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Abstract—Aim: We seek to assess the performance of time
delay neural networks (TDNN), one of the topologies designed
for time series prediction, to characterize spectrum occupancy
in multiple time horizons in Land Mobile Radio bands. This
could lead to dynamic spectrum allocation methods to address
potential spectrum shortages facing Internet of Things (IoT)
deployments. Background: ANNs are a popular choice for
spectrum prediction. Traditionally, ARIMA models have been
at the forefront of forecasting and prediction but ANNs that
learn from time series have demonstrated good performance
using both simulated datasets and real-life data collected in the
cellular bands. Methodology: We use three prediction models, a
baseline which simply delays the time series, a seasonal ARIMA
model and a TDNN. We test their performance on an hourly
dataset in LMR bands collected in Ottawa, Canada between the
dates of October 2016 and April 2017. Results: We demonstrate
that TDNN yields improvements over seasonal ARIMA models
in predicting short time horizons. Conclusions: The TDNN based
prediction models that are designed to work with time series data
provide a better alternative for accurately predicting spectrum
occupancy in bands that exhibit similar characteristics to LMR
channels, especially as the forecast horizon gets longer.

Index Terms—Dynamic Spectrum Prediction, Artificial Neural
Networks, ARIMA, Time Delay Neural Networks, Internet of
Things

I. INTRODUCTION

Technologies such as Internet of Things (IoT) increase
the demand for communication spectrum which is a scarce
resource. The current spectrum allocation policies may be the
reason for this bandwidth scarcity due to inefficient use of
available radio spectrum bands. Dynamic Spectrum Access
(DSA), a multi-tier hierarchical ownership scheme [1], is one
of the methods proposed to overcome this problem.

Land Mobile Radio (LMR) band that range from 138 to 941
MHz, would potentially be a good candidate for implementing
DSA. Measurement studies conducted in Chicago indicate that
LMR channels are utilized with varying occupancy rates. This
implies a potential for more efficient use of the spectrum [2].
The FCC primarily allocates LMR channels for voice com-
munications through commercial and federal or non-federal
government agencies/services [3]. LMR spectrum bands are
used for servicing first responder organizations such as police,
fire, and ambulance services, public works organizations like
utility companies, dispatched services such as taxis, or other
companies with large vehicle fleets.

Moving even small bands of spectrum to a dynamic ac-
cess regime cannot be done manually. There is a need for
an intelligent and learning based system such as artificial
intelligence (AI) techniques to support real time prediction
of spectrum usage. Cognitive Radios (CR) appear to be a
potential solution to solve the problem of inefficient spectrum
usage and spectrum scarcity among unlicensed users [4]–[8].
In a CR environment, licensed users are called primary users
(PU) and the unlicensed users are called secondary users (SU).
In CR, in an effort to minimize the interference between an
incumbent primary user, a potential secondary user would be
required to sense the entire spectrum band to detect those
channels in the spectrum which might be idle. Since the
sensing process is altogether time and energy consuming,
it creates an unnecessary burden in the IoT environment,
where most devices are operating under a battery constraint. A
reliable prediction regime that indicates those channels which
are going to be suitable for transmission based on the previous
sensing history would address this problem.

Various analytical models have been proposed to predict
primary user behavior using temporal data, including linear
prediction models such as auto regressive integrated moving
average (ARIMA) [9], [10] that are rooted in the domain of
traditional time series analysis and artificial neural networks
(ANN) and its variants from the domains of machine learning
and artificial intelligence [11]–[13]. In this paper we seek to
understand whether the addition of a non-linear component
to time series prediction provides any measurable benefits
over linear prediction methods. In this paper we show an
improvement in prediction performance in short time horizons
when using time delay neural networks (TDNN), a non-linear
model, over seasonal ARIMA, which are linear models.

The remainder of the paper is structured as following: In
Section II we provide an overview of various models used in
spectrum prediction. In Section III we provide the dataset used
in this paper as well as the pre-processing and exploratory
analysis performed on the dataset. Also, in this section, we
provide the prediction models used in the paper, namely
the seasonal ARIMA and the TDNNs and the methodology
followed in their training and calibration. In Section IV, we
present the results and discuss the findings and presents some
future direction for the paper in Section V.978-3-903176-15-7 © 2019 Crown
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II. RELATED WORK

In the literature, there are many proposed models and
approaches to predict the occupancy status in a channel. Ding
et. al. provide a thorough survey of models that are developed
for spectrum inferences in various dimensions [11].

Some of the most widely studied and oldest prediction
models are linear prediction models, where future values are
predicted as linear function of past observations. Due to their
simplicity they are very popular and have been widely used in
various fields, including spectrum prediction [9], [10], [14]–
[17]. Most common models include auto-regressive (AR),
moving average (MA), and auto-regressive integrated moving
average (ARIMA) models.

Another popular prediction family of methods are ANNs,
which represent a class of flexible non-linear models [12],
[17]–[21]. Yin et. al. proposed using a TDNN to predict the
max-min normalized power measurements of channels [20]
and report an improved root-mean-square error (RMSE) com-
pared to using ARIMA. The authors emphasize the nonlinear
nature of the real-life spectrum data and the difficulty of
modeling this behavior using mathematical models such as a
Poisson process. The authors have collected non-channelized
measurements ranging between 20MHz - 3GHz over a week
and divided them into channels with a bandwidth of 100KHz.
However, Stolojescu-Crisan in [17] shows that while NN
based predictions outperform ARIMA when future horizon is
relatively small, ARIMA is able to learn medium and long
term temporal behaviors better.

The majority of the research encountered in the literature
use simulated data which might not reflect an objective evalua-
tion of the performance of prediction models. Real life studies
on the other hand concentrate on cellular traffic which follows
daily cyclical patterns and thus differs from spectrum activity
in other parts of the radio spectrum. There is a scarcity of real
life measurements and the evaluation of the performance of
spectrum prediction models in the LMR spectrum.

III. METHODOLOGY

A. Data

The data used in this paper consists of a measurements made
on the 8,663 LMR channels within LMR spectrum bands in
downtown Ottawa between October 27th 2016 to April 26th

2017. LMR bands lie in the 138-174 MHz (VHF), 406-470
MHz (UHF) and in the 800 MHz (exact range purposefully
omitted) ranges. The bandwidth of channels range between
4-280 KHz, with the majority of the channels having a
bandwidth less than 10 KHz.

For each channel, a set of measurements on power (dBm),
SNR (dB), bandwidth (Hz) and carrier frequency (Hz) are
taken and stored every 300 milliseconds. If the power level
does not exceed a certain dynamically adjusted threshold value
on that specific channel, the sensors omit that measurement.
In a given hour, if a channel is used nonstop then it will have
approximately 12,000 observations. However, due to omitted
measurements, a channel can have fewer observations. This

Fig. 1: The heat-map shows the occupancy % values of the channels
which are more than %95 complete. Vertical dark lines indicate the
time ranges where no data is recorded for any of the channels due
to hardware issues

yields the hourly occupancy percentage (%) of a channel and
is calculated by

occupancy % =
# of recorded observations
# of expected observations

(1)

The heat-map of channels occupancy in the given time range
provided in Fig. 1 indicates that not all channels had a
contiguous set of occupancy %s.To address this issue, we
used the channels that report occupancy measurements most of
the time (+95%). This leaves 2684 channels1. This threshold
was chosen to leave us a sizable channels list (approximately
31% of all channels) while removing most of the incomplete
observations from the data set.

Fig. 2: The occupancy % of five random channels

Fig. 2 illustrates the temporal occupancy behavior of 5 ran-
domly selected channels out of the selected 70 channels over
240 hours. An initial look indicates periodic behavior in some
of the channels, e.g., channel 1. To confirm the existence of
periodic patterns, we calculated the auto-correlation function
(ACF) of these 5 channels that is provided in Fig. 3. The

1Note that this is different than channels with 0% occupancy, which would
be reported in the measurement data.
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peaks are confirming the periodic pattern in channel occupancy
%. To train the models, we normalized the occupancy %s to
values between [0, 1].

Fig. 3: The ACF of five random channels

B. Model

1) ARIMA: One of the most popular linear models for
time series prediction is the auto-regressive integrated moving
average (ARIMA) model [11]. The general ARIMA model
(p, d, q) is formulated as below:

W (t) =

p∑
i=1

αiW (t− i) +

q∑
i=0

βie(t− i),

where W (t) = X(t) − X(t − d), αi and βi are the linear
coefficients of the model, e(t) represents the errors with
respect to the mean, and d is the degree of non-stationary
homogeneity.

The seasonal part of an ARIMA model follows the same
structure as the non-seasonal part (P,D,Q)s,it may have an
AR factor P, an MA factor Q, and an order of differentiating,
D. In the seasonal part of the model, all of these factors operate
across multiples of a seasonality parameter s, which indicates
the number of time steps before starting a new seasonal cycle.
Seasonal part of ARIMA model (P,D,Q)s is formulated as
below:

W (t) =

P+s∑
i=1+s

αiW (t− i) +

Q+s∑
i=s

βie(t− i),

where W (t) = X(t)−X(t−D ∗ s).
The linear prediction model we use in this paper is a sea-

sonal ARIMA model. Based on the periodic patterns observed
Fig. 3, it seems appropriate to choose the seasonality parameter
s = 48. To identify the right p, q parameters of the ARIMA
model, auto-correlation functions (ACFs) and partial auto-
correlation functions (PACFs) were plotted for all channels.

Fig. 4 illustrates the general tendency in the ACFs and
PACFs calculates for all channels. Since the ACF is gradually
decreasing while the PACF exhibits a sharp cut off after two
hour lags, this is indicative of an AR signature present in
the channel. The PACF drop when the lag is two indicates
that the number of AR terms (i.e., the p parameter) in the
non-seasonal part is two. The ARIMA model which we are

Fig. 4: The ACF and PACF of a channel in our dataset, which exhibits
a highly characteristic AR signature with 2 autoregressive terms

using is (2, 0, 0)(2, 1, 0)48. The evaluation of ARIMA model
is explained in details in Algorithm 1.

Algorithm 1 ARIMA based prediction

Input: SARIMAX model parameters (p, d, q)(P,D,Q)s, number of
steps to predict into the future n

1: for each channel do
2: split the data 80/20 into train set (x1, ..xN ) and test set

(y1, .., yM ) , number of iterations = M/n
3: for i:=1 to number of iterations do
4: fit the SARIMAX model to the training data
5: predict next n steps in the future, compare the predictions

to first n steps of test set,(calculate Mean square error)
6: add the first n steps of test set to the training set =

(x1, ..xN , yi∗n, ..., y(i+1)∗n), test set = (y(i+1)∗n+1, ..yM )
and go to step 2

7: end for
8: end for

2) Time Delay Neural Networks: Neural networks (NN) are
non-linear and non-parametric models composed of one input
layer X , one or multiple hidden layers Zj and one output layer
Y . Each layer has a number of units denoted by xi for the input
layer, zij for the hidden layer(s) and yi for the output layer.
In the input layer, units correspond to input data whereas, in
the hidden and output layers they represent a vector-to-scalar
function. The topology or the architecture of a feed forward
NN is defined by the number of units in each layer.

The input layer contains D units, each one corresponding to
a different attribute in the data. The input units are represented
as xi ∈ R, i ∈ [1, D], and we set x0 = 1 as the bias unit.

A sliding window method is used for framing the data set.
Using the previous time steps to predict the next time step
is called the sliding window method [22]. To determine the
sliding window size, auto-correlation of the channels are used.
Since a periodic behavior of 48 hours in most of the channels
is observed in Fig. 3, we have set the lag value to 48. This
means that the occupancy % of past 48 hours were used to
predict the next occupancy % in future. Thus we have chosen
the input layer with 48 units.

Weights are the connections between any two units and they
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are denoted by w(l)
ki where i is the index for the source and k

is the index for the destination unit, and j is the layer number.
For example, the first hidden layer j = 1 contains H1 units
and the weights between the input and the hidden units are
denoted by:

w
(1)
ki ∈ R, i ∈ [0, D], k ∈ [1, H1].

All of the weights in the model were initialized randomly
close to 0. Each hidden unit applies a nonlinear transformation,
through an activation function, to the weighted linear combi-
nation of the input units. The output of each hidden unit can
be formulated as

zij = f(xTw
(j)
i ) (2)

where zij is the ith unit of hidden layer j such that i ∈ [1, Hj ],
j ∈ [1, 2] x is the vector of inputs such that (x0, ..., xD),
w

(j)
i is vector of weights for the ith hidden unit such that

(w
(j)
i0 , ..., w

(j)
iD ). In this paper, we have used Rectified Linear

Unit (ReLU) as our activation function in both hidden layers.
The output layer contains U output units and they are linear

combinations of the hidden units with weights denoted by

w
(2)
ki ∈ R, i ∈ [0, H2], k ∈ [1, U ],

where i is the index for the hidden and k is the index for the
output unit. The hidden layer also has a bias unit such that
z0 = +1. Each output unit can be formulated as

ŷk = zTw
(2)
k , (3)

where ŷk is the kth output unit such that k ∈ [1, U ], z is the
vector of hidden units such that (z0, ..., zH2

), w(2)
k is vector

of weights for the kth output unit such that (w
(2)
k0 , ..., w

(2)
kH2

).
In training the TDNN, the back-propagation (BP) algorithm

is used to compute the gradient of a loss function with respect
to the weights of the network, w. Each observation in the
training set can be represented as (x(n), y(n)) where x(n) is
the vector of input variables and y(n) is the target variable and
n ∈ [1, N ] where N is the number of observations. The loss
function we have used in this paper is the mean-square error
and is given by:

J(w) =
1

n

N∑
n=1

(ŷ(n) − y(n))2. (4)

We have used Adaptive Moment Estimation (Adam Al-
gorithm) [23] as the optimizer for the loss function. We
have opted for the default values of Adam optimizer in
Keras version 2.2.2 which are the following: learning rate or
α = 0.001 , β1 = 0.9, β2 = 0.999 and ε = 10−8.

Evaluation of the model was done by separating the data
into train and test sets. A large portion of the data was used
for training the model and the rest is used as test set to evaluate
the performance of the model. In this paper, we have used the
first 80% of time indices of each channel for training and the
remaining 20% for testing.

Our proposed TDNN model, started with 2 hidden layers
each containing 50 units. We have opted to increase the model

capacity by favoring a network with fewer hidden layers and
more hidden units in each one is a better fit than a network
with more hidden layers and fewer hidden units. The model
complexity was increased and its performance was investigated
for signs of over-fitting. Increasing the model complexity was
done by multiplying the number of units per hidden layer by
a factor of two.

The user can change the frequency of the updates by
determined a batch size. For example, if the batch size is N ,
then the weights are updated after the model goes over the
whole training set. In this paper we are using a batch size
of 30, meaning the model’s weights are updated on the loss
measured after observing 30 data instances.

Regularization methods such as early stopping, L2 regular-
ization and dropout have been used in this respective order
to tune the model’s performance. Early stopping was used in
training procedure, as a mean to prevent over-fitting. During
model training, validation error was checked every m = 5
epochs to determine whether training should be stopped. The
value of m is the patience argument in early stopping, meaning
that if validation error has not decreased in the last m epochs,
the training will be stopped.

Fig. 5: MSE for the train and test loss versus epochs.

Fig. 5 illustrates the training and test loss during the training
procedure of the model with 400 hidden units per layer and
40 epochs. One can observe that as the number of epochs
is increasing, training error is decreasing. After epoch 30, it
does not seem to improve the prediction performance on the
validation set, indicating that the model has started to over-
fit the training set. Therefore, we have determined that the
appropriate number of epochs to use in training to be 30.

L2 regularization is implemented by modifying the Loss
function and adding a new term which penalizes large weights.
In this paper a L2-Regularization term is added to loss
function, which is formulated as:

J(w) =
1

2

N∑
n=1

(ŷ(n) − y(n))2 + λ
∑
j=1

wj
2 (5)

The training and testing procedure of TDNN and generating
the loss for predictions is provided in Algorithm 2. The data
in TDNN is a combination of all the channels that have been
selected as described in Section III-A, and a single model is
trained for all channels.
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Algorithm 2 Training and testing procedure for TDNN
Input: train and test set, L2-regularization term λ, Dropout proba-

bility Pdrop, early stopping patience m, number of epochs N ,
batch size B, number of steps to predict into the future steps

1: for i = 1 to steps do
2: generate the model based on the input parameters, add Dropout

and regularization terms
3: while early stopping criterion not met do
4: fit the model to the training data
5: end while
6: predict the i step into the future for the test set
7: calculate the mean square error y comparing the test set labels

and predictions
8: end for

Increasing λ forces the weights towards zero, which results
in a reduction of model’s learning capacity. In this paper the
effect of several values of λ have been tested on our model,
which we provide in Fig. 6.

Fig. 6: MSE for the train and test loss versus values of λ

One can observe that for any value of λ > 0, the validation
error starts to increase indicating the model does not benefit
from L2-regularization. One possible explanation could be the
use of early stopping, which in itself acts as a regularization
technique, rendering L2-regularization redundant in calibrating
the model.

Another approach is applying dropout to model layers,
which randomly drops a defined probability of units along with
their connections from the neural network during training [24].
For each training batch the network is re-adjusted and a
new set of units are dropped out. At test time the weights
are multiplied by the dropout probability of the associated
units. This approach prevents model to be over-dependent
on some hidden units. The dropout hyper-parameter which
is usually between 0.2 and 0.5 and defines the probability
that the weights associated with a particular unit will not be
updated in training in a particular batch. Based on Fig. 7
increasing dropout is increasing the error, which means that
adding dropout as a regularization factor is not effective.

IV. RESULTS

We present the results in Fig. 8 and the numerical rep-
resentation of the plots sampled every 5 steps in Table. I.
Results illustrate that in predicting occupancy for the next

Fig. 7: MSE for the train and test loss versus values of dropout

50 time horizons, the TDNN has better or similar prediction
performance to the the seasonal ARIMA model. We also
provide the results for the baseline as it serves an indication
on how much both models are able to improve upon a simple
delay based guessing prediction regime.

Not surprisingly, the performance of all models gets worse
as the prediction is made further into the future. The slight dip
in the baseline model is due to the 48-hour periodic pattern
we have observed in some channels.

Fig. 8: Average performance (MSE) of three predictive models

While all models, including the baseline, start relatively
similar in their performance (∆t = 1), the performance gain of
the TDNN becomes pronounced as the prediction time horizon
is increased slightly (1 < ∆t < 24) before the gap between
the seasonal ARIMA and TDNN based prediction performance
closes. For further predictions into the future (∆t > 24), the
prediction task becomes increasingly difficult and warrants
further testing to understand how the performance of the
ARIMA and the TDNN compare. This indicates that the non-
linear nature of the TDNNs presents an improvement over
linear prediction of the seasonal ARIMA. Furthermore, the
TDNN can be trained offline for time horizons and can be
used to provide offline prediction, whereas ARIMA model
needs to be continuously trained in order to be able to forecast.
The offline prediction is especially important in an IoT setting
where the edge devices can simply query a server that will
perform prediction that does not need a continuous stream of
measurements from the environment.
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TABLE I: RESULTS FOR AVERAGE MSE LOSS IN PREDICTIONS FOR DIFFERENT TIME HORIZONS

Model ∆t = 1 ∆t = 6 ∆t = 11 ∆t = 16 ∆t = 21 ∆t = 26 ∆t = 31 ∆t = 36 ∆t = 41 ∆t = 46

Baseline 0.0025 0.0138 0.0224 0.0280 0.0315 0.0344 0.0364 0.0374 0.0369 0.0358
ARIMA 0.0020 0.0082 0.0120 0.0118 0.0103 0.0102 0.0095 0.0095 0.0091 0.0107
TDNN 0.0015 0.0056 0.0075 0.0084 0.0091 0.0097 0.0103 0.0109 0.0112 0.0116

A. Threats to validity

For validation, we randomly selected 70 channels from a
list of 2684 channels to decrease the computational cost of the
experiments. We are using 7 months of available continuous
LMR data from October 2016 to April 2017 to validate the
model. To tune the hyperparameters of the ARIMA model
we have relied on ACF and PACF plots and the parameters
have been chosen upon heuristic examination. The seasonal
components of the ARIMA model has been selected based
on the examination of periodic patterns that exits in some
channels. On the other hand, the TDNN has been calibrated
and regularized when it was able to start over-fitting but further
capacity added to the model could improve these results.
Finally, the training and testing procedures of the ARIMA
and time delay neural networks exhibit some differences, due
to the sliding windows forecasting method that accompanies
ARIMA based predictions.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have built two predictive models, a seasonal
ARIMA and a TDNN, and evaluated their performance in
prediction the next 50 time steps into the future with respect
to each other as well as a baseline method that simply used
previous values as its prediction. The TDNN used in this paper
is perhaps the simplest neural network variant designed to
work with time series, and further performance gains may be
achieved by training more sophisticated NN variants such as
recurrent neural networks (RNNs) and in particular long short
term memory networks (LSTMs) which also benefit from an
added state that serves as the memory of such models. We aim
to explore this direction further in future studies.
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