
Chapter 13

IDENTIFYING AND ANALYZING
WEB SERVER ATTACKS

Christian Seifert, Barbara Endicott-Popovsky, Deborah Frincke,
Peter Komisarczuk, Radu Muschevici and Ian Welch

Abstract Client honeypots can be used to identify malicious web servers that at-
tack web browsers and push malware to client machines. Merely record-
ing network traffic is insufficient to perform comprehensive forensic anal-
yses of such attacks. Custom tools are required to access and analyze
network protocol data. Moreover, specialized methods are required to
perform a behavioral analysis of an attack, which helps determine ex-
actly what transpired on the attacked system. This paper proposes a
record/replay mechanism that enables forensic investigators to extract
application data from recorded network streams and allows applications
to interact with this data in order to conduct behavioral analyses. Im-
plementations for the HTTP and DNS protocols are presented and their
utility in network forensic investigations is demonstrated.

Keywords: Network forensics, malicious web servers, client honeypots

1. Introduction

Network forensic readiness involves “maximizing the ability of an en-
vironment to collect credible digital evidence while minimizing the cost
of incident response” [11]. The goal is to simplify network forensic tasks
without sacrificing the quality of digital evidence. This can be achieved
using specialized techniques and tools as well as by embedding forensic
capabilities in networks, thus “operationalizing” network forensic readi-
ness [1].

This paper examines network forensic readiness in the context of ma-
licious web servers. Malicious web servers push malware to client ma-
chines – so called “drive-by-downloads” – by exploiting web browsers.
A previous study [10] used client honeypots to find malicious servers on



152 ADVANCES IN DIGITAL FORENSICS IV

the Internet. However, once identified, the attack origin and mechanism,
and the actions performed by the malware could not be explained.

A major challenge is to extract and interact with application data from
recorded network streams. In particular, it is difficult to demonstrate
and analyze attacks because the streams have to be piped via network
channels through the client application to execute the identical code
path that made an attack possible. Since the attack source code is not
readily available, analyzing system behavior (referred to as “behavioral
analysis”) is the primary means to infer the inner workings of an attack.

Network and application protocols do not support the replay of net-
work data to analyze how an attack impacted an application or system.
This inability has contributed to inadequate network forensic readiness
in the context of client-side attacks.

This paper presents a custom solution using web and DNS proxies and
demonstrates its utility in network forensic investigations. The solution,
however, is specific to the HTTP and DNS protocols [3, 7] and is not
easily generalizable. This is why the paper also calls for the support
and implementation of a record/replay mechanism in these protocols to
provide a generic network forensic solution.

2. Background

This section discusses the problems posed by malicious web servers
and the overall lack of forensic readiness to cope with attacks.

2.1 Malicious Web Servers

Our previous study [10] concerned itself with identifying “drive-by-
downloads,” an emerging type of attack executed by malicious servers
on client machines. These attacks target vulnerabilities in client appli-
cations and usually alter the state of the client machine without user
consent. Typically, the malicious server installs malware on the client
machine without the user’s knowledge.

Our work concentrated on identifying malicious web servers that at-
tack web browsers. The mere retrieval of a malicious web page with
a vulnerable browser results in a successful compromise of the client
machine. The web environment was chosen because these attacks are
currently the most common type of drive-by-downloads.

We identified malicious web servers using high-interaction client hon-
eypots. Such a honeypot uses a dedicated operating system to drive a
vulnerable browser to interact with a potentially malicious web server.
After each interaction, the operating system is checked for unauthorized
state changes, e.g., new executable files in the startup folder. If any



Seifert, et al. 153

Figure 1. Client honeypot.

unauthorized state changes are detected, the server is classified as mali-
cious (Figure 1).

Twelve instances of a high-interaction client honeypot were used to
inspect about 300,000 web pages over a three-week period. A total of
306 malicious URLs were identified that successfully attacked a standard
installation of Microsoft Windows XP SP2 with Internet Explorer 6.0
SP2. The malicious servers took control of the machine and primarily
installed malware that attempted to defraud the user.

Unauthorized state changes to the client machines were recorded when
the client honeypots identified malicious web servers. In addition, net-
work data was collected using the tcpdump tool [6] and stored in libpcap
data files. This data contained all the network traffic sent to and from
a client honeypot, including HTTP and DNS requests and responses.
Interested readers are referred to [10] for more details about the use of
high-interaction client honeypots.

2.2 Forensic Analysis

Analysis of network and application data (DNS records, HTML pages
and IP source addresses) helps identify the servers involved in attacks
and their role in the attacks. Also, the inspection of HTML pages reveals
embedded source code, which could provide information about attack
mechanisms.



154 ADVANCES IN DIGITAL FORENSICS IV

In general, an attack incorporates an exploit that targets a vulnera-
bility and a payload that is executed after the vulnerability is exploited.
Usually, the embedded source code only implements the initial exploit.
The payload, which is typically in the form of a binary, requires behav-
ioral analysis to determine how it operates. Behavioral analysis requires
the attack code to be executed again on the client machine, but this
is difficult to accomplish for several reasons, including server location,
server domain name and security context. Opening a web page from a
web server is quite different from opening it as a file. A page that is
opened from a previously-saved file might not trigger. In fact, to trigger
successfully, the attack code has to be sent to the client application via
the network as if it originated from the malicious server.

Recorded network data does not lend itself to straightforward forensic
analysis. Application data embedded in libpcap files has to be extracted
using custom tools; but, even then, the data may not directly support
behavioral analysis. For example, HTML pages extracted with these
tools cannot be fed to a browser to provide information about if and
how the attack occurred.

Note that it is difficult to develop an application that interacts with
a malicious server in order to analyze an attack. This is because the
dynamic nature of the network makes malicious web servers appear
different over time. Also, it is often the case that hackers implement
fluctuations to hide attack sources and hinder forensic investigations of
attacks. As a result, forensic analyses of attacks must be based on the
data recorded during the initial identification of malicious web servers.

2.2.1 Replaying Network Data. In order to replay network
traffic at the transport layer, recorded packets must be placed back on
the wire. The technique involves splitting the network flow into server
traffic and client traffic. After one side of the flow, say client traffic,
is selectively placed on the wire, the server would have to recognize a
request as if it originated from a client and provide the normal response.

Separating the network flow into client and server packets is an easy
task. It is done by filtering the network flow by client source or server IP
address. However, having the client or server interactively respond to the
replayed network traffic is not a capability that is normally supported
by the transport layer of a network protocol such as TCP [5] (regardless
of whether IPv4 [4] or IPv6 [2] is employed).

Several mechanisms of the TCP protocol are responsible for this. TCP
is a stateful protocol that uses a three-way handshake to establish a
connection between a client and server. First, the client sends a TCP
packet to the server with the ACK flag set. The server acknowledges



Seifert, et al. 155

Figure 2. Ephemeral port assignment.

this connection request by sending a TCP packet with the ACK and
SYN ßags set. The connection is established when the client sends a
TCP packet with the ACK ßag set. Sequence numbers are exchanged
during the handshake to identify the other party in each communication.
Thus, connections cannot be established when TCP tra!c is replayed
by placing only one side of the network ßow on the wire.

Another di!culty is posed by ephemeral ports that are create d by
the client to accept response packets from the server duringthe pro-
cess of establishing a connection. In other words, the client applica-
tion temporarily becomes a server. An ephemeral port is dynamically
assigned in the high port range with each connection as shownin Fig-
ure 2. This port remains closed when no connection is being estab-
lished. Replaying network tra!c against the client require s matching
the temporarily-opened ephemeral port with the destination port speci-
Þed in TCP packets. Without this matching, the tra!c would no t reach
the client application.



156 ADVANCES IN DIGITAL FORENSICS IV

The tcpreplay tool [14] can place recorded packets back on the wire,
but it does so in a passive manner without modifying the recorded pack-
ets to address the TCP handshake and ephemeral port assignment con-
straints. It places packets on the wire in their original form mainly for
the purpose of testing network performance and inline security devices
(e.g., firewalls and intrusion detection systems).

2.2.2 Network Fluctuations. The dynamic nature of net-
works prevents forensic investigators from retrieving the original content
from malicious web servers. Having identified a malicious web server,
subsequent attempts to interact with the server and retrieve informa-
tion to support attack analysis are hindered by network fluctuations. In
particular, the server may exhibit non-deterministic behavior, provid-
ing content that is different from what was originally sent to the client
application.

The simplest technique used by hackers to implement network fluc-
tuations is to remove the malicious content from the server. A second
mechanism is to manipulate DNS (the service that maps host names
to IP addresses of physical machines) to resolve to different physical
machines whenever a host name lookup is performed. Such network
structures are referred to as fast-flux networks [12]. This makes the
attack infrastructure more resilient to failure and also hinders forensic
investigations.

A third network fluctuation technique uses a mechanism known as
“IP tracking.” Exploitation kits deployed on web servers, such as Mpack
v0.94 [9], can be configured to trigger only during the initial contact with
a malicious web server. Subsequent interactions with the web server from
the same IP address provide the identical, albeit benign, web pages.
Thus, the malicious web server that launched an attack on the client
honeypot appears to be benign to the forensic investigator.

3. Proposed Solution

Our solution engages a record/replay mechanism in which recorded
data is played back through the client application (Figure 3). This makes
it much easier to extract relevant information from the data. Instead of
writing a custom forensic analysis application, the existing functionality
of the client application can be used to extract information from network
data. Moreover, replaying recorded data through the client application
supports behavioral analysis.

As mentioned above, implementing a record/replay mechanism at the
network transport layer poses several challenges. Therefore, our solution



Seifert, et al. 157

Figure 3. Record/replay mechanism.

uses the application layer to implement record/replay. Specifically, all
client application and malicious web server communications are routed
through a proxy that records all the application data. The proxy, if
instructed to replay the stored data instead of fetching it from the actual
server, can repeatedly replay the server responses to the client.

Figure 4. Proxy architecture.

The top portion of Figure 4 presents the proxy architecture. The ar-
chitecture supports forensic analysis because the proxy server stores all
the data during the initial operation of the client honeypot. In particu-
lar, it is possible to perform a behavioral analysis of the attack code using
a browser. The browser makes the HTTP request, which is routed via the
proxy. Since the proxy already knows the response, it returns the server



158 ADVANCES IN DIGITAL FORENSICS IV

Figure 5. Squid configuration options.

response it has already saved without passing another request to the
malicious server. Furthermore, the application data is easily retrieved
even though it might have been stored by the proxy in a proprietary for-
mat. Browsers and DNS clients can obtain and decode the proxy data.
For example, WGET could obtain the HTTP response, and the HOST
tool could translate DNS responses stored on the proxy server. Thus,
our solution reuses the code of existing tools, eliminating the need to
procure custom tools for extracting and analyzing application data.

3.1 Proxy Solution

Web browsing uses two application protocols (HTTP and DNS). Con-
sequently, two proxy solutions are implemented: a web proxy that routes
and stores HTTP data and a DNS proxy that performs the same oper-
ations on DNS data.

The web proxy relays HTTP data and stores this data in its cache.
The caching functionality, which is part of the HTTP/1.1 specification
[3], improves response performance and availability, and permits discon-
nected operation (to some extent). The caching functionality was not
designed for forensic purposes, rather to enhance performance and avail-
ability. Because of this focus, it is also concerned with data staleness
and, therefore, defines a mechanism that checks whether a newer re-
source is available or whether the resource itself should never be cached.
A proxy utilizes constraints on freshness and security/privacy as well as
cache correctness.

If a web proxy adheres to these functional requirements strictly, a
saved malicious web page might be invalidated by the freshness con-
straint and fetched again from the server upon a subsequent request. In
contrast, our solution attempts to use the web proxy for storage rather
than caching without applying the mechanisms defined in the HTTP/1.1
specification. In particular, it uses Squid [15], an open source web proxy
implementation. Squid is highly configurable and permits deviations
from the HTTP/1.1 specification. In fact, the forensic requirements for
the web proxy can be achieved using the Squid configuration settings
shown in Figure 5.



Seifert, et al. 159

DNS proxies, similarly to web proxies, are designed to store DNS re-
sponses in their caches for a predefined period of time. Once the validity
of a DNS response has expired, the DNS proxy must perform another
DNS lookup on the actual DNS server. Again, an implementation is
needed that can override this behavior. This can be done using pdnsd
[8], a simple DNS daemon with permanent caching designed to deal
with unreachable or down DNS servers (e.g., in dial-up networking).
The purging of older cache entries can be prevented by setting the max-
imum cache size to a high value (e.g., using the configuration option
perm cache=204800).

3.2 Limitations

The proposed solution has some limitations. First and foremost, it
is not easily applicable to other network data. The HTTP and DNS
protocols are based on a simple request/response model. Since the pro-
tocols were designed at a time when dial-up networks dominated, caching
proxies were incorporated to conserve resources and increase reliability.
Proxy storage capabilities facilitate forensic data collection and analysis;
however, they are unlikely to be provided by modern protocols. For ex-
ample, peer-to-peer protocols and other popular protocols such as SSH
do not have a simple request/replay structure, which makes it difficult
to offer proxy record/replay capabilities.

Second, the proxy solution does not provide the same interactivity as
a real server. State information (e.g., for authentication) is held by the
client and is usually conveyed back to the server in the form of a cookie.
While a proxy is able to store this information, a client would have to
adhere to the same request sequence to solicit the same responses. For
example, if a client accesses a web page after authentication, it would
have to be re-authenticated before it could access the same web page
from the server at a later time; this is because the required authenti-
cation information is missing from the request. Furthermore, the proxy
solution will not work when encryption is used by the two communicat-
ing parties.

Finally, interacting with a server via a proxy might solicit different
server responses. This is not a concern in a forensic setting. However,
because the data sent to the client is recorded by the proxy, this might
pose a problem when searches are performed using a client honeypot.
Specifically, a server might check for the existence of a proxy and not
behave maliciously if such a proxy is encountered as a precautionary
measure. Figure 4 illustrates this situation. The top flow shows a client
application interacting with a server via a proxy. The server detects the



160 ADVANCES IN DIGITAL FORENSICS IV

proxy set-up and, therefore, delivers a benign web page. The bottom
flow shows a client interacting directly with the server. The server does
not detect a proxy that potentially records data and believes it is free
to launch the attack.

4. Conclusions

Identifying and analyzing web server attacks are difficult tasks due to
the lack of forensic readiness of network protocols. Our custom proxy-
server-based record/replay solution adds network forensic readiness ca-
pabilities to client honeypots. The solution supports the examination of
application data by reusing the capabilities of the clients that consume
the data. It also permits the data to be sent interactively to client appli-
cations to perform behavioral analyses of attacks, which provide a more
complete picture of attack mechanisms and impact.

While forensic capabilities have been implemented at the application
layer using existing proxy solutions, we believe a generic solution could
be implemented at the network transport layer. The difficulty in imple-
menting such a solution is primarily due to the fact that existing pro-
tocols were not designed with network forensic readiness in mind. We
believe that incorporating forensic requirements during protocol design
is instrumental to achieving network forensic readiness.

References

[1] B. Endicott-Popovsky, D. Frincke and C. Taylor, A theoretical
framework for organizational network forensic readiness, Journal
of Computers, vol. 2(3), pp. 1–11, 2007.

[2] S. Deering and R. Hinden, RFC 2460: Internet Protocol Version 6
(IPv6) Specification (www.faqs.org/rfcs/rfc2460.html), 1998.

[3] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee, RFC 2616: Hypertext Transfer Protocol –
HTTP/1.1 (www.ietf.org/rfc/rfc2616.txt), 1999.

[4] Information Sciences Institute, RFC 791: Internet Protocol, Univer-
sity of Southern California, Los Angeles, California (www.faqs.org
/rfcs/rfc791.html), 1981.

[5] Information Sciences Institute, RFC 793: Transmission Control Pro-
tocol, University of Southern California, Los Angeles, California
(www.faqs.org/rfcs/rfc793.html), 1981.

[6] V. Jacobson, C. Leres and S. McCanne, tcpdump (www.tcpdump
.org).



Seifert, et al. 161

[7] P. Mockapetris, RFC 1035: Domain Names – Implementation and
Specification (www.ietf.org/rfc/rfc1035.txt), 1987.

[8] T. Moestl and P. Rombouts, pdnsd – Proxy DNS server (www.phys
.uu.nl/∼rombouts/pdnsd/index.html).

[9] C. Seifert, Know your enemy: Behind the scenes of malicious web
servers (www.honeynet.org/papers/wek), 2007.

[10] C. Seifert, R. Steenson, T. Holz, Y. Bing and M. Davis, Know your
enemy: Malicious web servers (www.honeynet.org/papers/mws),
2007.

[11] J. Tan, Forensic readiness (www.arcert.gov.ar/webs/textos/forensic
readiness.pdf), 2001.

[12] The Honeynet Project and Research Allicance, Know your enemy:
Fast-flux service networks (www.honeynet.org/papers/ff/fast-flux
.pdf), 2007.

[13] A. Turner, flowreplay design notes (synfin.net/papers/flowreplay
.pdf), 2003.

[14] A. Turner, tcpreplay (tcpreplay.synfin.net/trac).

[15] D. Wessels, H. Nordstroem, A. Rousskov, A. Chadd, R. Collins,
G. Serassio, S. Wilton and C. Francesco, Squid web proxy cache
(www.squid-cache.org).


