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Abstract Geographic routing for ad hoc and sensor networks has gained
a lot of momentum during the last few years. In this scheme routes are
created locally by each individual node, just based on the position of the
destination and its local neighbors. To do that, a node selects its best
neighbor (according to some metric) out of those being closer than itself
to the destination. This operation is called greedy mode. When a node
has no such neighbors, it enters into face routing mode. However, for face
routing to work properly, the underlying graph needs to be planarized
by removing crossing edges, which may eventually be very good from
the routing metric point-of-view. In this paper, we introduce a new lo-
calized scheme to build a planar virtual spanner in a simple and efficient
way, with low control overhead. The produced virtual spanner allows face
routing to be executed, without the need to remove any of the original
links in the network. Thus, the best links according to the routing metric
can still be used, Our simulation results show that by performing face
routing over the virtual spanner, we manage to enhance the routing per-
formance both for greedy-face-greedy routing and face routing between
a 40 to 60% compared to existing planarity tests.

1 Introduction

Mobile ad hoc networks (often referred to as MANETs) as well as wireless sensor
networks consist of wireless nodes that communicate with each other in the
absence of a fixed infrastructure. When a node needs to send a message to
another host which is outside of its radio range, it uses other intermediate hosts
as relay nodes. Those intermediate nodes are dynamically selected by the routing
protocol being used. This kind of networks are useful in many scenarios such as
disaster relief, battlefield environments, etc.

Among all routing protocols for these networks, geographic routing [BMSU01]
has emerged recently as a very efficient way to provide guaranteed delivery routes
without flooding the whole network with control messages. However, nodes are
required to be able to know their position and, by exchanging control messages,
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the position of its neighbors. To send a message from the source to the desti-
nation, each intermediate node selects locally its best neighbor to forward the
message towards that destination among those which are closer than itself. Those
nodes are often said to provide advance towards the destination. The best node
depends on the routing metric. For instance, if we are using hop count as the
routing metric, it could be the one which is closest to the destination. This oper-
ation is called greedy mode. When greedy mode reaches a local minimum (i.e. no
neighbor can provide advance towards the destination) then the protocol needs to
resort to a recovery mechanism until a node is found which can continue greedy
forwarding. This mechanism is face routing described in [BMSU01]. The basic
idea is that when no progress can be made in greedy mode, packets are sent fol-
lowing the edges of the faces of a planar decomposition of the underlying graph,
until greedy mode can again continue, or the destination is eventually reached.
This approach combining greedy and face modes when necessary, is commonly
known as GFG (Greedy-Face-Greedy) routing [BMSU01]. As we said, the face

routing part requires the underlying graph to be planar.

There are several methods to extract a planar subgraph from a given Unit
Disk Graph (UDG), which models the entire network. A UDG is a graph in
which an edge [u, v] exists only if dist(u, v) ≤ r being r the radio range. The
Relative Neighborhood graph, RNG [Tou80] is obtained by applying the RNG
test to every edge of the UDG: an edge [u, v] is retained in RNG(G) if there
is no vertex z such that max{dG(u, z), dG(v, z)} < dG(u, v). That is, if there
is no vertex in the intersection of their disks. The Gabriel graph, GG [GS69],
applies a slightly different test to every edge of the graph. It retains an edge
[u, v] in GG(G) if there is no node in the disk with diameter uv. Finally, the
Morelia test [BCG+04] manages to preserve some long edges by using a stronger
condition for the removal of edges. An edge [u, v] is not included in MG(G) if
there is a couple of points [x, y] so that one of them (or both) is in the disk
with diameter uv and [x, y] crosses [u, v]. Given a UDG G we have RNG(G) ⊆
GG(G) ⊆ MG(G).

The guaranteed delivery provided by face routing has a price, which is that
the computed routes are generally not optimal. The main reason is that travers-
ing faces to avoid voids, may eventually produce a large deviation from shortest
path. Another important reason is that the elimination of links to avoid cross-
ings may degrade the routing performance when the protocol enters into face
routing mode. As a matter of fact, long links (which are the ones preferred to
reduce hop count) are the ones which are usually eliminated first, because they
usually cross many other links.

To mitigate this problem, we propose the creation of a planar virtual spanner
of the original graph using a tessellation. Given that crossing edges are forbidden
in face routing to guarantee correctness of the algorithm, we build our virtual
spanner in such a way that guarantees its planarity (there are no crossing virtual
edges). Then, when a node enters into face mode, it will route using virtual
edges, which will then be translated to a path using real nodes. Once the next
hop virtual neighbor is selected using face routing, the real nodes will route



the message towards the representative of the selected neighboring tessel. Given
that real nodes will route using all available links (no links are eliminated), the
performance in face mode of the protocol is enhanced. We shall show this in our
simulation results.

The remainder of the paper is organized as follows: Section 2 presents our
network model and the problem formulation. Section 3 illustrates how the vir-
tual spanner is built. We explain how to route based on the virtual spanner in
section 4. Finally we present some simulation results in section 5 and give some
conclusions and future work in section 6.

2 Network Model and Problem Formulation

This section introduces the notation and the model we use throughout the paper.
We consider routing algorithms on Euclidean graphs, i.e. weighted graphs where
edge weights represent Euclidean distances between the adjacent nodes in a
particular embedding in the plane. As usual, a graph G is defined as a pair
G := (V, E) where V denotes the set of vertices and E ⊆ V 2 denotes the set of
edges. The number of nodes is denoted by n := |V | and the Euclidean length of
an edge e ∈ E is denoted by cd(e). A path p := v1, . . . , vk with each vi ∈ V is a list
of nodes such that two consecutive nodes are adjacent in G, i.e. (vi, vi+1 ∈ E). A
path p also can be denoted by the corresponding list of edges. In our evaluations
we will use the traditional hop count metric. Thus, given a path p = v1, . . . vk

the cost of such path is the number of edges traversed.
In this paper we consider the standard UDG model for ad-hoc networks

where all nodes have the same transmission range (r). Thus, given two nodes
v1, v2 ∈ V , the edge [v1, v2] ∈ E ⇔ cmathrmd([v1, v2]) ≤ r.

As in previous geographic routing works in the literature, we assume that
nodes know their positions and those of their neighbors. It is also assumed that
sources of data packets know the position of the destination.

3 The Virtual Spanner

We divide the plane in regions with a regular tessellation, which is a tessellation
(or planar subdivision) made up of congruent regular polygons. The idea is that
an entire region may be represented by a single virtual point, the center of the
regular polygon. If we link the centers of the polygons we observe a peculiar
behavior: the centers define a dual tessellation that is also planar. The dual of
a triangle tessellation is a hexagonal tessellation, while a square tessellation is
auto dual.

Only three regular polygons tessellate the Euclidean plane: triangles, squares
or hexagons, from elementary geometry. They are depicted in figure 2.

The virtual node for a polygon is chosen as the centroid of the polygon.
Two virtual nodes will share an edge if in their respective cells two real nodes
are neighbors. Thus, we need to choose a suitable polygon size for building the



virtual graph, so that we achieve a good trade-off between the simplicity to build
the virtual graph (guaranteeing that is planar), and the number of cells to be
checked in its creation process. We have analyzed three options as we show in
figure 1.

a) The transmission radius does not cover all the cell.
b) Any two points in the cell are within radio range.
c) A node in one cell can reach any other node in a neighboring cell.

Case a) complicates the design because it may require multihop routing
within a cell. In case c) there may be a very big number of cells in which to
look for possible virtual edges. We decided to use case b) because it is the con-
figuration which avoids multihop within a cell in which the number of cells to
look for virtual neighbors is low.

RR
R

a) b) c)

Figure 1: Variation of polygon size with transmission radius fixed.

If the graph is dense enough, there will be at least one node in each cell.
Thus, each virtual node will be connected to all neighboring virtual nodes. The
resulting virtual graph is exactly the dual of the graph, which is planar. In
real situations we cannot guarantee that every cell will have a node. Thus, to
preserve connectivity we must find all possible virtual neighbors. They may be
in cells which are not contiguous to the current one. In figure 2 we show for
each different tessellation (triangular, square and hexagonal) the possible cells
that may contain nodes which are neighbors of nodes in the current cell t. The
cell t can reach more cells when using a triangular configuration (24 cells). With
a square configuration 20 cells are candidates and when using hexagonal cells
only 18 cells. Please note that the dual of the virtual graph may not be planar

if we have void cells and want to preserve connectivity. This crossings can be
eliminated using a local test, and the complexity of the test depends on the
number of neighboring cells.

The grid with triangles, squares or hexagons is located arbitrarily in the
plane. Each cell is identified by a coordinate pair as is showed in Figure 3. Note
that real nodes only need to know the type of tessellation and the communication
radius at deployment time. Based on that, and given their current position they
can easily compute the coordinates of their centroid. In addition, only with local
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(c) Hexagons

Figure 2: Regular tessellations in the plane and cell centroids. Additionally, the cells
shown are those reachable from t using a radius R equal to the diameter of the cell

information about the position of its neighbors they can compute their local view
of the virtual graph (virtual edges). This has no additional overhead because
position of real neighbors is already known or was computed using beacons.
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Figure 3: Fixing the origin, the virtual coordinates are computed with elementary cal-
culations

We show below some elementary calculations for the node to compute the
coordinates of the virtual node for each real node. It only uses the transmission
radius R and its position (x, y).

In addition, each real node also needs to compute the virtual edges shared
with reachable cells. Every real node can make exactly the same calculations
independtly without the need of a central authority or coordination among them.
This connectivity test is accomplished in two stages:

1. Test surrounding cells that are neighbors by their side.
2. Test all other cells that are reachable from current cell but are not neighbors

by their side.



Type of tilling Position of centroid Tessel

Hexagonal

yc ← 3R(y + 1/3)/4
if y mod 2 = 0

then xc ←
√

3R(x + 1/2)/2

else xc ←
√

3Rx/2

y ←truncate (3yn/4/R)
if y mod 2 = 0

then x←truncate (2xn/
√

3/R)

else x←truncate ((2xn +
√

3R/2)/
√

3/R)

Triangular

xc ← Rx/2
if (x + y) mod 2 = 0

then yc ←
√

3R(y + 2/3)/2

else yc ←
√

3R(y + 1/3)/2

x←truncate (xn/2/R)

y ←truncate (2yn/
√

3/R)

Square
xc ← (x + 1/2)R/

√
2

yc ← (y + 1/2)R/
√

2

x←truncate (
√

2xn/R)

y ←truncate (
√

2yn/R)

Table 1: Formulas for a node to compute position of its centroid and its tessel

The first stage is easier than the second one because it always produces a
planar graph. There are no edge crossings, as it is depicted in figure 4. In the
first stage, a virtual edge is added between centroids of two cells adjacent by
the side if there are two mutually reachable real nodes, one in each of those
cells. Unfortunately, the virtual graph produced after the first stage may not be
connected. Thus, we need to apply the second stage to obtain a connected graph
without crossings of virtual edges.

For the second part, we start testing if we can add a virtual edge to the
centroid of those cells (see figure 2) which are second degree neighbors (side
neighbors of our side neighbors). If for one of those, we cannot add the virtual
edge (i.e. there is no other real node in that cell directly reachable from any
real node in current cell) then we try again with those cells being neighbors by
side of this particular cell we couldn’t find nodes to add the virtual edge. This
condition guarantees that the resulting virtual graph will be planar. Figure 5
shows the resulting virtual graph after both stages.

(a) Triangles (b) Squares (c) Hexagons

Figure 4: First connectivity test. Natural neighbors



As an example, we give the concrete algorithms used in each stage to add
edges to the virtual spanner with an hexagonal tilling. The algorithms for squares
and triangles are similar and are not included in here due to space limitations.

The algorithm for the first connectivity test using hexagons is given in algo-
rithm 1.

Algorithm 1 Algorithm for the first stage with hexagons

1: procedure ReviewHexagonsStage1(I, t) . I are the neighbor cells
2: k← 0 . by their side to t, they are enumerated from 0 to 5
3: while k < 6 do

4: if isThereEdge(t, Ik) then

5: addEdge(t, Ik)
6: end if

7: k← k + 1
8: end while

9: end procedure

For the second stage with an hexagonal tilling, all reachable cells which are
not side neighbors of the current cell (t) are tested. The test needs to take into
account existing virtual links which have been added before, to avoid creating a
non-planar virtual spanner. The detailed algorithm is given in 2.

As we stated, the goal of this virtual graph is enhancing the performance of
face routing. Thus, we will explain in the next section how real nodes do face
routing using the virtual graph, whereas we show the performance enhancements
achieved later on.



Algorithm 2 Algorithm for the second stage with hexagons

1: procedure ReviewHexagonsStage2(I,E, t) . E are the rest of the cells
2: k← 0 . reachable by t, enumerated from 0 to 11
3: while k < 6 do . Review for the odd cells from E
4: a← 2k
5: b0←!isThereEdge(t, Ik)
6: b1←!isThereEdge(Ik, Ea)
7: b2←isThereEdge(t, Ek)
8: if b0 AND b1 AND b2 then

9: addEdge(t, Ek)
10: end if

11: k← k + 1
12: end while

13:
14: k← 0
15: while k < 6 do . Review for the even cells from E
16: a← (k + 1) mod 6
17: b← (2k + 1) mod 6
18: b0←isThereEdge(t, Ik)
19: b1←isThereEdge(Ik, Eb)
20: b2←isThereEdge(t, Ia)
21: b3←isThereEdge(Ia, Eb)
22: b4←isThereEdge(t, Eb)
23: if !(b0 AND b1) AND !(b2 AND b3) AND b4 then

24: addEdge(t, Eb)
25: end if

26: k← k + 1
27: end while

28: end procedure

4 Routing with the virtual graph

When the protocol enters into face mode, we plan to perform face routing based
on the virtual spanner. However, only real nodes can process messages. Thus, we
need to understand the two points of view of our proposed scheme. On a high
level view we use the virtual nodes whenever a planar graph is needed to forward
a message using face routing. In the low level view we always use a real node,
which needs to send a message towards another real node, based on its relation
with the intended virtual node. We explain how this works based on the Face
Routing (FR) algorithm [KSU99]. However, any geographic routing algorithm
making use of face routing (i.e. relaying in a planar spanner) can be used as well.
For instance, in our experiments we use the GFG variant [BMSU01].

A brief description of the proposed algorithm is presented below. At each
step of the algorithm the node currently trying to send the packet to the next
neighbor in face mode performs the following operations:



1. Based solely on its coordinates, the node finds out his cell and corresponding
virtual node.

2. Using the information from neighbors (obtained by any geographic routing
protocol using periodic beacons), the node finds which virtual edges exist
according to the procedures explained in the previous section. As we ex-
plained before, a virtual edge can only exist to a virtual node if there is a
real neighboring node in the corresponding cell.

3. In face mode the current real node routing in face mode will use the virtual
graph to select (according to face routing) the proper virtual edge to follow.
Once it is selected, it uniquely defines the cell that needs to be reached using
real nodes. The node then sends the packet to any real node in the next cell
based on some metric. For instance in our simulations we send the packet to
the real node which is more distant to the current real node. If the selected
cell is not directly reachable, the real node will greedily hand the packet to
another node within the same cell, to reach the target cell.

4. Once a real node in the destination cell (the next cell in the path) received
the packet it will forward the packet by repeating the process. Inside a cell
the packets can be forwarded greedily because all nodes in a cell a mutually
reachable.

(a) Triangles (b) Squares (c) Rectangles

Figure 5: Second test. Reachable neighbors

The steps above can be used for traversing the face as is depicted in Figure
6. The source node and the target are labeled with 22 and 24 respectively.
The source node is in virtual cell (4, 5). Virtual edges exists between (4, 5) and
(3, 5), (3, 4), (4, 4), (4, 6). Using the left hand rule node 22 forwards the packet to
cell (3, 4) selecting an arbitrary node in such cell. The sequence of virtual nodes,
and the sequence of real nodes are depicted in Figure 6.
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Figure 6: Face routing in virtual hexagonal graph.

5 Experimental Results

In this section we present simulation results to assess the performance of GFG
and face routing when run over the different variants of the Virtual Graph. We
compare the results with those of the Relative Neighborhood Graph, the Gabriel
Graph and the Morelia Graph. We also present real shortest paths computed us-
ing Dijkstra’s algorithm. Of course, the shortest path cannot be computed using
only local information, but provides a good indication of the overall performance
of the different proposals.

When the protocol enters in face mode, there may be several metrics to decide
to which real node within the next cell to send the packet to. In our simulations,
we use the euclidean distance, because it is the most common metric used by
geographic routing protocols to select neighbors in greedy mode.

5.1 Simulation setup

We used connected random unit disk graphs for our simulations. We test our
spanners with different densities, from 4 to 18 with increments of 2. Each one of
those densities corresponds to a mean number of neighbors. For each density we
used 1000 nodes, which were placed randomly in the simulation area. For each
scenario we generated randomly 100 different graphs, so we have obtained 800
graphs for simulation. The size of the simulation area was adapted to preserve
the density of the network. Finally, for every graph, we select 1000 different
(source,destination) pairs. Thus, each point in the graph represents the average
over 100000 routing tasks.



5.2 Simulation results

We present in this subsection the results of our simulations for different densities
of the graphs.
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Figure 7: Efficiency of the Virtual Spanner against three standard spanner test

Figure 7(a) shows the percentual improvement in terms of the mean num-
ber of hops required to route from source to destination for different network
densities. As we can see in the graph, the higher the density, the better the
performance that the proposed protocol achieves, up to a mean density of 10.
The reason is that for those mean densities the amount of routing performed in
face mode is high. Thus, our proposed virtual spanners allow for a significant
reduction in the hop count. The reason being that the virtual spanner manages
to use long edges, while traditional plannarization tests (i.e. GG, RNG and MG)
remove them. So, the higher the density the more options has the virtual span-
ner to select best edges. In addition, the increase in density makes traditional
tests to remove more (eventually long) edges. As the mean network density goes
beyond 10 neighbors per node, we see that our proposed schemes still outper-
form traditional tests, although the percentual improvement compared to GG
and RNG and MG is is reduced. The reason for that reduction is that for those
high densities most of the routing is peformed in greedy mode, thus there is
no big difference between approaches. In addition, by having a fixed number
of nodes and increasing density means that the overall length of the paths is
reduced as density increases. That also affects the reduction in the percentual
performance benefit. But, in any case for any density our proposed schemes out-
perform traditional schemes. For instance, our hexagonal tilling obtains a 40 to
57% improvement compared to RNG for all the ranges of density. The square
tilling obtains basically the same results, whereas triangular one has a little bit
lower performance, outperforming all of them traditional planarity tests.



To assess the real benefit of the virtual spanner, we performed the same
experiments but using only face routing to go from source to destination. As
we see in figure 7(b), again a lower density produces longer paths. As before,
the reason is that paths become longer because the simulation area is enlarged
to accommodate such nodes maintaining the mean density. Figure 7(b) shows
that our proposed schemes outperform all other approaches for all densities. In
addition, we can see that in this case the gain is higher than with GFG because
in this experiment all the routing has been done in face mode regardless of the
density of the network.

6 Conclusions and future work

We have shown that with the application of the Virtual Graph for representing
the underlying structure of a wireless ad-hoc network we can achieve face routing
with a fewer number of hops, outperforming in all cases existing techniques
(Relative neighborhood graph, Gabriel graph and Morelia graph).

The proposed virtual spanner can be built locally by nodes based solely on
local information about neighbors. Thus, it can be perfectly integrated with any
geographic routing protocol such as GFG, face routing, etc. Our proposed virtual
spanner based on hexagons manages to reduce by a 40 to 60% the number of hops
required to route a message from source to destination both for GFG and face
routing protocols. This scheme can be integrated with any geographic routing
protocol, and can help at improving the performance of such protocols.

For future work, we are working on the use of different routing metrics which
may allow the virtual spanner to improve not only the number of hops but energy
consumption and quality of the selected paths.
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