
A Method for Temporal Event Correlation
Robert Harper
Moogsoft Ltd

River Reach, 31-35 High Street
Kingston-Upon-Thames, UK

rob@moogsoft.com

Philip Tee
Moogsoft Inc

1265 Battery St
San Francisco, CA 94111

phil@moogsoft.com

Abstract—In recent years, the use of data-driven algorithms
has gained significant traction as a method of localizing faults in
commercial networks through the analysis of network events.

While the number of different failure scenarios in any IT
infrastructure is potentially unbounded, the fundamental mech-
anisms of fault propagation and related failure modes are much
smaller. A significant component of many failure modes is a
statistically predictable time pattern of event production. In
this paper we describe a novel approach for identifying faults
that produce such a sequence of events, based only upon their
temporal arrival pattern.

The approach uses state-of-the-art optimization techniques to
establish a temporal similarity graph for a given group of alerts.
Community detection algorithms are then applied to the event
similarity graph in order to determine groups of faults with
similar arrival patterns. We demonstrate the efficacy of the new
approach by applying it to simulated event streams in realistic
failure scenarios, reproducing results that are consistent with
experience of deploying the technique in real world networks.

I. INTRODUCTION

The underlying hardware and software services running in
an IT infrastructure generate huge quantities of operational
status data. This data generally takes the form of a series
of atomic, state-change notifications referred to as events. A
typical enterprise IT infrastructure generates millions of events
per day at rates of about 100 events per second. The largest
enterprises generate orders of magnitude more event data.

Individual events do not always represent problems that
require remedial action, application heartbeats, amongst many
others, fall into this category. Within the millions of individual
events generated each day, the typical large enterprise may
have only a few hundred actionable incidents.

The process of identifying actionable incidents lies in the
domain of Fault Localization. Fault localization encompasses a
suite of different techniques that help isolate service-impacting
failures and consequently any remediation actions that are
required, techniques such as Noise Reduction and Root Cause
Analysis (RCA). [1], [2] are excellent reviews of the field.

Historically, rules-based approaches have been used. Man-
ual exclusion techniques such as blacklisting can be an ef-
fective form of noise reduction, [3], but they are difficult to
maintain and are impractical at industrial scale. Root cause
analysis systems such as [4], [5], [6], require behavioral
models to be created, models that are intrinsically coupled

to the infrastructure being managed. Not only are these
models time-consuming to create, [7] but the tight coupling
renders these techniques ineffective as soon as the underlying
infrastructure changes. Moreover, and despite remaining key
to some current commercial offerings, these RCA techniques
are largely obsolete, especially given todays highly dynamic
network and application infrastructures, [8], [9].

Artificial Intelligence (AI), specifically machine learning
and data-driven techniques continue to gain traction and are
now recognised alternatives to model based approaches [2],
[10]. AI-based techniques have been applied across the fault
localization domain. The high-level concepts behind data-
driven noise reduction techniques are described in [11]. And
by looking beyond the data held within an event and to
the underlying network structure, [12] describes a method to
identify those entities that are more likely to generate service-
impacting incidents. An application of supervised machine-
learning techniques for identifying root cause events is demon-
strated in [13], while [14] shows that data-driven techniques
have the capability to be more accurate and more resilient to
change when compared with rules-based systems.

In this paper we explore further data-driven techniques to
improve fault localization for a class of failure where the
temporal nature of events is a key indicator of root cause.

We begin in Section II by describing our proposed tech-
nique, and introduce the necessary nomenclature in Sections
II-A to II-C. Details of the different components of the
algorithm are presented in Sections II-D to II-F, and we
present the results of this analysis in Section III. The analysis
was performed against simulated data, although our employer
[15] has access to large amounts of real world data, this is
covered by confidentiality restrictions. We close with Section
IV where we discuss further enhancements and optimizations.

II. ARCHITECTURE

A. Definitions and Nomenclature
The following definitions are used throughout this paper:
Event An atomic notification from a network device,

application or monitoring system. An event may
not represent a fault, however a fault condition
will result in at least one event being emitted.

Alert A set of events grouped according to shared
attributes. An alert will be closed once the un-
derlying fault has been remediated.978-3-903176-15-7 c© 2019 IFIP

13

Time

1
2
3
4
5
6

A
le

rt
s

Fig. 1: Representation of event arrival times for multiple alerts

Incident An actionable support item, such as a service
interruption, requiring remediation.

Situation An operational or causal grouping of alerts used
to raise an Incident.

B. Motivation
There are countless different failure scenarios that can occur

in the IT infrastructure of a large organization.
The majority of incidents are not created to describe catas-

trophic service outages. More common are incidents that en-
capsulate so-called “brown-outs”. For example, an individual
service may experience increased database latency, causing in-
creased response times for a product’s end-users. Such failures
generally lead to events being generated asynchronously over
a period of time as each entity becomes impacted.

A different class of failure, such as the complete failure of
a piece of networking hardware or the failure of a specific
process running on a server, tend to have a more immediate
impact. In these cases, multiple events from different sub-
systems get generated at, or close-to, the same time, critically
with a temporal pattern characteristic of alert propagation.

The aim of the current work is to automatically detect the
second class of failure.

C. A Typical Use-Case
A schematic representation of the event arrival patterns for

six different alerts is shown in Fig. 1. Each row represents an
alert and each symbol within that row represents the arrival of
an event. The alerts represented by the diamonds (alerts 1, 2,
4 and 6) have three, approximately co-occurring events. The
alerts represented by the circles (alerts 3 and 5) have four,
approximately co-occurring events. Visual inspection suggests
a strong correlation between the arrival time of all of the events
within each group.

The underlying premise of the proposed method is that a
class of infrastructure failure exists where the failure of one
entity will induce failure in connected nodes in a cascade. This
manifests itself as a series of events being generated that are
closely linked in time, have a temporal pattern that is repeated
up to statistical variance, and sequential.

In the next sections we describe a novel technique that clus-
ters alerts into distinct groups containing alerts with similar
event-arrival patterns. Concretely, and for the case shown in
Fig. 1, the technique would generate two clusters of alerts, or
situations. One situation containing alerts 1, 2, 4, and 6 and a
second situation containing alerts 3, and 5.

D. Similar Arrival Patterns
Techniques for event correlation, such as [12], [14], use

the semantic and lexical similarity of alert attributes or the
topological importance of a source device to correlate alerts. In

Time

1
2
3
4
5
6

A
le

rt
s

(a) Ideal Buckets

Time

1
2
3
4
5
6

A
le

rt
s

(b) Very large bucket size

Time

1
2
3
4
5
6

A
le

rt
s

(c) Large bucket size

Time

1
2
3
4
5
6

A
le

rt
s

(d) Medium bucket size

Time

1
2
3
4
5
6

A
le

rt
s

(e) Small bucket size

Fig. 2: Representation of different bucketization schemes

this section we describe a technique to determine a similarity
measure for two alerts based purely upon event arrival-time.

Our approach to determining alert similarity is based upon
time-bucketing. We divide time into equal sized buckets and
assign each event to a bucket based upon its arrival time.

Fig. 2 shows the concept of time bucketization and qual-
itatively, how bucket size can impact upon accuracy. In this
example the alerts should be grouped into two distinct clusters;
one containing alerts 1, 2, 4 and 6, the second alerts 3 and 5.
An idealized discretization scheme is shown in Fig. 2a.

Fig. 2b shows how events get bucketized when a very large
bucket size is used. In this case almost all alerts occur in
the same buckets, and it is likely that all alerts would be
considered similar. As the bucket size is reduced, Fig. 2b
to Fig. 2e, alerts that should be considered similar, fall into
different time buckets. The events of alert 1, 2, 4, and 6 in
the first column of Fig. 2c get split across multiple buckets in
Fig. 2d. Similarly the events from alert 3 and 5 in the third
column of Fig. 2d get split across two columns in Fig. 2e.

Intuitively, a large bucket size leads to an increase in the
number of false positives i.e. alerts being considered similar
when they are not, whereas a small bucket size leads to a

IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management14

Time

1
2
3
4
5
6

A
le

rt
s

Fig. 3: Bucketization with small buckets and arrival spread

larger number of false negatives, i.e. alerts being considered
dis-similar when they are in fact correlated.

In addition to bucket size, the temporal position of an alert in
a bucket also impacts accuracy. Two events may arrive within a
fraction of a second, but, depending upon the bucket-boundary
location, those events may end up in different buckets, again
leading to an increase in false positives.

In order to overcome these limitations the approach taken
in the current study is to use a small bucket size but to
“spread” the event arrival across multiple buckets. A schematic
representation of this approach is shown in Fig. 3.

Once each event has been assigned to the appropriate
buckets, the alert similarity can then be calculated using any
of the standard set similarity algorithms.

We begin the description of the algorithm with some formal
notation. A set of events, E is collected over time T . These
events are themselves effectively a feature vector, containing
attributes such as the source of the event, time of arrival and
so on. We can formally define an equivalence relation between
events, where two events Ei ∼ Ej if there is a similarity
function s(Ei) definable on the attributes of the event such
that s(Ei) = s(Ej). Practically, such an equivalence relationship
would, for example, conclude that all "Ping Fail" events for the
same host are equivalent to each other and can be represented
by a single alert, a process known as de-duplication. In this
way we can define the set of alerts A = {Ai} as the set of
equivalence classes of E as follows:

Ai = E/∼ (1)
E =

⋃
i Ai (2)

Ai ∩ Aj = ∅ . (3)

Time is split into Nb equally-sized time-buckets of duration
δTb . An event, arriving at time t is assumed to have arrived
across Ns time-buckets centred on t.

We construct an alert feature matrix, F |A|×Nb
such that

Fi j = 1 when an event from alert i has arrived in time-bucket
j, and is elsewhere zero. We can then construct a similarity
matrix M |A |× |A | , as Mi j = Sim(Fi, Fj) where Sim() represents
a function to calculate an arbitrary similarity measure.

In the current contribution we use the Jaccard similarity, J,
where:

J(X1, X2) =
|X1 ∩ X2 |

|X1 ∪ X2 |
, (4)

and X1 and X2 represent arbitrary sets. In the current case

Mi j =
| fi ∩ fj |
| fi ∪ fj |

, (5)

where fi = {k : Fik = 1}.

Calculating Mi j requires a pairwise comparison of every
element in A, a so-called Similarity Join. A naive implemen-
tation scales as O(|A|2), a prohibitively expensive operation
for a set with large cardinality and when results are required
in real time. To reduce the time complexity of the calculation
there are optimization techniques such as prefix filtering, [16],
[17]. For the current study we use the approach in [18] but
adapted for the Jaccard similarity measure.

A key part in all the optimization techniques is the concept
of a similarity-threshold, θsim, below which, two elements are
considered to be completely dis-similar. In our case we define
Mθ by zeroing all elements of M, when Mi j ≤ θsim.

While the primary motivation for θsim is computational
efficiency, it has practical utility in our case. Intuitively, there is
a similarity below which it makes little sense for us to correlate
alerts. For example, θsim = 0.5, may be an obvious choice,
it is the point at which there are more uncorrelated arrivals
than correlated arrivals. In our case we are only interested in
alerts, whose arrival patterns show high degrees of similarity.
The analyses presented in Section III use θsim = 0.8.

E. Graph Theory & Community Detection
One of the main drawbacks in the application of unsuper-

vised clustering techniques such as k-means and non-negative
matrix factorization, is the requirement for k, the number of
clusters, to be pre-defined. The optimum value for k depends
upon the data being analysed and while techniques such as
the silhouette score, [19], can be used to optimize k, they
are interactive techniques that do not lend themselves to an
automated process. Ultimately, and regardless of whether a
partitioning approach such as k-means or a density-based
clustering technique is chosen, a parameter needs to be pre-
defined that dictates how the data will be grouped. One of the
primary motivators for our choice of clustering technique is
to eliminate the need for such a parameter.

In this and subsequent analyses we use standard graph
theory notation, and make use of the adjacency matrix B,
where Bi j , 0 represents the links between nodes i and j,
additionally, we consider only simple undirected graphs.

For the set of alerts, A, the output of the method described
in II-D is an alert similarity matrix, Mθ

|A|× |A|
. The properties

of Mθ , are identical to those of a edge-weighted adjacency
matrix and hence any analysis techniques applicable to B can
be equally applied to Mθ .

Community detection algorithms aim to group the vertices
of a graph into distinct sets, or communities, such that
there exist dense connections within a community and sparse
connections between communities. Intuitively a community
detection algorithm applied to Mθ , will generate a set of alert
groupings, I, where each group contains a set of alerts whose
events share similar arrival patterns.

A review of the different community detection algorithms
is available in [20]. The criteria against which any algorithm
must be assessed in order to gain adoption within the current
context, are accuracy, scalability, memory consumption, and
speed. For the purposes of the current analysis we concen-

IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management 15

trated only on community-detection algorithms based upon
modularity maximization, specifically the well-known Louvain
algorithm, [21].

F. Situation Creation
The final step in our approach is the conversion of the

communities, I, into the set of situations, S. To create them we
introduce a new free parameter of the model θalerts , which is
the minimum cardinality of any discovered community Ii ∈ I.
We can then define the situations discovered as:

S = {Si} (6)
Si ⊂ A (7)

Si ∩ Sj = ∅ (8)

S =
{
Ii ∈ I |Ii | > θalerts

}
(9)

¬� (A =
⋃

i Si) . (10)

The properties of S, defined by equations 8, 9 and 10, have
important operational significance: an alert must appear in at
most one situation; a situation should contain at least θalerts
alerts; and an alert is not required to appear in a Situation.

III. ANALYSIS

In this section we quantify the efficacy of the technique
from Section II against a subset of the failure scenarios seen
in IT infrastructures.

Owing to a lack of ground-truth event data, we have sim-
ulated several failure scenarios. Each of the failure scenarios
outlined below was overlaid on a randomly generated back-
ground event-stream and the algorithm of Section II executed
against it. Approximately 20 minutes of background event data
was generated at an average rate of 100 events per second.
The inter-event arrival times were generated to approximate a
distribution observed in a real environment.

A. Failure Scenarios
Out of all the failure scenarios observed in an IT infras-

tructure only a subset exhibit the temporal patterns of alert
propagation for which the current detection method has been
devised. For this study we focus on four such scenarios.

1) Flapping Interface: A common failure mode for inter-
faces on switches or routers is for a port to repeatedly
swap between “up” and “down” states in rapid succes-
sion. On interface failure, connected devices generally
produce, near instantaneously, an asynchronous accessi-
bility error such as a LinkUp or LinkDown trap. These
failures can be of arbitrary duration and are characterized
by state-change events occurring at a rate of one every
few seconds up to multiple per second.

2) Container Failure: Representative of the failure of a
“Container” and its contained entities such as a virtual
machine (VM) server and the VMs it manages. When a
VM server fails, the management system will, in general,
generate an event to indicate the server failure followed
by separate events to notify the inaccessibility of each
contained VM. An individual server may contain many

TABLE I: Failure Scenario Parameters

Failure
Duration

(secs)

Alert
Count

Burst
Duration

(secs)

Inter-Burst
Time
(secs)

Flapping Interface 60, 300,
600, 1200 12, 24, 48 - 1, 1-5,

2-10
Container Failure 1 - 12, 24, 48 1 -
Container Failure 2 - 20, 30, 50 30 -

Service Failure 60, 300,
600, 1200

10, 20,
30, 50 5 5-30

Intelligent Polling 1 300, 600,
1200 100 5 60

Intelligent Polling 2 300, 600,
1200 200 10 60

Intelligent Polling 3 300, 600,
1200 500 30 60

tens of VMs. Notification of a VM failure generally
occurs within 30 seconds of the server failure.

3) Service Failure: The failure of an IT service can often
be characterized by the events generated by dependant
applications. We characterize this failure by distinct
bursts of events generated over short time-span of up
to a few seconds. Each burst occurs at random intervals
as different applications encounter the same fault.

4) Intelligent Polling: Following the failure of an interface
or routing device, a common management technique is
to periodically poll the devices that have become discon-
nected until they become accessible. Each inaccessible
device would be polled on a round-robin basis at rate
of approximately once per minute. Many hundreds of
devices may be impacted in this way. The duration of
each polling sweep will depend upon the number of
impacted devices, but is usually of the order of seconds.

Each of the above failure scenarios can be characterized by
some, or all, of the following parameters

Failure Duration How long the failure persists for.
Alert Count Number of alerts each failure generates.
Burst Duration Time over which a burst of events occurs.
Inter-Burst Time Time between event bursts.
Table I shows the different parameters used to define each

failure scenario. Note that in the Flapping Interface scenario,
there is no burst duration as all the events are created instan-
taneously. Similarly, for a Container Failure, failure duration
and the inter-burst time do not apply.

B. Results
In addition to the parametric definitions of each failure

scenario, Section II outlined several parameters that control
behavior of our algorithm. To limit the number of experi-
mental permutations we fixed several parameters across all
experiments as shown in Table II.

We have analyzed the results using well known measures
of algorithmic effectiveness, but the nature of the experiment
calls for some particular choices regarding those metrics.
Alongside the well-known F1 score, we also make use of
the False Positive Rate (FPR) and the specific values for
incorrectly clustered alerts and incorrectly observed situations.

IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management16

TABLE II: Algorithm Parameters

Parameter Value
Event Collection Period, T (secs) 1200
Similarity Threshold, θsim 0.8
Alert Threshold, θaler t 4
Bucket Size, δTb (secs) 5
Arrival Spread, δTs (secs) 15, 30, 45, 60

0 15 30 45 60
0

0.2

0.4

0.6

0.8

1

Arrival Spread, δTs (secs)

Fa
ls

e
Po

si
tiv

e
R

at
e,
×

10
−

2

0

20

40

60

80

C
lu

st
er

ed
A

le
rt

s,
FP

II

0

5

10

O
bs

er
ve

d
Si

tu
at

io
ns

Observed Situations

Clustered Alerts

False Positive Rate

Fig. 4: Accuracy Metrics for the Background Event Stream

To calculate the F1 score and FPR, we adopt the following
definitions:

True Positive A failure alert correctly assigned to a
situation. If the failure alerts are assigned
to multiple situations, the largest is used.

False Positive I A failure alert correctly included in a
situation but where a larger proportion of
failure alerts are in a larger situation.

False Positive II An alert from the background event
stream included in a situation.

True Negative An alert from the background event
stream not included in a situation.

False Negative A failure alert not assigned to a situation.
The sum of False Positive I (FPI) and False Positive II (FPII)
is used to calculate the F1 score.

An integral part of our analysis is the randomly generated,
background event field. The objective of any unsupervised
machine learning technique is to discover hidden patterns
within a given dataset. To identify any co-incidental patterns,
we executed our method against the background field. Fig. 4
shows the accuracy metrics for the analysis, specifically: the
FPR, FPII, and the number of Observed Situations, OS. Ideally,
the value of each metric would be 0 for all values of the Arrival
Spread, δTs . In this analysis the qualitative trends of FPII and
OS are more important than specific values. We observe that
for 0 ≤ δTs ≤ 15, no situations are created. As δTs increases,
the number of co-incidentally observed situations rises, a
relationship, that whilst undesirable, is expected. At δTs = 60,
11 situations are observed grouping a total of 68 alerts, with an
FPR of only 0.74 × 10−3. To ensure a consistent assessment
of our technique, these “co-incidental” situations have been
subtracted from the results of all subsequent experiments.

A high-level assessment of our technique, across all failure
scenarios and for all permutations of the algorithm parameters,

TABLE III: Number of Experiments with F1 = 1.0

Failure Scenario Failure Duration (secs) Expt. Count
60 300 600 1200 All

Flapping Interface 36 36 36 36 144 144
Container Failure 1 - - - - 12 12
Container Failure 2 - - - - 0 12
Service Failure 14 15 15 15 59 64
Intelligent Polling 1 - 2 2 2 6 12
Intelligent Polling 2 - 1 1 1 3 12
Intelligent Polling 3 - 1 1 1 3 12
Total 50 54 54 54 221 268

15 30 45 60
0

0.5

1

Arrival Spread, δTs (secs)

F
1

Sc
or

e

0

50

100

Tr
ue

Po
si

tiv
es

(%
)

0
5

10
15

O
bs

er
ve

d
Si

tu
at

io
ns IP1 IP2 IP3

Fig. 5: Accuracy Metrics for the Intelligent Polling Scenarios

is shown in Table III, specifically the number of experiments
where F1 = 1.0 was obtained. Perfect precision and recall
were achieved in 221 out of a total of 268 experiments.
For two failure scenarios, the Flapping Interface (FI) and
Container Failure 1 (CF1) cases, no errors were observed and
for the Service Failure (SF) case over 92% of the experiments
contained no errors. The main reason for the accuracy of the
FI, CF1 and SF failure cases is the short burst duration of 5
seconds or less. We also note that the duration of each failure
had little impact on the accuracy of the method.

Further analysis revealed there to be only 5 cases where
FN > 0, and no cases where FPII > 0. Directly put, the only
alerts that were ever clustered into situations were associated
with a failure and in 263 of the 268 experiments all of the
failure alerts were associated with an actionable situation.

We now examine the results from the Intelligent Polling
(IP1-3), CF2, and SF failure scenarios in more detail.

For the SF scenario, we observed only 5 cases (out of
64) where we didn’t achieve an F1 score of 1.0. All those
cases used δTs = 15, and all the failure alerts were correctly
identified (i.e. FN = 0). The inaccuracy in the F1 score occurs
because the failure alerts were grouped into two situations
rather than one. For values of δTs ≥ 30 all the failure alerts
were correctly grouped into a single situation.

Because the duration of a failure has little impact on
accuracy, the results presented for the IP failure scenarios have
been averaged over all the values of failure duration for each
value of δTs . The results are shown in Fig. 5, in addition, for
all cases, our method gave FN = 0. The results show a clear
relationship between δTs and accuracy. As δTs increases the

IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management 17

0

0.2

0.4

0.6

0.8

1

A
le

rt
C

ou
nt

s,
T

P,
FP

I,
FN

15 30 45 60
0

0.2

0.4

0.6

0.8

1

Arrival Spread, δTs (secs)

F
1

Sc
or

e

0

2

4

6

O
bs

er
ve

d
Si

tu
at

io
ns

Observed Situations F1 Score TP FP1 FN

Fig. 6: Accuracy Metrics for the CF2 Scenario

F1 score approaches 1.0, the number of situations reduces to
the expected value of 1 and the proportion of failure alerts
clustered into that single situation increases to 100%.

At each value of δTs the accuracy of the method improves
as the burst duration reduces. For δTs = 15 the number of
situations drops from 13 to 3, for burst duration of 30 and 5
seconds respectively. The larger the value of δTs in relation
to the burst duration, the more likely that alerts occurring at
different times can be considered co-incident and consequently
posses a high temporal similarity. For a given set of alerts, the
higher their similarity, the larger each community will be and
hence fewer situations will be generated.

The results for CF2 are shown in Fig. 6. The main variable in
this case was the number of alerts generated by each failure,
which was observed to have little effect on the results. For
each δTs we present average values for the F1 score, OS,
and the counts of each failure alert classified as TN, FPI,
or FN, expressed as a proportion of all failure alerts. The
qualitative behaviour of our method against CF2 is inline with
other scenarios, however it is the only one where the method
failed to achieve an F1 score of 1.0 and where FN > 0.

The reduced performance for the CF2 case, when compared
with IP3, which uses the same value for the burst duration, is
that CF2 has only a single event per alert. For the IP cases
each alert contains repeating events, increasing the likelihood
of alerts sharing co-occurring events. Comparison of CF2 with
CF1, shows directly the impact of burst duration on accuracy.

Much of our analysis has focussed on those failure scenar-
ios where our method didn’t achieve perfect results. While
analysing the reasons for inaccuracies is important, it is also
important to view the discussion in the context of the method’s
generally high accuracy, as shown in Table III.

IV. CONCLUSIONS

In this work we have described a novel algorithm for fault
localization. The algorithm exploits the categorical equiva-
lence between matrices and graphs, to transform the clustering
of temporal similarity into the well understood exercise of
modularity detection in graphs. Applied to realistic real world
scenarios, we demonstrate that it is effective in capturing
and clustering together causally related alerts resultant from
failures that posses a temporal pattern of alert propagation.
This success persists even when the alerts are embedded

in a random background. A variant of this algorithm is in
commercial use at a number of enterprise scale networks, and
is the subject of a patent filing by our employer Moogsoft.

There are a number of interesting future avenues for further
research to extend and investigate this and related approaches.
In particular the question of random background removal is an
interesting one, and, continuing to improve the performance
of the approach in high noise environments is a particularly
important problem. Similarly, the ability to cope with failures
of radically different cascade parameters will further enhance
the utility of the approach. More theoretically, the algorithm
used one particular definition of graph modularity, out of
many alternatives. It is an open question if other techniques
of module detection will produce different results. Indeed, the
central insight that led to this algorithm (the close relationship
between matrices and graphs) is also, we believe, a rich area
for the development of further fault localization approaches.

REFERENCES

[1] M. ł. Steinder and A. S. Sethi, “A Survey of Fault Localization
Techniques in Comput. Networks,” Sci. of Comput. Programming, 2004.

[2] A. Dusia and A. S. Sethi, “Recent Advances in Fault Localization in
Comput. Networks,” IEEE Communications Surveys & Tutorials, 2016.

[3] L. Metcalf and J. M. Spring, “Blacklist Ecosystem Analysis Spanning
Jan 2012 to Jun 2014,” ACM Digital Library, 2014.

[4] “IBM Tivoli Netcool/OMNIbus,” 2017. [Online]. Available: http:
//www-03.ibm.com/software/products/en/ibmtivolinetcoolomnibus

[5] “EMC Automated Data Center Manager,” 2017. [Online]. Available:
http://www.emc.uz/it-management/smarts/index.htm

[6] “NetExpert Datasheet,” 2016. [Online]. Available: http://www.
mycom-osi.com/products/netexpert-fault-service-impact-management

[7] S. Kliger, S. Yemini, and Y. Yemini, “A Coding Approach to Event
Correlation,” Network Management IV, 1995.

[8] M. Miyazawa and K. Nishimura, “Scalable Root Cause Analysis As-
sisted by Classified Alarm Information Model Based Algorithm,” in 7th
Int. Conf. on Network and Service Management, 2011.

[9] Smarts, “Downstrean Suppression is Not Root Cause Analysis,” Tech.
Rep., 2002.

[10] P. Bodík, “Automating Datacenter Operations Using Machine Learning,”
Ph.D. dissertation, 2010.

[11] R. Harper, “Entropy & The Science of Noise,” 2016. [Online].
Available: https://www.moogsoft.com/whats-new/entropy-noise/

[12] P. Tee, G. Parisis, and I. Wakeman, “Vertex Entropy as a Critical Node
Measure in Network Monitoring,” IEEE Transactions on Network and
Service Management, 2017.

[13] R. Harper and P. Tee, “The Application of Neural Networks to Predicting
the Root Cause of Service Failures,” in IFIP/IEEE Symp. on Integrated
Network and Service Management, 2017.

[14] ——, “Cookbook, a Recipe for Fault Localization,” in IFIP/IEEE
Network Operations and Management Symp., 2018.

[15] Moogsoft, “Moogsoft Documentation.” [Online]. Available: https:
//docs.moogsoft.com/

[16] W. Wang, “Similarity Join Algorithms: An Introduction,” Tech. Rep.,
2008. [Online]. Available: https://www.cse.unsw.edu.au/~weiw/project/
tutorial-simjoin-SEBD08.pdf

[17] S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive Operator for
Similarity Joins in Data Cleaning,” in 22nd Int. Conf. Data Eng., 2006.

[18] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling Up All Pairs Similarity
Search,” in Proc. of the 16th Int. Conf. on World Wide Web, 2007.

[19] P. J. Rousseeuw and Peter, “Silhouettes: A Graphical Aid to the Inter-
pretation and Validation of Cluster Analysis,” Journal of Computational
and Applied Mathematics, 1987.

[20] B. S. Khan and M. A. Niazi, “Network Community Detection:
A Review and Visual Survey,” 2017. [Online]. Available: http:
//arxiv.org/abs/1708.00977

[21] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
Unfolding of Communities in Large Networks,” Journal of Statistical
Mechanics: Theory and Experiment, 2008.

IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management18

