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Abstract. This paper presents a method to estimate the bit error rate
(BER) of the wireless channel based on statistical analysis of the soft output
of the receiver only. In HiperLAN/2 several modulation schemes can be used.
The system should select the most suitable modulation scheme dependent on
the quality of the wireless link and the Quality of Service requirements of the
user. Our BER estimation method can be used to estimate the current qual-
ity of the wireless link and the quality when another modulation mode is
considered. With this information, it is possible to select the most suitable
modulation scheme for the current situation.

1 Introduction

This paper presents a method to estimate the bit error rate (BER) of the wireless
channel based on statistical analysis of the soft output of the receiver. The method
does not use pilot symbols and does not require knowledge of the properties of the
channel.

The physical layer of HiperLAN/2 (and also IEEE 802.11a) can use four mod-
ulation schemes: BPSK, QPSK, 16QAM and 64QAM. A modulation scheme with
more bits per symbol allows a higher throughput, but requires a better channel to
receive the bits with the same quality.

HiperLAN/2 uses a forward error correction (FEC) Viterbi decoder after the
receiver to correct the incorrectly received bits in a frame. Figure 1 depicts this
configuration. In most cases, the Viterbi decoder can still correct a frame with a
high BER (e.g. up to 10%). It is attractive to switch to a modulation scheme with
as many symbols per bit as possible because of the higher throughput, as long as the
used Viterbi decoder is able to correct most of the received frames. To operate such
a mechanism at run-time, an accurate estimation of the current wireless channel
(BER) is required to select the optimal modulation mode. Furthermore, it would be
nice to be able to predict what will occur with the current quality when we consider
to change the modulation scheme. Our BER estimation method can be used to
estimate the quality for the current modulation scheme and the quality when we
consider to change to other modulation schemes. With this information, the control
system in Figure 1 can select the best modulation scheme for the current situation
and given the requested QoS.

The paper is organized as follows. Section two describes related work. Section
three describes a method to obtain detailed information about the quality of the



wireless link. Instead of using pilot bits to obtain this quality information, we intro-
duce another method based on statistical analysis of the received data. Section four
evaluates the performance of this method. Section five discusses some implementa-
tion issues of our proposed method.

2 Related Work

Khun-jush [5] states that the Packet Error Rate (PER), determined using the check-
sum of a packet, is a suitable measure of the link performance. Although the PER
gives an indication of the quality, this quality metric is rather coarse. Besides that,
a slightly higher PER might be desirable compared to a lower PER with a consid-
erable lower thoughput (e.g. due to another modulation scheme). A disadvantage is
the introduced latency, because the PER should be calculated using enough packets
to get an accurate estimation of the PER. Furthermore, it gives no indication what
we could do to improve the current situation.

A commonly used method to estimate the quality of a wireless link is to compute
the BER using pilot symbols. Pilot symbols represent a predefined sequence of sym-
bols, which are known at the transmitter and the receiver side. Therefore, the BER
can be computed from these pilot symbols. For example, HiperLAN/2 as well as
third generation telephony uses pilot symbols [1]. This approach has two disadvan-
tages. First, the transmission of the pilot symbols introduces overhead. Second, the
BER is only computed over a small amount of the total bits that are transmitted.

Another approach is to model the channel with all the known effects, e.g. [7]. A
state of the art article on this area is [3]. Using this method it is possible to achieve
accurate BER estimations for the modeled channel. However, the actual properties
of the channel and the modeled effects can differ significantly from the constructed
model. Also, effects that are not modeled can happen in real situations. In practice,
it is not possible to model all the different effects that cause the disturbance of the
wireless channel. Estimation of the exact quality of the signal of the wireless channel
is therefore impossible.

Our approach differs significantly from the mentioned approaches. We only use
the soft output from the receiver, and require no additional information about the
channel. Furthermore, no pilot symbols are used. In our opinion, it does not matter
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Fig. 1. The Control System of the HiperLAN/2 Terminal



which physical effect is responsible for the degradation of the signal to determine the
BER. Therefore, information of the channel is not required to make an estimation of
the BER. The advantage is that an accurate estimation can be made independent of
the unpredictable dynamic changing external environment. Furthermore, our method
provides the possibility to estimate the quality resulting from a planned adaptation
of a parameter.

3 BER Estimation

This section explains how to estimate the BER of the output of the receiver so that
we can predict the probability that the Viterbi decoder can correct a frame using
the results of the previous section. Our method uses only the soft output of the
receiver and thus no pilot symbols. Although pilot symbols are used for different
purposes in HiperLAN/2 and therefore still need to be transmitted, this reason may
be important for other applications of our BER estimation algorithm.

We start with an explanation of the method in detail for BPSK modulation
followed by a shorter explanation of the method for the QPSK, 16-QAM and 64-
QAM modulation schemes.

3.1 BPSK

In an ideal situation, without disturbance of the channel, the output of the soft value
(also called symbol) of the receiver is equal to the transmitted symbol value. In case
of BPSK modulation this means 1 or -1. In case of disturbance of the channel, the
sampled values are no longer exactly equal to 1 or -1, but can be higher of lower.
Figure 2 depicts this situation. A lot of external causes may be responsible for
this disturbance. Most effects that change the signal can be modeled by a normal
distribution. Other effects, e.g. fading, do not behave like a normal distribution.
However, the central limit theorem [6] states that, if the number of samples is large
(>30), regardless of the type of the original distributions the resulting distribution
is approximately a normal distribution. Therefore, we approximate the soft values
of the output of the receiver with a normal distribution.

Figure 2 shows the expected normal distribution behavior for the soft output
values of the receiver for a pretty good channel. When the channel becomes worse,
the mean will not change (significantly), but the standard deviation will increase.
Figure 3 shows the effect for an extremely bad channel. If all soft values > 0 are
considered to be transmitted ones and all soft values < 0 are considered to be
transmitted zeros, a lot of bits are received incorrectly in this figure. As can be seen
from the figure, the two distributions are heavily mixed up. Every bit with value 1
that is received with a negative soft output is received badly and also the positive
soft output for a transmitted bit with value -1 is received badly. Thus, the marked
area is the probability that a bit is received incorrectly.

Unfortunately, the receiver can not determine whether a soft value belongs to the
1-distribution or to the -1-distribution. The soft output of the receiver is the addition
of the 1-distribution and the -1-distribution, which is also plotted in Figures 2 and 3
as a dotted line.
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Our goal is to predict the bit error rate (BER), i.e. the size of the marked area
in Figure 3. Let X(Y) denote the distribution of the soft output values of the trans-
mitted -1 (1). Using these distributions, the BER can be expressed by:

BER = pP (X ≥ 0) + (1 − p)P (Y ≤ 0). (1)

where
X : denotes the soft value of a transmitted -1.
Y : denotes the soft value of a transmitted 1.
p: denotes the probability that a -1 is transmitted.

Since both distributions are mirrored at the zero axis and due to the mentioned
assumption that we can model these distributions with a normal distribution, X
and Y can be expressed in terms of a standard normal distribution:

X = σZ − µ. (2)

Y = σZ + µ. (3)

where Z denotes the standard normal distribution, µ the mean and σ the standard
deviation.
Using this, the BER reduces to:

BER = P (X ≥ 0) = P (Z <
µ

σ
) = Φ(−

µ

σ
). (4)

where Φ(z) is the function that gives the area of the standard normal distribution to
the right of z, i.e. the probability that a value is smaller than z. The function Φ(z)
is widely available in tabular form. Note that Φ(−µ

σ
) is equal to Q(µ

σ
), with Q being

the complementary error function that is commonly used in communication theory.
To be able to calculate the BER via (4), we need good estimates for µ and σ.

These estimates µ̂ and σ̂ are derived using the soft output values of the receiver. As
mentioned before, the received soft output values of the receiver do not correspond
to the distribution X and Y , but to a distribution W , which results from the combi-
nation of the distributions X and Y (with probability p we get distribution X and
with probability (1 − p) distribution Y ). For W we have:

P (W ≤ w) = pP (X ≤ w) + (1 − p)P (Y ≤ w). (5)



Based on measured results for W and using moments of distributions, it is pos-
sible to estimate the characteristic values µ and σ of the distributions X and Y ,
which together form distribution W (see [10]). If r is a positive integer, and if X is
a random variable, the rth moment of X is defined to be mr(X) = E(Xr), provided
the expectation exists, see [4]. For a standard normal distribution, the moments of Z
are shown in Table 1. The first and third moment of Z are zero and can not be used
to compute the two unknown variables µ̂ and σ̂. Therefore the second and fourth
moment of W are used.

Table 1. Moments of Z

m1(Z) 0
m2(Z) 1
m3(Z) 0
m4(Z) 3

The second moment of W is:

m2(W ) = p(E(X2)) + (1 − p)(E(Y 2)). (6)

The scrambling used in HiperLAN/2 ensures that approximately an equal number
of ones and zeros are transmitted. This means that p ≈ 1

2 . Setting p = 1
2 , and using

equations (2), (3) and Table 1, equation (6) becomes:

m2(W ) = µ2 + σ2. (7)

therefore,

σ̂2 = m2(W ) − µ̂2. (8)

The fourth moment of W is:

m4(W ) = p(E(X4)) + (1 − p)(E(Y 4)). (9)

With p = 1
2 , this equation becomes:

m4(W ) = µ4 +

(
4

2

)
µ2σ2E(Z2) + σ4E(Z4). (10)

Substituting the moments of Z gives:

m4(W ) = µ4 + 6µ2σ2 + 3σ4. (11)

Replacing σ2 with (7) and simplifying yields:

µ4 =
3

2
(m2(W ))2 −

1

2
m4(W ). (12)

So,

µ =
4

√
3

2
(m2(W ))2 −

1

2
m4(W ). (13)



With the moment estimators of equations (8) and (14), the mean µ̂ and standard
deviation σ̂ can be computed from the individual samples W1..Wn by:

µ̂ =
4

√√√√√√√√ 3

(
n∑

i=1

W 2
i

n

)2

−

n∑

i=1

W 4
i

n
c1

(14)

σ̂ =

√√√√√
n∑

i=1

W 2
i

n − c2 µ̂2
(15)

where c1=2, c2=1 and c3=12. We have introduced these constants to be able to
use the same formulas for the other modulation schemes.

Sometimes, there exists no (real) solution for µ and/or σ. In this case µ4 and/or
σ2 in Equations (12) and (8) respectively are negative. So, this should always be
checked before µ and σ are computed.
Finally, the BER estimation can be computed with:

B̂ER =
c3

12
Φ

(
−

µ̂

σ̂

)
(16)

3.2 Extention to QPSK, 16-QAM and 64-QAM Modulation Schemes

HiperLAN/2 allows four modulation schemes: BPSK, QPSK, 16QAM and 64QAM.
Therefore, the method for BER estimation for BPSK and QPSK schemes, that was
presented in Chapter 3.1, should be extended for 16QAM and 64QAM modulation
schemes. The 16QAM modulation scheme uses complex symbols. The real as well as
the imaginary part of the complex symbol can have four different values: -3,-1,1 and
3. Therefore, the complex symbol can have 16 values, representing 4 bits. Figure 4
shows the possible complex values of a transmitted symbol for 16QAM.

The 64QAM modulation scheme uses also complex symbols. The real as well as
the imaginary part of the complex symbol can have eight different values: -7,-5,-
3,-1,1,3,5 and 7. Therefore, the complex symbol can have 64 values, representing 6
bits.

Section 3.3 describes the derivation of the estimators for µ and σ for 16QAM
modulation. These estimators will be used in Section 3.4 to derive an estimator
for the BER for 16QAM modulation. Similarly, section 3.5 describes the derivation
of the estimators for µ and σ for 64QAM modulation and Section 3.6 derives an
estimator for the BER for 64QAM modulation.

3.3 Estimators for 16QAM

Figure 4 shows the possible complex values of a transmitted symbol for 16QAM. We
consider the real and the complex part separate, because they are independent. So,
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Fig. 4. 16-QAM Constellation Bit Encoding Scheme

the real part of a symbol that is transmitted can have four different values (-3,-1,1
and 3), compared to two possible values (-1,1) in the UMTS case with BPSK/QPSK
modulation. Therefore, new estimators should be derived for µ̂ and σ̂.
First, we define four stochastic variables for the four possible values, with:

X: denotes the distribution of the soft values of the transmitted minus ones.
Y: denotes the distribution of the soft values of the transmitted ones.
Q: denotes the distribution of the soft values of the transmitted minus threes.
R: denotes the distribution of the soft values of the transmitted threes.

We assume that the distribution have the same variance σ and that the means
are −µ, µ, −3µ and 3µ respectively. Using this, the stochastic variables X,Y,Q and
R are expressed in terms of a standard normal distribution Z:

X = σZ − µ. (17)

Y = σZ + µ. (18)

Q = σZ − 3µ. (19)

R = σZ + 3µ. (20)

The received output values of the receiver do not correspond to these four individual
distributions, but to a distribution V , which results from the combination of the four
distributions. We assume that these four separate stochastic variables occur with
the same frequency. In other words, the probability for each value is equal to 1

4 . For
HiperLAN/2 the scrambling ensures that this property is fulfilled. For V we have:

P (V < v) =
1

4

(
P (X < v) + P (Y < v) + P (Q < v) + P (R < v)

)
. (21)



Based on measured results of V and using the moments of the distributions, it is
possible to estimate the characteristic values µ and σ of the four distributions, which
form together distribution V .

The second moment m2 of V is:

m2(V ) =
1

4
(E(X2) + E(Y 2) + E(Q2) + E(R2)). (22)

Using the following expressions for the second moments of the stochastic variable
X,Y,Q and R

m2(X) = E(X2) = σ2 + µ2. (23)

m2(Y ) = E(Y 2) = σ2 + µ2. (24)

m2(Q) = E(Q2) = σ2 + 9µ2. (25)

m2(R) = E(R2) = σ2 + 9µ2, (26)

the second moment of V becomes:

m2(V ) = σ2 + 5µ2. (27)

This results in the following estimator for the variance:

σ̂2 = m2(V ) − 5µ2. (28)

To get an estimator for the mean µ, we again use the fourth moment of V:

m4(V ) =
1

4
(E(X4) + E(Y 4) + E(Q4) + E(R4)). (29)

Using the fourth moments of the different stochastic variables (the computation of
the fourth moments is done in a similar way as in Section 3.1

m4(X) = E(X4) = E
(
(σZ − µ)4

)
= µ4 + 6σ2µ2 + 3σ4 (30)

m4(Y ) = E(Y 4) = E
(
(σZ + µ)4

)
= µ4 + 6σ2µ2 + 3σ4 (31)

m4(Q) = E(Q4) = E
(
(σZ − 3µ)4

)
= 81µ4 + 54σ2µ2 + 3σ4 (32)

m4(R) = E(R4) = E
(
(σZ + 3µ)4

)
= 81µ4 + 54σ2µ2 + 3σ4, (33)

the fourth moment m4 of V becomes:

m4(V ) = 41µ4 + 30σ2µ2 + 3σ4. (34)

With substitution of σ̂ in m4(V ), we derive an estimator for µ:

µ̂ =
4

√
3m2(V )2 − m4(V )

34
(35)

With substitution of µ̂ in m2(V ), the estimator for σ becomes:

σ̂ =
√

m2(V ) − µ̂2. (36)



With this derivations, estimators σ̂ and µ̂ can be computed from the individual
samples V1 .. Vn by:

µ̂ =
4

√√√√√√√√3

(
n∑

i=1

V 2
i

n

)2

−

n∑

i=1

V 4
i

n

34

(37)

σ̂ =

√√√√√
n∑

i=1

V 2
i

n − 5µ̂2
(38)

Simulations within Matlab show that both estimators work well if the four individual
distributions are normal distributions.

3.4 BER Estimation for 16QAM

A received symbol is mapped to the nearest symbol in the bit constellation encoding
diagram for 16QAM (see Figure 4). This symbol may be another symbol than the
transmitted symbol resulting in one or more bit errors.

Based on the estimators µ̂ and σ̂ we derive an estimation of the bit error rate
B̂ER. First, we investigate the error probabilities in one dimension. Figure 5 shows
the four distributions of the four stochastic variables. The probability that the real
part of a complex transmitted symbol with value (i,q) is received wrong is denoted
by: Pe re(i).
These probabilities are given by:

Pe re(−3) = P (Q ≥ −2) (39)

Pe re(−1) = P (X ≤ −2) + P (X ≥ 0) (40)

Pe re(1) = P (Y ≤ 0) + P (Y ≥ 2) (41)

Pe re(3) = P (R ≤ 2), (42)

and can be calculated by using the mean µ and the standard deviation σ:

Pe re(−3) = Φ
(−µ

σ

)
(43)

Pe re(−1) = 2 ∗ Φ
(−µ

σ

)
(44)

Pe re(1) = 2 ∗ Φ
(−µ

σ

)
(45)

Pe re(3) = Φ
(−µ

σ

)
(46)

The probability Pe re that the real part of a symbol is received incorrect is now
given by:

Pe re =
1

4
Pe re(−3) +

1

4
Pe re(−1) +

1

4
Pe re(1) +

1

4
Pe re(3) =

6

4
Φ
(
−

µ

σ

)
. (47)
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The same holds for the probability Pe im for the imaginary part of the symbol.

To calculate the BER, the mapping between symbol and bit sequence has to be
considered. Figure 4 shows this mapping. Due to the used Gray coding, only one
out of four bits is in error, if one of the direct neighbor symbols (of the transmitted
symbol) is received in one dimension. If a symbol is received incorrectly, we assume
that instead of the correct symbol, one of the direct neighbors is received. So, we
assume that an incorrectly received real or complex part of a symbol leads to precisely
one bit error. This assumption however, introduces a small estimation error. For now
this error is ignored. In [8] this small error is investigated. affects the estimation.
The probability of a complex bit error (in two dimensions) is the addition of the
real part and the complex part. Note that the overlap of the two probability areas
are counted twice. This is correct, due to the fact that indeed two bits are incorrect,
instead of one. Figure 6 shows this effect for the reception of symbol ’1111’. The
probability of a bit error becomes:

B̂ER = (Pe re + Pe im)/(number of bits per symbol)

=

(
6

4
Φ

(
−

µ̂

σ̂

)
+

6

4
Φ

(
−

µ̂

σ̂

))
/4

=
3

4
Φ

(
−

µ̂

σ̂

)
(48)



3.5 Estimators for 64QAM

The 64QAM modulation scheme uses also complex symbols. The real as well as
the imaginary part of the complex symbol can have eight different values: -7,-5,-3,-
1,1,3,5 and 7. We consider the real and the complex part separate, because they
are independent. So, the real part of a symbol that is transmitted can have eight
different values (−7µ,−5µ,−3µ,−1µ,1µ,3µ,5µ and 7µ), compared to four values for
the 16QAM case.

The derivation of the estimators for 64QAM can be done in the same way as
for BPSK (QPSK) and 16QAM. Therefore, we leave out all intermediate steps. We
define W as the distribution that results from the combination of the eight separate
normal distribution in one dimension with the eight means:-7,-5,-3,-1,1,3,5,7. The
second and fourth moment of W are:

m2(W ) = σ2 + 21µ2 (49)

m4(W ) = 777µ4 + 126σ2µ2 + 3σ4 (50)

With these moments, the estimators σ̂ and µ̂ are as follows:

µ̂ =
4

√√√√√√√√ 3

(
n∑

i=1

W 2
i

n

)2

−

n∑

i=1

W 4
i

n
546

(51)

σ̂ =

√√√√√
n∑

i=1

W 2
i

n − 21µ̂2
(52)

where W1...Wn denote the n individual samples.

3.6 BER Estimation for 64QAM

In a similar was as done in Section 3.4, we can derive the probability of a bit error
for 64-QAM modulation:

B̂ER = (Pe re + Pe im) /(number of bits per symbol)

=

(
14

8
Φ

(
−

µ̂

σ̂

)
+

14

8
Φ

(
−

µ̂

σ̂

))
/6

=
7

12
Φ

(
−

µ̂

σ̂

)
(53)



3.7 Summary for BPSK, QPSK, 16-QAM and 64-QAM Modulation

Scheme

The BER estimation for the different types of modulation differs only by the con-
stants c1, c2 and c3 in the Formulas (14) to (16). Table 2 summarizes the constants for
the different types of modulation that should be used for the Formulas (14) to (16).
It may be a bit surprisingly that also in the BER estimation with Formula (16) the
function Φ has to be weighted. This results from the fact that symbols that have
neighbour symbols on both sides have a higher probability on a bit error.

Table 2. Constants for Different Modulation Schemes

c1 c2 c3

BPSK 2 1 12
QPSK 2 1 12
16-QAM 34 5 9
64-QAM 546 21 7

4 Results BER Estimation

We have chosen to show the test results of the BER estimation method for the 64-
QAM modulation scheme. More bits per symbol makes the BER estimation more
difficult. For these tests we used a HiperLAN/2 simulator [11]. Figure 8 shows the
results for the BER estimation for 64-QAM modulation, which is the most difficult
case. The figure shows the BER on the x-axis and the error in the estimation on the
y-axis. The estimation error is equal to the (estimated BER - real BER) * 100%. The
line with label “1 term” shows the results obtained by using the Formulas (14) to (16)
and Table 2. As can be seen from the figure, there is an under estimation when the
BER increases. The reason is that Formula (16) accounts for 1 bit error only when
the received symbol is not the transmitted symbol. However, 16-QAM and 64-QAM
modulation schemes are not modeled with two normal distributions, but with four or
eight distributions respectively. This means that a symbol error also can be caused
by two interfering distributions that are not directly next to each other, resulting in
more bit errors. For example, if the received symbol is the neighbor of the neighbor
of the transmitted symbol (denoted with distance 2), then it will account for 2 bit
errors, as can be seen from Table 3. We can correct for this case with the addition of
an additional term to Formula (16). This term is the probability that a symbol has
neighbors with distance 2 multiplied with the error introduced if indeed a neighbor
with distance 2 is received instead of the correct symbol. So, the correction term for

a received neighbor with distance 2 is: 6
12

(
Φ
(

5µ

σ

)
−Φ
(

3µ

σ

))
, see Figure 7. A similarly

correction term for a received neighbor with distance 3 is: 5
12

(
Φ
(

7µ

σ

)
− Φ

(
5µ

σ

))
.

Dependent on the desired accuracy and computational complexity of the BER
estimation we can add one or more correction terms to Formula (16). Figure 8 shows
the results of these correction factors. The line with the label “2 terms” is the result
of the simulation for the original Formula (16) plus the correction term for received
neighbors with distance 2. The line with the label “3 terms” shows the performance
of the BER estimation with Formula (16) plus the correction factors for received
neighbors with distance 2 and 3. Since the Viterbi decoder can not correct frames
with a high BER, it is not usefull to add the correction term(s) in our case.
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Figure 8 shows that the error of the BER estimation algorithm is smaller than
2%. Additional simulations for different channels gave a similar result.

Table 3. 64QAM Constellation Bit Encoding

000100 001100 011100 010100 7 110100 111100 101100 100100
000101 001101 011101 010101 5 110101 111101 101101 100101
000111 001111 011111 010111 3 110111 111111 101111 100111
000110 001110 011110 010110 1 110110 111110 101110 100110

-7 -5 -3 -1 1 3 5 7

000010 001010 011010 010010 -1 110010 111010 101010 100010
000011 001011 011011 010011 -3 110011 111011 101011 100011
000001 001001 011001 010001 -5 110001 111001 101001 100001
000000 001000 011000 010000 -7 110000 111000 101000 100000

5 Discussion

This section dicusses the implementation of the presented in hardware and the ad-
vantages of using this method.

5.1 Implementation

The basic idea of the proposed method is to express the quality of the channel
(BER) in terms of a normal probability function. This function can be read from a
z-table, or certain functions exist that approximate the c.d.f. of a standard normal
distribution. For example, P (x) = 1− 1

2 (1+ c1x+ c2x
2 + c3x

3 + c4x
4)−4 + ε(x), with

|ε| < 2.5 ∗ 10−4 [2].
The estimators for the µ and the σ of the BER (Formulas (14 and 15) require

the summation of W 2
i and W 4

i of the incoming bits. This computation has to be
done at the incoming bit rate. These computations can be done with very simple
hardware support. Because the incoming values of the receiver are always quantized
with a limited number of bits, the values of the power of two and four can be stored
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Fig. 8. BER Estimation Error with Different Number of Terms for 64QAM in Hiper-
LAN/2 Simulation with a AWGN Channel

in a look-up table (LUT). This LUT in combination with an adder and a register
are sufficient to compute the sum. The rest of the computation has to be performed
only once per frame and can be done e.g. with a general purpose processor.

The estimators do not contain a correction factor for the bias. When the number
of samples is large enough (>30), the difference is so small that this can be neglected.
Due to the high bit rate (Mbit/s) the bias is not an issue in our case.

5.2 Advantages of the Presented Method

The presented method has several attractive properties, such as:

– simplicity – The presented method requires little computation and is therefore
easy to implement in a receiver.

– accuracy – Simulations show that the accuracy is within 2%. The method uses all
received data symbols instead of only pilot symbols. This means that more data
is available which improves the statistical analysis. Furthermore, most methods
make an estimation of the BER of the BER of the pilot symbols, which can differ
from the BER of the data symbols.

– low overhead – No pilot symbols are used so that all symbols can be used for
transmission of data.

– parameter prediction possible – Beside the possiblitiy to predict the BER for
the current situation, it is also possible to predict the BER after changes of
parameters. For example, it is possible to predict the BER when the modulation
is changed.

– no assumptions about environment – Some analytical methods use assumptions
about the environment to make a model for prediction of the BER. The presented
method does not make assumptions about the environment.



– generality – The presented method is not only useful for HiperLAN/2, but also for
other wireless communication methods. A detailed example for wideband code
division multiple access (WCDMA) is given in [9]. WCDMA differs significantly
from the OFDM transmission technology used in HiperLAN/2.

6 Conclusion

The presented method to estimate the BER in HiperLAN/2 is simple and effective.
With a few formulas, we can describe the complete behaviour of the system in terms
of quality. The BER estimation requires no overhead (such as pilot symbols) and
has an accuracy of about 2% with respect to the real BER. A key advantage of our
method is that we can also predict what will happen with the BER when we consider
to change the modulation type.
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