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Abstract: There have been widespread applications for Multi Objective Genetic
Algorithm (MOGA) on highly complicated optimization tasks in
discontinuous, multi-modal, and noisy domains. Because the convergence of
MOGA can be reached with the non-dominated set approximating the Pareto
Optimal front, it is very important to construct the non-dominated set of
MOGA efficiently. This paper proposes a new method called Dealer’s
Principle to construct non-dominated sets of MOGA, and the time complexity
is analyzed. Then we design a new MOGA with the Dealer’s Principle and a
clustering algorithm based on the core distance of clusters to keep the diversity
of solutions. We show that our algorithm is more efficient than the previous
algorithms, and that it produces a wide variety of solutions. We also discuss
the convergence and the diversity of our MOGA in experiments with
benchmark optimization problems of three objectives.

Key words: ~ Multi-objective Genetic Algorithm, Multi-objective Optimum, Dominated
relationship, Non-dominated set

1. INTRODUCTION

The Multi Objective Genetic Algorithm (MOGA), which is one of
machine learning algorithms, is praised for its ability to solve high complex
problems. Moreover, the real world tasks always involve simultaneous
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optimization of multiple objectives, and MOGA can find a wide spread of
Pareto optimal solutions in a single simulation run. Hence, MOGA is getting
very popularity in the recent years.

It is known that genetic algorithms can be used to solve single objective
optimization, and the best solution is usually the global minimum or the
global maximum in this case. However, multi objective optimization is very
different from the optimization with only a single objective. There may not
exist one solution that is best with respect to all objectives in multi objective
optimization. There always exists a set of solutions that are superior to the
rest of solutions in the search space when all objectives are considered, but
are inferior to other solutions in one or more objectives. These solutions are
called Pareto optimal solutions or non-dominated solutions. The rest of the
solutions are known as dominated solutions. In MOGAs, the key problem is
to construct a set of candidate solutions that are non-dominated for an
evolutionary population. While the construction procedure is repeated, the
set of candidate solutions is made go closer to the true Pareto optimal
solutions continually, and reach the true Pareto optimal solutions in the end.

There exist several kinds of MOGAs with different approaches of
constructing the non-dominated set. In this paper, we propose a new method
called Dealer’s Principle to construct non-dominated sets of MOGA (in
section 3), and the time complexity of the new algorithm is analyzed (in
section 3), which indicates that it is more efficient to use Dealer’s Principle
to construct a non-dominated set than the previous methods. To keep the
diversity of the solutions, we discuss a clustering algorithm based on the
core distance of clusters (in section 4). Then we design a new MOGA based
on the clustering procedure, in which the Dealer’s Principle is used to
construct the non-dominated set (in section 5). We discuss the convergence
and the diversity of MOGA, and we test our algorithm in the experiment
with a benchmark optimization problem of three objectives (in section 6). It
is shown that our algorithm is more efficient than previous algorithms, and
that it produces a wide spread of solutions (in section 6).

2. A BRIEFLY REVIEW OF MOGAS

The popular MOGAs include Aggregating Function, Schaffer’s VEGA,
Fonseca and Fleming’s MOGA, Horn and Nafpliotis’s NPGA, Zitzler and
Thiele’s SPEA, and Srinivas and Deb’s NSGA.

In Aggregating Function, multi objectives are fit together linearly into a
single objective, and each sub-objective is assigned a coefficient. Thus, the
optimization of multi objectives is transformed into the optimization of a
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single objective [1]. The main merit of this method is of high performing
efficiency, but its disadvantages are also distinct. For example, the
coefficient of each sub-objective must be changed continually in the
evolution process, and it is difficult to find the Pareto optimal solutions no
matter how to change the coefficients when the search space is concave [2].

In 1984, Schaffer proposed Vector Evaluated Genetic Algorithm (VEGA)
in his doctor’s dissertation. It seems that only the extreme points in Pareto
optimal front can be found when applying VEGA to solve some problems
[3], because it cannot be compromised in light of the attributes of each sub-
objective. The VEGA has been improved by Ritzel, Wayland [2] and Surry
[4], but it is difficult to find the Pareto optimal solutions'when the search
space is concave [5].

Fonseca and Fleming suggested another kind of MOGA [6]. Each
individual is given a rank calculated respectively. The rank of all non-
dominated individuals is 1, and the rank of the dominated individual is 1
plus the number of individuals that dominate it. The selection operation is
implemented with the mechanism of the fitness function sharing. The main
merits of the method are highly efficient and easy to implement [7]. Similar
to the other MOGA with parameters, one of its disadvantages is that the
method depends upon the choice of the parameters excessively. The other
disadvantage is the premature convergence because of the selection pressure
[8]. Moreover, the multi Pareto Optimal points cannot be found when
different points correspond to the same function value [9].

Horn and Nafpliotis brought forward A Niched Pareto Genetic Algorithm
for Multi objective Optimization (NPGA) based on Pareto dominated
relationship [10,11]. At first, a comparison set called CS is selected
randomly from the population, and then two individuals are also selected
randomly. If one of the two individuals is dominated by CS, then the other is
selected' into the next evolutionary population; otherwise one of the two
individuals is selected by the Niche shared methods into the future evolution
[11,12]. The main merit of NPGA is highly efficient, and the Pareto Optimal
front can be obtained by this method. Its disadvantage is that there is no
general principle to select the sharing parameters and the size of comparison
set.

In 1999, Zitzler and Thiele described Strength Pareto Evolutionary
Algorithm (SPEA) [13]. The fitness of individual is called the strength. The
strength of individuals in the non-dominated set is defined as the ratio of the
individuals dominated by it over the population size. The strength of the
others (dominated individual) is defined as 1 plus the number of individuals
dominating it. Here, the low strength individuals have a high probability of
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reproduction. The time complexity is O(n’). Zitzler [14] improved SPEA,
and advanced it to SPEA2 in which the time complexity is O(n*logn).

The Non-dominated Sorting in Genetic Algorithm (NSGA [15,16,17])
was proposed by Srinivas and Deb. First, for each individual two entities are
calculated: (1) n;, the number of individuals which dominate the individual i,
and (2) s;, a set of individuals which the individual i dominates. The
individual i is non-dominated if n; =0; otherwise individual i is dominated.
The non-dominated sorting procedure of NSGA has a computational
complexity of O(n?).

The main merits of SPEA2 [14] and NSGA-II [17] are good
performances in convergence and diversity. Moreover, MOGAs with no
parameter (such as SPEA and NSGA) do not have the problems of selecting
and adjusting parameters, so they have widespread applications. But their
disadvantage is lower performing efficiency than MOGAs with parameters.
To make MOGAs with no parameters more efficient, we propose a new
MOGA in which the non-dominated set is constructed by using a new
method called Dealer’s Principle in this paper.

3. DEALER’S PRINCIPLE TO CONSTRUCT A NON-
DOMINATED SET

In the MOGAs based on Pareto optimum, it is very important to construct
a non-dominated set efficiently because the speed of the construction affects
convergent speed of an algorithm directly. Because the new method has no
backtracking when constructing non-dominated sets, a new non-dominated
individual needs not to be compared with non-dominated individuals that
already exist. Firstly, a dealer, a reference individual, is selected from the
candidate solutions in each round of comparison (the dealer is usually the
first individual in the current evolutionary population). Then the dealer is
compared with the other members of the current candidate solutions one by
one. The individual dominated by the dealer must be removed immediately.
After a round of comparison, the dealer is joined into the non-dominated set
if it is not dominated by any other individuals; otherwise the dealer must be
removed. This process is repeated until there is no candidate solution.
Therefore, we call our new method the Dealer’s Principle. Before we discuss
our algorithm, some definitions are needed.

Definition 1: Assume the size of set P is n, every individual in P has r
attributes, and f, () is an evaluation function (k=1,2,...,r). The relationship
between individuals in P is defined as follows:
(1) Dominated relationship: vX, YeP, if f,(X)< f,(Y), (1,2, ..., r), and
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3l e{1,2,---,r} such that f,(X)< f,(¥), then we have X dominates Y, or
X> Y. Here “» ” represents dominated relationship, and we say X is a non-
dominated individual, and Y is a dominated individual.
(2) Irrelevance: v.X, YeP, if X and Y do not dominate each other, or there is
no relations between X and Y, then we say that X and Y are irrelevant.

Definition 2: There exist Xe P, if not 3Ye€P, Y~ X, the X is a non-
dominated individual of P. The set consisting of non-dominated individuals
of P is called the non-dominated set of P.

Definition 3: Assume Nds is a non-dominated set of P, Ndsc P. vXeP,
if X is a non-dominated individual of P, then X'€ Nds. Nds is called the
biggest non-dominated set of P.

Now we discuss the Dealer’s Principle to construct the non-dominated set
from a set of candidate solutions. Assume P is an evolutionary population,
and Q is a set of candidate solutions. Starting with an empty Nds of the non-
dominated set, let Q=P. One individual X is picked at random from Q (in fact,
X is removed from Q in this case) and compared with other individuals in Q
one by one, and then the individuals dominated by X are deleted. If X is not
dominated by any other members of Q, then it is a non-dominated individual,
and it is joined into Nds. We continue this process until Q is empty.

The Algorithm 1 shows how to implement the method to construct a non-
dominated set of an evolutionary population.

Algorithm 1: Construct a non-dominated set with Dealer’s Principle
Function Nds (Pop: population) { Q=Pop; while (Q# ¢)do { XeQ, Q=Q-
{X}; x-is-non-dominated=T.; for(YeQ) {if(X> Y)thenQ=Q-{Y}
else if (Y~ X) then x-is-non-dominated=.F. }  if (x-is-non-dominated) then
Nds=NdsU { X'}; }}It can be proved that the Nds is a non-dominated set
of P, and is the biggest non-dominated set of P. Now we analyze the
computational complexity of the algorithm with the Dealer’s Principle to
construct a non-dominated set. Suppose that n is the size of set P, and there
are m non-dominated individuals in P. Firstly we discuss three particular
cases: (i) there exist (m-1) non-dominated individuals after (m-1) rounds of
comparison, but (m-1) individuals do not remove any dominated individual
from Q. After the m™ round of comparison, the m"™ non-dominated
individual removes (n-m) dominated individuals from Q. The computational
complexity in this situation is: (n-1)+((n-2)+... +(n-m)=(2n-m-1)m/2<nm. (ii)
While the early (n-m) rounds of comparison, all the (n-m) dealers are
dominated individuals, and no other individual is removed from the current
candidate solutions of Q by them, and the m non-dominated individuals are
generated in the latter m rounds of comparison. This is the worst situation.
The computational complexity under this situation is: (n-1)+ (n-
2)+...+1=n(n-1)/2=0(n?). (iii) In the first round, there is an individual that is



462 Intelligent Information Processing 11

not dominated by any members of Q, and this non-dominated individual
removes (n-m) individuals dominated by it from Q. In the later (m-1) rounds
of comparison, there are (m-1) non-dominated individuals generated. This is
the best situation. The computational complexity is: (n-1)*[(m-2)+ (m-
3)+...+1]=(n-1)H(m-1)(m-2)/2=0(n+m?).

As a general rule, there have been k rounds of comparison altogether,
m<k<n. There are k individuals are removed naturally for k rounds of
comparison, one at a time, here there are m non-dominated individuals and
(k-m) dominated individuals. There are (n-k) dominated individuals removed
from the set of candidate solutions Q for k rounds of comparison. Suppose
that the probability of removing (n-k) dominated individuals is equal: (n-k)/k,
the computational complexity of k rounds of comparison is: (n-1)+ (n-2-(n-
k)/k) +(n-3-2(n-k)/k) +...+(n-k-(k-1)(n-k)/k) =[(n-1)+ (n-2) +...+(n-k)]-[(n-
k)/k+2(n-k)’k +...+k(n-k)/k]+k (n-k)/k=[(n-1)+ (n-k)]k/2-[(n-k)/k+k(n-
k)/k]k/2+ (n-k)=k(n-1)/2+ (n-k)/2= O(kn) <n’

From the analysis above, the time complexity of the algorithm to
construct a non-dominated set with the Dealer’s Principle is better than that
in SPEA2 and NSGA-II. Especially in the early stage of algorithm execution,
m is always much less than n (or m<<n), so the algorithm is more efficient.

4. THE CLUSTERING METHOD BASED ON CORE
DISTANCE

In the research of MOGAs, the diversity of solutions is one of the most
important issues. MOGAs with parameters employ niche technique [11] and
fitness sharing [12] to keep or maintain the diversity of solutions. MOGAs
with no parameters employ a crowding procedure [16] or a clustering
procedure [14,19] to maintain the diversity of solutions. It is shown from
some studying [14,19] that the MOGAs that employ the clustering procedure
have better diversity than these that employ the crowding procedure. While
the early stage of a MOGA execution, a non-dominated set Nds is small, but
it increases gradually. When |[Nds|[>n, how choose n individuals from Nds
and keep the diversity of solutions at the same time? Therefore, a clustering
procedure based on core distance is proposed in this paper.

The clustering procedure based on core distance employs a bottom-up
approach to cluster individuals. Initially, we regard each of n individuals as a
subclass and calculate the distance between their cores (centers), then
combine two subclasses that they have the smallest core distance. The
procedure of calculation and combination will be repeated until the stop
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‘condition is satisfied ([Nds|<n). The clustering procedure is depicted in
algorithm 2.
Algorithm 2: clustering procedure based on core distance
(1) initialize cluster set C, let every subclass of C includes one individual
inNds: C=U,{{p}} peNds The core (0;) of every subclass is the only
individual in the subclass. .
(2) if |C|<bound, then goto (8). Here, bound is the maximal limit size of
non-dominated set.
(3) calculate the core distance between any two subclasses:
d(0,,0,)=llo,~0,|l, o0,0,€C  Where |lo,-o,| is distance between o, and
o,.

!

(4) choose two new subclass C; and C; which have minimal distance

between their cores: ¢, c,: min{d(o,,0))| o0,0,€C} merge c, and
¢, into subclass ¢,: C=C\{c,c,}U{c,vc,}
%) calculate the core of subclass c, ,

d(p)=min{d(p,q)| p.qec,, p#q} o, =min{d(p)|pec,}

(6) if |C| <bound, then goto (8).

(7) calculate the distance from ¢, to any other subclass of C between
their cores. d(o,,0,)=llo, - o, || where o, , o, is the core of ¢, and
¢, respectively, ¢,,c, e C and ¢, #¢,. then goto (4).

(8) return Nds =U{ o, }, o,isthe core of ¢,, ¢, e C.

i

The time complexity of the clustering procedure is O(n?).

S. MOGAS BASED ON CLUSTERING PROCEDURE

Assume that the size of the evolutionary population is n. Pop,represents
the population in t" generation, Q, denotes the new evolutionary population
after the genetic operators (selection, crossover, and mutation) are applied to
Pop,, and the size of Q, is also n. Set R=Pop,\U Q,, and the size of R, is 2n.
By constructing the non-dominated set Nds of R, continually, the individuals
in Nds are going more and more close to Pareto optimal front in order to
accomplish multi-objective optimization.

If |Nds|<n, by means of a clustering procedure or a randomization
procedure, (n-|Nds|) individuals are generated and are combined with Nds to
make a new population Popy,. In this algorithm, the clustering procedure is
evoked one time while the randomization procedure performing four times.
This would achieve the best trade-off between the speed of the algorithm and
the diversity of the solutions. If [Nds[>n, the clustering procedure is used to
reduce the size of the non-dominated set. In this case, the clustering
procedure is repeated until Nds include only n individuals or [Nds|<n. The



464 Intelligent Information Processing 11

MOGA based on the clustering procedure, in which the Nds is constructed
with the Dealer’s Principle, is briefly described in Algorithm 3.

Algorithm 3: Multi-objective genetic algorithm based on the clustering
procedure Multi-objective-GA(Popy) { Q: =w (Popy); //w is a genetic
operator including selection, crossover and mutation R=Pop, U Qy
//lcombine parent generation and new generation Nds=Construct-Nds(R,);
//construct Nds with Dealer’s Principle if (|[Nds|<n) then if (count<3)

then { Pop.;=NdsU {Random-procedure(n-|Nds|)}; /la
randomization procedure is used to generated (n-|Nds|) individuals
count=count+1 } else {Pop.;= NdsU Cluster (R-Nds, n-|Nds|);
count=0 } //the clustering procedure is used to generate (n-|[Nds|)
individuals else if (| Nds|>n) then Pop.; =Cluster(Nds, n); /lthe
clustering procedure is used to reduce the size of Nds t=t+1;
}

Here Cluster(P, m) is the clustering procedure, P is a population on which
the clustering operator applies, and m is the size of the clustering result.
Initially, count=0.

6. EXPERIMENT

6.1 Convergence and Diversity

In this paper, we use a simple metric for evaluating convergence. A
reference set is needed while evaluating convergence. A reference set P* is
either a set of Pareto-optimal points (if known) or a non-dominated set of
points in a combined pool of all generation-wise populations obtained from a
MOGA run. This means P*=Non-dominated( U’ Nds" ), where Nds(t) is the
non-dominated set in the t™ generation, (t=0, 1, ...,T). From each individual i
in the current non-dominated set, calculate the smallest normalized
Euclidean distance to P* as follows [19]:

WL AORI AN
d, = e 1
p ! rr,‘l-.lln J;( /;mﬂx _ ﬁmm ) ( )

Here, /™ and f,™" are the maximum and the minimum function values
of k™ objective function in P*, and m is the number of the objective function.
Calculate the average of pd,:
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Py =Y"" pd, || Nds" | )

In order to satisfy C(P")e[0,1], we normalize the C(P") values by its
maximum value:

C(P")=C(P")/C(P™) 3)

Fig. 5 shows the convergence of three kind of MOGAs. It is clear that the
C(P") will become less and less when t increases. It also means that the set
of candidate solutions will approach the Pareto optimal solutions gradually
when C(P“) decreases continually.

Besides the convergence, we hope that the final solutions should have a
good diversity. The obtained set of the first non-dominated solutions is
compared with a uniform distribution and the deviation is computed as

follows:
| Nds|
Md,d)=——=3(1d,~d])/d
i & @
lZXA A) (5)

Here, d, = Min{s(i, /)| j € Nds} , s(i,j) is the Euclidean distance between
individual / and j, d is the average of d,, the deviation measure A, is the
value of A(d,,d)in one run, the measure A is the average of A, for 10 runs,
and _ Nds is the non- dommated set.

A(d,,d)represents the variation degree of d,. Thus, it is clear that an
algorithm having a smaller A maintains better distribution of solutions. Here
A, is the variance of A in 10 runs, so the smaller the value of A, , the better
the consistency of the solutions. It is shown in Fig. 6 and in Table 1.

6.2 Simulation Results

The test problem DLTZ3 is identical to the problem described as follows:
Minimize  f,(X)=(1+g(X,))cos(x,7/2)cos(x,7/2)---cos(x, 7 /2)cos(x, 7 /2),
Minimize  f,(X)=(1+g(X,))cos(x,zw/2)cos(x,7x /2)---cos(x, 7 /2)sin(x, 7 /2),

Minimize  f,(X)=(1+g(X,))cos(x,/2)cos(x,7/2)---sin(x, ,7/2),
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Minimize  f, (X) =1+ g(X,))cos(x,z/2)sin(x,z/2),

Minimize f,(X)=(1+ g(X )sin(x,z /2),

0<x <1, for i=12,..
Where g(X,)=|x, | + z((x —0.5)* = cos(207(x, = 0.5)) , (x,, -+, X,) € X,
Here |x | 8 the size of Xx set,

K

X ={(x,, %y, 5%, 5 %, X, )}, X, ={(x,,,x,)} . The global Pareto-optimal
front corresponds to x,, = 0.5, @i=m, ,n) .

In experiment, the population size is 200, the crossover probability is 0.8,
and the mutation probability is 1/len (where len is the number of variables).
We use the binary coding and an equal length of genes in solving
corresponding problems. We use FMOGA to denote our MOGA discussing

in this paper.

o nu‘oh‘ %
7y, , , ou. 0.\\\\
1,1,
"/ h

'
"n,m;w

IW'.N

Figure 2. The FMOGA population on test problem DTLZ3
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We compare FMOGA with NSGA-II, SPEA2 and NPGA. Under the
same environment, each algorithm runs for 500 generations. Figure 1 to
Figure 4 show the distribution metrics for FMOGA, NSGA-II, SPEA2 and
NPGA. In terms of the distribution of solutions, from the simulation results,
it is shown that FMOGA, NSGA-II and SPEA2 do better than NPGA;
furthermore, it is remarkable that FMOGA performs well than NSGA-II and
SPEA2. Figure 6 shows the diversity at every generation of a MOEA run.
The best performance is provided by FMOGA and the worst is NPGA.
Figure 5 shows the convergence that FMOGA, NSGA-II and SPEA2 have
reached closely to the true Pareto-optimal front, but NPGA cannot be shown

in Figure 5 because C(P®)>0.3.
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Figure 5. comparison of convergence metrics
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Figure 6. Fig 6. comparison of the diversity metrics

Table 1 shows the average value in 10 independent runs for FMOGA,
NSGA-II, SPEA2 and NPGA. It is clear from Table 1 that NPGA is the
fastest of all, and FMOGA is more efficient than NSGA-II and SPEA2. It is
also shown in Table 1 that the FMOGA is more consistent than the other

MOGA because its deviation A, is the least of all.

Table 1.comparison of time, diversity and variance of diversity using four algorithms
Algorithm FMOGA NPGA SPEA2 NSGA-II
Time 6.245 5.365 7.856 7.564
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Diversity( A) 0.2306 0.6539 0.4093 0.6162

Variance of
diversity(A )

0.0528 0.2642 0.0754 0.0862

7. CONCLUSIONS

This paper proposes a new method to construct the non-dominated set of
MOGA based on the Dealer’s Principle. To keep the diversity of candidate
solutions, a clustering procedure based on the core distance is discussed. To
test the efficiency of the Dealer’s Principle to construct the non-dominated
set and the performance of the clustering procedure, we design a MOGA
namely FMOGA. By the experimental results, it is shown that our new
MOGA using the Dealer’s Principle to construct non-dominated set and
using clustering procedure to keep the diversity of solutions is of better
performance on speed, convergence and diversity of solutions than previous
approaches.
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