed.

These orchestration algorithms realize two important func-
tions [6], [7]. First, the orchestrator composes the Virtual
Network Function-Forwarding Graph (VNF-FG) based on the
Service Requirements (SRs). Second, it decides on how to em-
bed these virtualized resources in the Substrate Network (SN).
Current orchestration approaches often consider the VNF-
FG precomposed. When they do consider the composition,
they typically make very restrictive assumptions on the VNF-
FG. For instance, they assume the VNF-FG to be a Service
Function Chain (SFC) or a tree, which means that VNFs
aggregating traffic, e.g., to generate video compositions or
fuse sensor data in Wireless Sensor Networks (WSNs), are

not supported. Further, state-of-the-art approaches compose
the VNF-FG without any consideration for the SN’s resources.

In this paper, we propose a more widely applicable service
model that can produce VNF-FGs of the Directed Acyclic
Graph (DAG) class, while considering more general chain-
ing requirements and optional performance enhancing VNFs.
Through our proposed optimal algorithm that performs both
composition and embedding at the same time, we demonstrate
the importance of considering the SN during composition.
This consideration of the SN is especially important when
optional VNFs are involved that can either ease or complicate
the embedding. Further, we present two heuristics that can be
used to orchestrate real-life services. One is an extension of
an existing coordinated algorithm to support our generalized
service model. The other is based on an existing embedding
algorithm, that can produce solutions fast, and find better
quality solutions when given more time.

II. RELATED WORK

In a recent survey, the resource allocation problem in
NFV (NFV-RA) has been divided in three main challenges
[7]. 1) The SFC composition challenge asks the following
question: How to concatenate the different VNFs efficiently
in order to compose a Network Service (NS) in the most
adequate way, with respect to the operator goals?; 2) The
embedding challenge that, after the SFC is composed, seeks
to find where to efficiently allocate the VNFs in the network
infrastructure accomplishing the Quality of Service (QoS)
service constraints; and 3) the SFC scheduling that seeks to
answer the question: How to execute each function in order
to minimize the total execution time without degrading the
service performance and respecting all the precedences and
dependencies between the VNFs composing the NS?.

Most of the current work has been devoted to solve the
second stage of the problem that is a specific variant of
the VNE [8]. In [9], authors solve jointly the admission
control and the VNF embedding challenges by proposing an
Integer Linear Program (ILP) formulation that is solved using
successive convex approximation methods. Haeri et al. focus
on maximizing the provider revenue, they jointly perform
Virtual Network Embedding (VNE) embedding and admission
control using Monte Carlo Tree Search (MCTS) [10]. In [11],
an ILP is proposed to formulate the SFC embedding problem
where the objective function seeks for the minimization of the978-3-903176-15-7 c© 2019 IFIP
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bandwidth requirements; the problem is solved in a scalable
and exact way via a mathematical model with a decomposi-
tion scheme. The authors of [12] propose a fully automated
approach to jointly optimizing scaling, placement, and routing
VNF Requests (VNFRs) called JASPER; the approach is
divided in two, an exact Mixed Integer Linear Program (MILP)
approach and a custom heuristic.

While the aforementioned approaches do not consider the
composition stage of the problem, there are some recent
proposals that face this problem. Authors of [13] were the
first to propose an exact ILP-based approach to solve the
composition problem, even if this solution is not scalable it
can be taken as a first approximation to solve this stage. The
first proposal to solve both the composition and embedding
stages was proposed in [14], here authors present an uncoor-
dinated solution where the composition is solved via a greedy
heuristic and the resulting SFC is embedded using an Mixed
Integer Quadratically Constrained Program (MIQCP). The first
approach to solve in a coordinated way SFC composition and
embedding is presented in [15] using a recursive algorithm
that concatenates VNFs and embeds them at the same time;
the problem with this approach is the running time when the
algorithm backtracks due to the impossibility to embed a VNF.

Compared to previous work [16], the approach proposed in
this paper presents three major contributions: 1) a widely ap-
plicable service model with support for optional performance
enhancing VNFs, bidirectional chaining constraints (e.g., for
heterogeneous service delivery) and traffic aggregation (e.g.,
fusion of sensor data in WSNs); 2) an optimal formulation of
the problem as a 1-stage ILP; which is based on a symmetry-
removing Augmented Graph (AG); and 3) a heuristic based
on MCTS to solve the problem in a scalable and near-optimal
way.

III. PROBLEM FORMULATION

This section formally introduces the problem that is studied
in this paper. The problem is to find a good quality initial
Placement Configuration (PC), given SRs and the SN de-
scription. First, the composition and embedding requirements
are introduced. Second, an AG is introduced to simplify
formulation of the problem as an ILP. Third, the combined
problem is formulated as a 1-stage ILP that optimizes the
service composition and embedding at the same time. Finally,
an ILP formulation is provided that can be used to perform
VNF-FG composition and embedding in two separate stages.
The problems introduced in this section require the embedding
of a VNF-FG, which is an instance of the VNE problem
and has been shown to be NP-hard [17]. Consequently, these
problems are at least NP-hard. Throughout this paper, a media
streaming service that distributes a sports event to multiple TV
providers, is used to illustrate the concepts.

A. Composition and embedding requirements

The SRs are listed in Table I. The NS’s functionality
is realized by a VNF-FG. In this paper, the VNF-FG is
considered a DAG. This VNF-FG comprises VNF instances,

TABLE I
INPUT PARAMETERS TO THE SERVICE COMPOSITION.

Symbol Description
V Set of VNFs in the service.
L Set of VLs in the service.

Lout ⊂ L Set of egress VLs in the service.
Lin ⊂ L Set of ingress VLs in the ser-

vice.
Lvout ⊂ Lout Set of egress VLs of v ∈ V .
Lvin ⊂ Lin Set of ingress VLs to v ∈ V .
Vinit ⊂ V Initial VNFs where the service

originates.
Vterm ⊂ V Set of terminating VNFs.

rinit(v) : Vinit → R+ Initial data rate arriving at initial
VNF v ∈ Vinit.

C(lout, lin) : Lout × Lin → {0, 1} Binary parameter indicating if
lin and lout are compatible.

M(lout) : Lout → Z+ Maximum number of VL in-
stances flowing out of a VNF
instance via lout.

Lnextlout
⊂ Lin Set of ingress VLs that the traf-

fic on lout ∈ Lout should pass
through next.

Lprevlin
⊂ Lout Set of egress VLs that the traf-

fic on lin ∈ Lin should have
passed through previously.

drel(v) : V → R+ The ratio of the processing re-
quirement of VNF v, to the
ingress data rate at v.

rrel(lout) : Lout → R+ The ratio of traffic flowing out
lout ∈ Lout, to the traffic gen-
eration rate of VNF v ∈ V .

interconnected by VL instances. A path in this DAG, formed
by an ordered set of VL instances, is referred to as a SFC.
The VNF instances in the VNF-FG are created based on a
set of VNFs (V ). Each VNF v ∈ V has a set of egress VLs
(Lvout) and ingress VLs (Lvin). The processing requirements
of an instance of v ∈ V are proportional to the total ingress
bandwidth to the instance, by a factor drel(v).

An instance of VNF v1 ∈ V can communicate to an instance
of VNF v2 ∈ V through a VL instance, that is formed by
connecting an egress VL of the source VNF instance lout ∈
Lv1out to an ingress VL of the target VNF instance lin ∈ Lv2in.
lout can be connected to lin if and only if (iff) both VLs are
compatible, i.e. C(lout, lin) = 1.

The VNF-FG must contain exactly one VNF instance of
each VNF vinit ∈ Vinit and VNF vterm ∈ Vterm. An initial
VNF vinit ∈ Vinit has no ingress VLs and generates traffic at
a rate rinit(vinit). For an instance of a non-initial VNF v ∈
V \Vinit, the bandwidth on each VL instance corresponding to
egress VL lvout ∈ Lvout is proportional, by a factor rgen(lout),
to this VNF instance’s total ingress bandwidth.

In the VNF-FG, the chaining requirements for an instance
vinst of VNF v ∈ V are the following. On the one hand,
there are requirements related to the neighborhood of vinst.
First, through each of its ingress VLs lin ∈ Lvin, vinst must
be connected to one parent. Second, vinst can be connected
to at most M(lout) children, through each of its egress VLs
lout ∈ Lvout. On the other hand, there are bidirectional chaining
requirements related to vinst. First, for any terminal VNF
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Fig. 1. Service requirements for the working example, grouped per VNF in gray rectangles. Arrows with intermittent lines whose label start with an i and an
e, represent ingress and egress VLs respectively. A solid line connecting lout ∈ Lout and lin ∈ Lin indicates Clout,lin = 1. An arrowhead on this same
line from lout to lin indicates that lin ∈ Lnextlout

. An opposite arrowhead indicates that lout ∈ Lprevlin
. For all v ∈ V , rinit(v)? and drel(v)∇ are indicated.

Further, for all lout ∈ Lout, M(lout)4 is indicated and rrel(lout) = 1.

instance that can be reached from vinst through its egress
VL lout ∈ Lvout, any SFC to this descendant must contain
all ingress VLs in Lnextv . The set of required ingress VLs
that any SFC from vinst to any terminal VNF instance must
contain, will be denoted as N(vinst) ⊂ Lnext. Then, for
any child ṽinst of vinst that is connected via lout to lin,
N(ṽinst) = N(ṽinst)∪Lnextlout

\{lin}. Since a terminal VNF has
no egress VLs, each of its instances vterminst must have re-
solved all dependencies of its ancestors, i.e. N(vterm

inst) = ∅.
Egress VLs that are not in Lprev are referred to as optional. It
is assumed that optional VLs do not change the bandwidth
requirements along an SFC, otherwise the level of service
would depend on the VNF-FG composition. Further, for any
initial VNF instance vinit

inst that can reach vinst through
an SFC that contains lin ∈ Lvin, this SFC must contain all
egress VLs in Lprevv . The set of required egress VLs that any
SFC, from any initial VNF instance towards vinst contains,
is denoted as P (vinst) ⊂ Lprev . This set determines which
children can be connected to vinst.

For the working example, the chaining requirements are
shown in Figure 1. This media distribution service makes
a composition (VNF m) of three video sources (VNFs s1,
s2, s3). The composed stream can contain a combination of
multiple viewing angles of the event and commentary from a
TV studio. m aggregates the traffic flowing onto its ingress
VLs, i.e., i0, i1, i3. In contrast, aggregation of traffic is not
supported in [13], [15], [16]. These ingress VLs each need to
be connected to the egress VL of s1, s2 and s3 respectively.
The VNF-FG can only comprise a single instance of each
initial VNF, and M(e0) = 1. Thus, the service can contain
only a single instance of m. The terminal VNFs, i.e., t1

through t6, each require a copy of the composed video stream
from m. Additionally, these terminal VNFs can have their own
specific service delivery requirements. For instance, the ingress
VL to t1 requires the traffic on its ingress VL, i.e. i6, to have
passed through the egress VL of a watermarking VNF (w),
billing VNF (b) and composition VNF first. The watermarking
VNF can add the TV provider’s logo or advertise a popular
upcoming program. The sequence in which this stream passes
through b and w does not matter for the functionality of
the service. Since M(e8) = 1, only a single stream can
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Fig. 2. Illustration of a valid VNF-FG for the working example with
annotation of CPU requirements† and P /. N identically equals ∅. Thin and
thick arrows represent VL instances with a bandwidth requirement of 1 and
3 bandwidth units respectively.

be processed by any instance of w. Therefore, each stream
arriving at a terminal VNF has been uniquely watermarked.
VL i6 can be directly connected to e8 or e7 (solid line), but
cannot be directly connected to e3 (dotted line). While the
ingress VL to t1 does require watermarking and billing, the
VL ingress to t3, i.e. i8, does not. Moreover, since i8 is not
compatible with e7 and e8, a SFC arriving at i8 cannot have
flown through w and b.

The distribution of the composed video stream from m
towards the watermarking, billing and terminal VNFs is done
by a hierarchical caching network. The first layer (L1) contains
either cL1

S5
or cL1

S20
, neither one’s inclusion in the VNF-FG

is strictly required. The L1 caches can serve watermarking,
billing and terminal VNFs and layer 2 (L2) caches. cL2

S3
can

serve up to 3 VNFs and is optional. While our model supports
bidirectional chaining requirements and optional VLs, [13],
[15], [16] consider only chaining requirements from the initial
VNF towards the terminal VNFs and mandatory VLs.

A VNF-FG satisfying the chaining requirements of the
working example is shown in Figure 2. The used caching
hierarchy comprises one instance of cL1

S5
and two instances of

cL2

S3
. The total ingress bandwidth to the composition instance

(m) equals 1 + 1 + 1 = 3. Since rrel(e3) = 1, the egress
bandwidth along the VL instance from m to cL1

S5
= 3× 1. For

the initial VNF instances, N is empty. For each of the ingress
VLs of m, the ingress VL instance immediately satisfies the
connecting egress VL’s chaining requirement. Consequently,
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TABLE II
INPUT PARAMETERS TO THE SERVICE EMBEDDING.

Symbol Description
H Set of PMs.
E Set of PLs.

φ(v) ⊂ H Set of PMs ∈ H that can host VNF v ∈ V .
D(h) Remaining processing capability of PM h ∈ H .

B(h1, h2) Remaining bandwidth capability of (h1, h2) ∈ E.

for this m instance, N is empty. Further, e0, e1 and e2 are not
Lprev , whence for this instance of m, P is empty as well. e3

however is a required egress VL, therefore it is added to P
for all of its descendants. The same goes for e7 and e8.

The input parameters to the service embedding are listed in
Table II. The SN comprises a set of Physical Machines (PMs)
(H), interconnected by directed Physical Links (PLs) (E). The
set of PMs on which a particular VNF v ∈ V can be executed
is given by Φ(v). The remaining processing capability of h ∈
H is given by D(h). The remaining bandwidth capacity of
(h1, h2) ∈ E is given by B(h1, h2).

B. Augmented Graph

The VNF-FG in Figure 2 comprises three instances of VNF
w. The two w instances that are children of a b instance, have
identical chaining, bandwidth and processing requirements.
These two instances will be called equivalent. Given the SRs
in Section III-A, two VNF instances, vinst1 and vinst2 are
equivalent iff they (1) correspond to the same VNF v ∈ V ;
(2) have identical ingress VL dependencies (N ) after the VNF
instance and the same required egress VLs (P ) appear before
the VNF instance; and (3) they have the same bandwidth
and processing requirements. This equivalence relation is
denoted as vinst1 ∼ vinst2 . Since optional VNFs are assumed
to not change the bandwidth requirements and the bandwidth
requirements are multiplicative; condition (3) follows from (1)
and (2). This property will be used in the AG, which serves
as a basis to describe any VNF-FG satisfying the SRs. This
AG G(Θ,Ψ), comprises augmented VNFs Θ, interconnected
by augmented VLs Ψ, to represent VNF instances and their
possible interconnections. By construction, these augmented
nodes and augmented VLs satisfy the chaining requirements.

The procedure to generate the AG comprises four steps.
First, the augmented VNFs corresponding to the initial VNFs
are generated and added to Θ. For these initial augmented
VNFs, both N and P are empty. Then, these augmented VNFs
are added to a queue (Q1). In the second step, the egress
VLs of the augmented VNFs in Q1 are explored. When an
egress VL lout of θcur in Q1 can be connected to a VNF’s
ingress VL lin, then a new augmented VNF instance is created
(θnew). This connection can be made iff lout and lin are
compatible; P (θcur) ∪ lout contains all egress VLs in Lprevlin

;
and the target VNF of lin is not an ancestor of θcur. If
θnew is not in Θ, then it is added to both Θ and Q1, as its
egress VLs must be explored. Finally, (θcur, θnew) is added
to Ψ if it is not already in Ψ. The third step prunes invalid
augmented VNFs from the AG. In this step there can be two
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Fig. 3. AG for the working example. Empty values of P and N are not
shown.

TABLE III
INPUT PARAMETERS TO THE THE SERVICE COMPOSITION FOR THE ILP.

Symbol Description
Θ Set of augmented VNFs in the AG.
Ψ Set of augmented VLs in the AG.

v(θ) : Θ→ V VNF corresponding to θ ∈ Θ.
Ψout(θ, lout) : Θ× Lout → Ψ Set of egress augmented VLs of θ ∈

Θ, corresponding to lout ∈ Lv(θ1)out .
Ψin(θ, lin) : Θ× Lin → Ψ Set of ingress augmented VLs of θ ∈

Θ, corresponding to lin ∈ L
v(θ)
in .

b(ψ) : Ψ→ R+ Bandwidth requirement of
augmented VL ψ ∈ Ψ

d(θ) : Θ→ R+ The processing requirement of aug-
mented VNF θ ∈ Θ.

types of invalid augmented VNFs in the AG. First, terminal
augmented VNFs with remaining dependencies (N(θ) 6= ∅)
are removed. Second, augmented VNFs with missing parents
are removed. When a node is removed from Θ, then the
validity of its former neighbours in the AG is verified as
well. This step is also implemented with a queue. Forth,
the bandwidth and processing requirements of the augmented
VNFs are calculated recursively. For the working example, the
resulting AG is shown in Figure 3.

C. 1-Stage Integer Linear Program (ILP1STAGE)

In this section, we provide a formal description of our
problem as an ILP [18], which can be used to find an optimal
solution to the combined problem of service composition and
embedding for services with bidirectional chaining require-
ments and optional VLs. To the best of our knowledge, we
are the first to solve this combined problem in an optimal
way. Table III lists the input parameters related to the VNF
chains and service composition. These parameters result from
the AG generation algorithm described in Section III-B. The
input parameters related to the service embedding are the same
as for the original problem (Table II). The decision variables
are listed in Table IV.

Constraints: The augmented VNFs corresponding to the
terminal VNFs are selected.

Xθ = 1 : ∀θ ∈ Θ|v(θ) ∈ Vinit ∪ Vterm (1)

The number of embedded VNF instances equals the number
of VNF instances in the VNF-FG.

Xθ =
∑
h∈H

xθ,h : ∀θ ∈ Θ (2)
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TABLE IV
DECISION VARIABLES OF THE ILP.

Symbol Description
Xθ Integer indicating how many instances of augmented VNF

θ ∈ Θ are in the VNF-FG.
Yψ Integer indicating how many instances of augmented VL

ψ ∈ Ψ are in the VNF-FG.
xθ,n Integer indicating how many instances of augmented VNF

θ ∈ Θ are embedded onto PM n.
yψ,(h1,h2) Integer indicating the number of VL instances correspond-

ing to augmented link ψ ∈ Ψ that are routed along
(h1, h2) ∈ E.

σψ,h Integer indicating how many instances of augmented VL
ψ ∈ Ψ originate at h ∈ H .

τψ,h Integer indicating how many instances of augmented VL
ψ ∈ Ψ terminate at h ∈ H .

For each augmented VNF instance on a node, the correspond-
ing ingress augmented VL instances are provisioned.∑
ψin∈Ψin(θ,lin)

τψin,h = xθ,h : ∀h ∈ H, θ ∈ Θ, lin ∈ Lv(θ)
in

(3)
For each egress VL lout ∈ Lvout of an instance of VNF v ∈ V ,
the maximum number of corresponding egress VL instances
is M(lout). ∀θ ∈ Θ, lout ∈ Lv(θ)

out , h ∈ H :∑
ψout∈Ψout(θ,lout)

σψout,h ≤M(lout)xθ,h (4)

The processing requirements for the VNFs are assumed
additive. If an augmented VNF θ is embedded onto h ∈ H ,
then its processing requirements d(θ) are allocated. For each
PM h ∈ H , the total processing requirements cannot exceed
the node’s remaining capabilities.∑

θ∈Θ

d(θ)xθ,h ≤ D(h) : ∀h ∈ H (5)

VNF v ∈ V cannot be instantiated on PMs that are not in its
candidate set φ(v) ⊂ H.

xθ,h = 0 : ∀θ ∈ Θ, h ∈ H \ φ(v(θ)) (6)

All VL instances in the VNF-FG are routed through the
SN. Multi-commodity flow constraints dictate that for any
augmented VL (θ1, θ2) ∈ Ψ the net number of VL instances
leaving a certain PM h1 equals the difference between the
number of instances of θ1 and θ2 hosted on h1. ∀h1 ∈
H, (θ1, θ2) ∈ Ψ :∑

(h1,h2)∈E

y(θ1,θ2),(h1,h2) −
∑

(h2,h1)∈E

y(θ1,θ2),(h2,h1)

= σ(θ1,θ2),h1
− τ(θ1,θ2),h1

.

(7)

If augmented VL ψ ∈ Ψ is routed along PL (h1, h2) ∈ E, then
its required bandwidth b(ψ) is allocated. The total bandwidth
consumption on a PL cannot exceed the available bandwidth
capability B(h1, h2).∑

ψ∈Ψ

b(ψ)yψ,(h1,h2) ≤ B(h1, h2) : ∀(h1, h2) ∈ E (8)

Objective function: The objective of the resource alloca-
tion is to minimize resources consumption, weighted by the
scarcity of said resource.

L =
∑
θ∈Θ

∑
h∈H

d(θ)xθ,h
D(h)

+
∑
ψ∈Ψ

∑
(h1,h2)∈E

b(ψ)yψ,(h1,h2)

B(h1, h2)
(9)

The objective is to minimize L subject to Equations 1 - 8.

D. 2-Stage Integer Linear Program (ILP2STAGE)

In this formulation, the optimization is performed in two
stages. First, the VNF-FG is composed based on the service
requirements, without any knowledge about the SN capabil-
ities. During composition the number of instances of each
augmented VNF and augmented VL is determined. Where in
the SN, these virtualized resources are embedded is not yet
considered. In a second stage, this VNF-FG is embedded onto
the SN, taking into account the remaining capabilities. This
algorithm is an improvement on related work that performs
composition and embedding in two separate stages. For in-
stance, Ocampo et al. solely consider the composition problem
for VNF-FGs with a tree topology and without optional VLs.
The authors try to find the minimal bandwidth VNF-FG [13].
The authors in [19], [20], [10], [21] assume a precomposed
VNF-FG and solely focus on the VNE. The authors in [14]
propose a 2-stage approach to the combined problem. In
their first stage, a greedy algorithm composes the minimal
bandwidth VNF-FG. In their second stage, the VNF-FG is
embedded using a MIQCP.

Composition: The terminal and initial VNFs are instantiated
exactly once (Equation 1). Further, each augmented VNF in-
stance requires exactly one ingress VL instances corresponding
to each of its ingress VLs in Lv(θ)

in .∑
ψin∈Ψin(θ,lin)

Iψin
= Xθ : θ ∈ Θ, lin ∈ Lv(θ)

in , (10)

where Iψ is the number of instances of augmented VL ψ ∈ Ψ.
For each instance of v ∈ V , the number of egress VL instances
for lout ∈ Lvout is at most M(lout). ∀θ ∈ Θ, lout ∈ Lv(θ)

out :∑
ψout∈Ψout(θ,lout)

Iψout ≤M(lout)Xθ (11)

ILP2STAGE-B minimizes the VNF-FG VL bandwidth in this
stage. The same objective is used in [14] and [13].

B =
∑
ψ∈Ψ

b(ψ)Iψ (12)

ILP2STAGE-C minimizes the processing requirements.

C =
∑
θ∈Θ

d(θ)Xθ (13)

Embedding: The resulting values of Iψ , Xθ from the first
stage are added as constraints. Further, for each augmented VL
its number of instances equals the times that the augmented
VL originates and terminates on any PM in H .

Iψ =
∑
h∈H

σψ,h : ∀ψ ∈ Ψ (14)
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and
Iψ =

∑
h∈H

τψ,h : ∀ψ ∈ Ψ (15)

Finally, the embedding is subject to the constraints in
ILP1STAGE and minimizes L (Equation 9).

IV. SOLUTION STRATEGY

Given the computational intractability of the exact algo-
rithms presented in the previous section, two heuristics are
proposed. REC is a recursive procedure that terminates as
soon as a valid mapping is found, while MCTS can find a
better quality solution when given more computation time.
Both procedures use the GENNEIGH and FINISHED functions.

GENNEIGH(M, κ): generates the (VL, Physical Path
(PP)) mappings that can be added to the current mapping M,
i.e. a list of augmented VL to PP mappings. This function
performs the following steps. First, the VNF instances in
M are traversed. As soon as an instance of v ∈ V with
missing parents via lin ∈ Lvin is encountered, the search for
a missing parent stops. Now, the candidate VL instances to
resolve this missing parent are selected from the AG. A look-
ahead mechanism that verifies Equations 1, 10 and 11, is
used to filter these candidates based on the current number
of instances of each augmented VNF and VL in M. Then,
GENNEIGH generates candidate PPs targeted to the PM on
which this VNF instance with missing parents is hosted, for
each of these candidate ingress VLs. The candidate PPs are
generated using a Breadth First Search (BFS) procedure that
searches the κ closest PMs that can host the source VNF
of this VL instance, while considering remaining bandwidth
and processing capabilities. When no VNF instance in M

is missing a parent, then the next missing terminal VNF
vterm ∈ Vterm must be added. In this case, the candidate
PMs in ψ(vterm) that have sufficient processing capability
remaining to host this VNF, are selected.

FINISHED(M): If the mapping (M) is not missing any
ingress VL or terminal VNF instance, then this mapping
satisfies the SRs and the function returns TRUE. Otherwise
FINISHED returns FALSE.

A. Recursive Heuristic (REC)

The recursive heuristic is described in Algorithm 1, it is an
improvement on the recursive heuristic by Beck et al. [15],
which does not consider optional VLs, traffic aggregation and
bidirectional chaining requirements. This heuristic decides at
the same time which VL instance to add to the composition
and how to embed it. Parameter α limits the maximum
number of backtracks that the algorithm can make. Upon the
algorithm’s initiation, the number of backtracks that have been
performed (a), is set to 0 (Line 2) and the mapping (M) is
empty (Line 3).

REC(M, α) tries to find a valid mapping by extending M. If
REC(M, α) finds a valid mapping, then it returns this mapping
(Line 6). An empty set is returned if the backtracking limit

Algorithm 1 Recursive heuristic.
1: var G(θ,Ψ), G(H,E), B,D, κ, a
2: a← 0
3: M← []
4: procedure REC(M, α)
5: if FINISHED(M) then
6: return M . Success
7: else if a > α then
8: return ∅ . Backtrack limit exceeded
9: end if

10: C ← GENNEIGH(M, κ) . Generate candidates
11: for each c ∈ C do
12: M′ ← [M, c] . Add c to the mapping
13: M′′ ← REC(M′, α) . Recurse
14: if M′′ 6= ∅ then
15: return M′′ . Sucessful recursion
16: end if
17: a← a+ 1 . Backtrack
18: end for
19: return ∅ . Failure
20: end procedure

Algorithm 2 Monte Carlo Tree Search.
1: var G(θ,Ψ), G(H,E), B,D, κ
2: procedure MCTS(β)
3: M← []
4: while ¬ FINISHED(M) do
5: C ← GENNEIGH(M, κ)
6: c← SELECT(M, C, β)
7: if c = ∅ then
8: return ∅ . Failure
9: end if

10: M← [M, c]
11: end while
12: return M . Success
13: end procedure

has been exceeded (Line 8), or if a valid mapping cannot be
found by extending the current mapping (M) (Line 19).

If the current mapping (M) does not satisfy all SRs and
the backtrack limit has not been exceeded, then the algorithm
iterates over all possible candidates c ∈ C. In each iteration, c
is added to M′, i.e. a copy of M (Line 12). Next, the algorithm
recursively searches for a valid mapping by extending M′

(Line 13). If the resulting mapping (M′′) is valid, then this
mapping is returned. Otherwise, the number of backtracks
is incremented and the next candidate in C is tried. If all
candidates have been exhausted, then the algorithm returns ∅.
B. Monte Carlo Tree Search (MCTS)

The MCTS algorithm is described in Algorithm 2. The
search procedure is based on the VNE algorithms presented by
Haeri et al. [10]. The key difference is that these algorithms do
not solve the composition problem. The MCTS is parallelized
using root parallelization; multiple independent searches are
performed in separate threads and in the end the mapping with
the highest reward is selected. For each of these independent
searches, initially the mapping (M) is empty (Line 3). Then,
while this mapping is not complete, the procedure performs
the following steps. The possible candidates (C) to add to the
mapping (M) are generated (Line 5). The SELECT procedure
selects the next candidate (c ∈ C) to be added to the
current mapping (M) as follows. It estimates the reward of the
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candidates in C, by calling SIMULATE(M, C) up to β times.
SIMULATE keeps track of the total reward and visit count of
each candidate in C. In each call of SIMULATE, a candidate
in C is selected using Upper Confidence Bounds for Trees
(UCT) selection, which considers the total reward and visit
count of each candidate. If [M, c] cannot be extended, then
the reward is calculated and the reward and visit count of c is
updated. Otherwise, a rollout is performed on [M, c] using the
default rollout policy. ROLLOUT(Mtmp) iteratively generates
a random next candidate by calling GENNEIGH(Mtmp,N, κ)
and selecting a random candidate, and adding it to Mtmp,
until either a feasible mapping is found, or one that cannot be
extended any further. When SIMULATE returns, the estimated
reward of c is updated using the reward of this simulation.
The reward equals −Γ if the resulting mapping (Mtmp) was
invalid, where Γ is the penalty for a rejected request, with
default value 10. If Mtmp was valid, then the reward equals
minus the embedding cost. When the computational budget
β is exhausted, SELECT returns the candidate in C with the
highest average reward, in case its average reward exceeds −Γ.
This candidate (c) is then added to M and MCTS proceeds
to the next missing VL or VNF, when required (Line 4). In
case all simulations were failures, then the request is rejected
(Line 8). Finally, when no additional VNFs are required, then
the request is accepted (Line 12).

V. PERFORMANCE EVALUATION

A. Simulation Setup

The SRs are the same as in the working example. Requests
arrival and service-rates are modeled as Poisson processes. The
arrival-rate (λ) equals 1 arrival per unit of time. The average
duration of a request is the inverse of the service rate (µ).

Transit-stub SNs are generated using the GT-ITM topology
generator [22]. Any two nodes in the transit network are
connected by a PL with a probability of 80%. Within a
stub-network cluster this probability is 40%. Each PM in the
transit network is connected to 2 clusters, each comprising 9
PMs. In the experiments, the number of transit nodes is 4,
corresponding to 76 PMs. There are 5 types of PM nodes,
modeling the heterogeneity in nodal capabilities. First, 12 of
these PMs can host source VNFs, i.e., s1, s2, or s3. Further,
24 PMs can host target VNFs, i.e., t1 through t6. Next, 12
general purpose PMs can host cpu VNFs, i.e., caching VNFs
and b. Further, 16 PMs are essentially switches, i.e. these PMs
cannot host any VNFs. Finally, 12 PMs can host VNFs that
require a dedicated gpu, i.e., m and w.

For each parameter configuration, 10 random SNs are
generated using GT-ITM, each with a random assignment of
PM types. For a given SN, the location of the source and
target VNFs of different requests are independent of one other.
The PL bandwidth capabilities all equal Bdef . Processing
capabilities are chosen that yield practically useful acceptance
ratios: for cpu and gpu PM they equal 1500. The capabilities
of source, target and switch PMs equal 3000, 2000 and 1000
respectively. Following configuration is used for the heuristics,

balancing computation time and placement quality: κ = 3 and
α = 10000. The ILPs were solved using Gurobi 7.5.2. [23].

Following metrics are evaluated: 1) the acceptance ratio, i.e.
the fraction of requests that is accepted; 2) the SN bandwidth
and CPU processing consumption per accepted request; and
3) the computation time to process a request.

B. Results

Offline: In the offline scenario, the request duration ap-
proaches ∞, or µ → 0. Hence, all requests are active at
the same time. In total 100 requests are processed per SN.
The impact of the PL bandwidth capability Bdef is shown
in Figure 4. Overall, the acceptance ratio goes up as Bdef
increases and it is the highest for ILP1STAGE. It is the lowest
for ILP2STAGE-B when Bdef exceeds 350. For lower Bdef
values, ILP2STAGE-B outperforms REC and MCTS(β = 8),
due to better coordination between PM mapping and PL
routing. This algorithm always composes the VNF-FG with
the highest processing requirements, since it comprises a cL1

S20

instance. The acceptance ratio for ILP2STAGE-B is up to
18% lower than for ILP1STAGE. In this scenario, minimizing
the VNF-FG bandwidth is a poor composition goal. First, its
performance is limited by its high processing requirements.
Second, the minimal bandwidth VNF-FG does not lead to
minimal SN bandwidth consumption. ILP2STAGE-B requires
up to 8% more SN bandwidth than ILP1STAGE.

Compared to ILP1STAGE, ILP2STAGE-C consumes up to
3% more bandwidth. ILP1STAGE can place up to 7% more
requests, by sporadically placing additional cL2

S3
instances and

by optimizing the order in which the traffic flows through
the watermarking and billing VNFs for each target VNF. On
average, these additional cL2

S3
instances increase the processing

consumption of accepted requests by only 0.14%. The required
computation time for ILP1STAGE is up to 4 times higher than
for ILP2STAGE-B and ILP2STAGE-C.

For higher bandwidth values, the acceptance ratio of MCTS
approaches that of ILP1STAGE. As Bdef increases from 200
to 500, the computation time for MCTS increases slightly,
while the computation time for REC decreases by a factor 6.
The reason for this computation time decrease as the Bdef
increases, is that REC requires significantly fewer backtracks
to find a feasible mapping and terminates as soon as a
feasible solution is found. When the computational budget β
is increased, the acceptance ratio of MCTS approaches that of
ILP1STAGE, and the placement cost decreases. As β increases
from 8 to 32, the SN bandwidth consumption per requests
decreases by up to 5%. For instance for Bdef = 450 and
β = 8, the acceptance ratio of MCTS is 4% lower than for
ILP1STAGE, while being 26 times faster. For β = 32, the
acceptance ratio of MCTS is 4% lower than for ILP1STAGE,
while being 8 times faster. The acceptance ratio of REC is
9% lower than for ILP1STAGE, while requiring 333 times
less computation time.

Whether a VNF-FG with minimal VL bandwidth or process-
ing requirements is easiest to embed, or which default com-
position strategy performs best depends strongly on both the
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Fig. 4. Influence of the PL bandwidth capability Bdef , offline, 4 threads.
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Fig. 5. Online traces for Bdef = 450, µ = 0.01 processed requests per unit of time.

application and cloud environment. Hence, the performance of
a 2-stage approach with a given objective in the composition
stage is strongly dependent on the SN conditions. Further,
REC explores multiple compositions only when it backtracks.
Hence, compared to ILP1STAGE and MCTS, its computation
time and placement quality is strongly dependent on the
order in which the candidates in GENNEIGH are ordered. In
comparison, ILP1STAGE always composes the VNF-FG that
is easiest to embed and MCTS converges to this composition
when provided more computation budget.

Online: The online traces are shown in Figure 5. In the
online scenario, the traces are smoothed by a moving aver-
age with a window of size 100 requests. Since µ = 0.01
processed requests per unit of time, when all requests can
be accepted, in steady state the expected number of requests
active at the same is 100. Initially, all algorithms can place
the incoming requests. Then, the acceptance ratio decreases
first for ILP2STAGE-B and REC. The bandwidth consumption
is the highest for MCTS, followed by REC, ILP2STAGE-B,
ILP2STAGE-C and ILP1STAGE. The CPU consumption is the
highest for ILP2STAGE-B. The computation time for REC
shows a lot of variation. When finding a feasible placement is

easy, then the computation time is very low. As finding a valid
placement gets harder, its computation time increases and is
ultimately limited by the backtracking limit. Both ILP1STAGE
and ILP2STAGE-C can place all requests. Compared to the
other algorithms, the computation time for MCTS is rather
insensitive to the SN loading.

VI. CONCLUSIONS

In this paper, we focused on the resource allocation chal-
lenges related to the orchestration of NSs in NFV envi-
ronments. We introduced a service model with improved
applicability, that can describe a richer class of VNF-FGs.
We proposed an optimal placement algorithm that can adapt
the VNF-FG to the availability of resources in the SN, while
considering the SRs. We demonstrated that our optimal algo-
rithm can improve the acceptance ratio by up to 18% while
requiring only 4 times more computation time, compared to
algorithms that do not coordinate composition and embedding.
Our proposed approach can find the best PC for any cloud
environment. Further, we presented two heuristics that can find
near-optimal solutions up to 26 and 330 times faster than the
optimal algorithm.
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