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Abstract In this work concepts of division of labor in social insectela&mergent
self-organization are used to design a very efficient harfier clustering wireless
sensor networks. Differently from previous approaches,aime at creating clus-
ters with a minimum amount of resources and good intra-efusinnectivity. Our
heuristic has two steps. First, we elect the most suitabigtetheads that have the
extra responsibility of leading and representing the elugtfterwards, the heuris-
tic selects the respective members of the clusters. Thesegses are guided by a
response function that determines the suitability of eantterio a given task (role).
For example, nodes with good connectivity and high energgllare good can-
didates for being clusterheads. In addition to the divissbriabor, we are using
a positive/negative feedback mechanism to control theustisnfor attracting new
members. Until having enough resources, the positive faedhacts in order to re-
cruit new members. After gathering enough resources, thative feedback starts
to play a major role. Simulations showed that for 80% of ctiseproposed heuris-
tic could find results which are below2times the theoretical optimal solution,
define as the sum of the intracommunication cost of the dsiste

1 Introduction

Wireless sensor networks (WSN) are constantly gaining @ojuland attracting
more research over the years. One of the reasons is a myriaalef applications
that can be implemented with them. The applications rarmga fluman-embedded

Tales Heimfarth
Federal University of Rio Grande do Sul, Brazil, e-maittei nf art h@nf . ufrgs. br

Dalimir Orfanus
University of Paderborn, Germany, e-mait.f anus@ni - pader bor n. de

Flavio Rech Wagner
Federal University of Rio Grande do Sul, Brazil, e-méil:avi o@ nf . uf r gs. br


theimfarth@inf.ufrgs.br
orfanus@uni-paderborn.de
flavio@inf.ufrgs.br

2 Tales Heimfarth, Dalimir Orfanus and Flavio Rech Wagner

sensing and ocean data monitoring to collaborative spgueration. Nevertheless,
because of current hardware limitations of wireless noeles,commercial off-the-
shelf sensor nodes, approaches for the management of WSNdaeelesigned to
work using only a low amount of resources and low commurocabverhead.

In general, two heuristic design approaches for manageaiesgnsor networks
at different levels (e.g. topology control, network layagoplication) are prevalently
used. The first method has in all nodes the knowledge of the€gnetwork and let
they manage themselves. This circumvents the need for aadesnced organiza-
tion. Nevertheless, this generates overhead in terms ofrzoitation and memory
at each node. Each node must, for example, maintain routis® tother nodes in
the network. In large networks, the number of messages ddedraintain routing
tables may cause congestion in the network and depleteqérgyeof the nodes.
Ultimately, the need of individual self-management wilhgeate a huge exchange
of messages and overhead.

The second method identifies a subset of nodes within theonkeand vest them
with the extra responsibility of being a leader (clusted)ezf certain nodes in their
proximity. The clusterheads are normally responsible fanaging communications
between nodes in their own neighborhood as well as routifagrimation to other
clusterheads in other neighborhoods [1]. This creates raraigy in the network.
Clustering in large-scale networks was proposed as a méachieving scalability
through a hierarchical approach [11]. Some examples ofeding) benefits can be
found at the medium access layer, where clustering helpstease system capacity
due to the promotion of the spatial reuse of the wirelessmélaand at the network
layer, where it helps to reduce the size of routing tabless&enetworks and, more
generally, wireless ad hoc networks largely benefit fronstelting.

In this paper, we present a new heuristic that organizes a Vi8Nciusters.
Differently from previous approaches, our proposal adskeshe problem of parti-
tioning the nodes of the network in multi-hop groups with aigunteed minimum
amount of resourceg (or budget) in each one of them. This kind of clustering is
useful in various scenarios. In our case, the clusteringi$téuis used in the devel-
opment of an efficient service distribution in our OperatBygtem (OS).

In our OS for sensor networks, the application and OS ses\ace distributed
among different nodes and services are called remotelyebgptplications. Sharing
the services in the network reduces the amount of resouecedred in each single
node. An instance of the OS with all required services shbalgdlaced inside each
cluster. This means that each cluster must have a minimunusinod resources.

An additional difference from our clustering heuristic b texisting ones is that
we are trying to minimize the total communication cost iesttle clusters. This
communication cost is measured by means of a link metricasigns a weight to
each link, thus modeling the quality of the link. Moreovée heuristic is in several
aspects inspired by the behavior of various biologicalesyst

Our heuristic is very complex and was designed for a dyndipichanging
topology. In this paper we focus on the part of heuristic tiestls with static topolo-
gies.
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2 Related Work

In this section, a literature overview of clustering alfoms developed for sensor
and ad hoc networks is presented. Some approaches werrgadlyigiroposed for ad
hoc networks but are also used in WSN (a subclass of ad hoc riesfwo

The idea of clustering is to decompose the nodes of a graphbisess in a way
that the union of the subsets contains all nodes of the gifemheach subset (or
cluster), some conditions should hold.

Given a grapl = (V, E) representing a communication network, where vertexes
are the nodes and edges the communication links, the dhpigrocess constructs
subsets of nodeg,i = 1,..,nwhereUj—1 Vi =V, such that each subsétinduces
a connected sub-graph of G. These vertex subsets are sludelly, the size of the
clusters falls in a desired range. Moreover, for severat@aghes, a special vertex
in each cluster is elected to represent the cluster andledozllsterhead [5].

There are several design factors concerning heuristicslémter construction
in ad hoc networks. A very important one is the maximal diamef a cluster:
when constructed as a maximum independent set (or minimumingding set),
clusters have the maximum diameter of 3. Nevertheless, /starested in multi-
hop clusters with higher diameter. Different objectives/rha pursued in multi-hop
clustering.

In [1], the issue of constructing the d-hop dominating setrirad hoc network is
addressed. Because of the NP-completeness of the probtamifalisk graphs, a
heuristic called max-min d-cluster formation is presentechan find good solutions
with relative low communication@(d)) and generalizes the dominating set prob-
lem. Nevertheless, differently from our approach, the tjpuiality is not considered
when selecting cluster members. Moreover, the size of tiigtal is uncontrolled.
Dense network areas result in larger clusters than spaese on

In [10], an algorithm for bounded size clustering based oregmanding ring
search is presented. The algorithm relies on a sequenceiodisoln each round,
new members are recruited for the cluster in the n-hop neigidod.n is incre-
mented in each round until the bound (number of nodes) of lthser is reached.
If more nodes than necessary are in the cluster, the clestérsimply discards the
excess. We compare our heuristic with a modified versioneéipanding ring that
guarantees clusters with a given amount of resources.

Two algorithms improving the expanding ring approach aesented in 7, 8].
They are calledRapidandPersistentclustering. As in the expanding ring, a maxi-
mum determined size (i.e. number of member nodes) for trstarlis desired. The
algorithms are more efficient than the expanding ring. Tlistelr sizes produced
should be as close as possible to the specified bound (whiatiliheall hereB) in
order to limit the total number of clusters. Neverthelebs, bound should not be
exceeded.

The Rapidheuristic uses less messages thanResistentone. Nevertheless, it
has a poor worst-case analytical performance. Résistentheuristic persistently
tries to produce a cluster of the specified bound if possiliie.proposed algorithms
do not violate the cluster size bound at any time. Howevés,libund is just given
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in number of nodes and there is no way to differentiate noliftesur approach,
a weight is associated to each node (representing the ambuesources of the
node), and the bound is related with this weight. MoreoVver dusters in th®apid
andPersistentheuristics are always smaller than or equal to the given thamrour
approach, all clusters have at least a specified amount @firess (as can be seen
in the next section).

In theRapidand thePersistentlgorithms, the clusterheads are elected in a com-
pletely random fashion, which leads to the selection of sdtat are not very suit-
able for the role. In our solutions we use the opposite amragtrongly connected
nodes plenty of energy have a higher probability to be setkas clusterheads. An-
other difference is related to the links: tRapidand thePersistenteuristics do not
attempt to rank the member candidates (concerning, for pkartine links) in order
to select the best connected nodes to form the cluster.

A clustering algorithm where a lower and a upper bound ard tseontrol the
size of the clusters is presented in [2]. The algorithm itam the idea of finding a
rooted spanning tree of the graph (using Breadth-Firsteb¢and to form clusters
from the subtrees that match the clustering constraints.upper and lower bound
approach tries to keep the amount of nodes in the clustadeiaspecified interval.
But differently from our approach, overlaps are allowed.rdtver, the link quality
is also not relevant to the heuristic.

Another very important difference between all existing @aghes and the one
presented in this work is the fact that we try to minimize tbexmunication over-
head among all nodes inside a cluster. For that, as it willresgnted in the next
section, we use the smallest distance between each paide§ieside the clusters
for the objective function. This distance is calculated byams of our combined
link metric.

3 Problem Definition

In this section, a formal definition of our exact clusterimgldem is described.

We call our problenminimum intracommunication-cost clustering

The ad hoc network is modeled as an undirected gaph(V,E), where V is
the set of wireless nodes and an edgev} € E if and only if a communication
link is established between node= V andv € V. The two nodes in this case are
neighbors. Each nodec V has a unique identifietDy).

For each link, a weighing function assigns a positive weightE — R™. This
weight measures the quality (or goodness) of a wireless Wk define for each
edge that is not in the grapfiu, v} ¢ V), thatw(u,v) = co.

The quality of the link is calculated combining the followiparameters: trans-
mission success rate, received signal strength, and yistohe link. The statistic-
based observation of transmission success is a good immicztthe future success
rate. Nevertheless, it reacts slowly to changes, and ahbegj there is no data to
calculate its value. The received signal strength indicetnakes possibly quick in-
dications, but it is not very precise. Therefore, the corabimetric uses these two
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parameters. Moreover, in order to prioritize stable liriks, history is also used. We
use normalized link metrics, where 0 means a very good liklaa very poor one.
We call the link metriovirtual distance

For each node, an additional weighing functida responsible for characterizing
the amount of resources available in the nadé&e — R*. This models the resource
capacity of the node.

The clustering process partitions the nodes @ltsters each one with aluster-
headand possibly somerdinary nodesAs presented in the related work section,
there are several different types of clustering stratguiesuing different objectives.

In our problem, the objective is to get multihop clusterdwvehough resources for
the OS and application processing. Moreover, the minintratf the intra-cluster
communication cost is also desired.

This optimization problem is modeled as follows:

Input: A graph with weighted nodes and linfG, w,r) and a resource requirement
g€ R*, where the sum of all node weights in each cluster must beshigtequal
toq.

Constraints:  For every input instan@, w,r,q), .Z (G,w,r,q) = {C1,Cy, ..,C«|Cx
is thek!" cluster configuratiop, where the following properties hold
Ck = {Gi1, G2, - Ciniy } i the kM possible cluster configuration of the graph,
wherek = {1,2,..,n} (nis the number of possible configurationg,is the num-
ber of clusters in th&" configurationnk = [Cy|)

Cki = {vﬁi,vﬁi, ..,v‘kﬁk”} € Pot(V) is theit" cluster of thek!" configuration, where

vij(i is the j'" element of the clusteg
For each configuratio@y, k= 1,2,..,n, the following properties must hold:

Uiz1.2..nkCi =V (cluster definition constraint)
Ni=1,2..nkCi = O (no overlapping constraint)
(uv)

LetP(u,v) = {p(lu’v), Py pﬁ#’v)} be the set of all possible paths between

N

nodesu andv. pi** € Pot(E) is theht" possible path where:

P = {{uxd), 0808) . 061 DBV | G €V, T =12..,0.9€ N
For each{u,v} € EAUVE ¢, i = 1,2,...,nk, Ip\"" € P(u,v)|x? € ¢ for
f=1,2,..,9. (Connectivity constraint)

4, zljcz“‘ir(vﬂ(i) > q, for eachi = 1,2,...,nk (minimum amount of resources per
cluster)

Costs:  For every cluster configurati@ = {Cx1,Ck2, -, Cknk) } € -4 (G,W,r,0),
the cost is given by:

nk
oSt G Wr@) = 3 5 2 -De,(uv)- (@ 1w+ (1)

WhereD(u,v) is the virtual distance betweanv € V. D¢, (u,v) is the virtual
distance between,v using just edges that are inside the clugigr Note that
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WV, U € Cyj, D, (U, v) = D(u, V) iff the clustercy; is a convex cluster, i.e., the global
shortest path between any two nodes in the clustering masinig links inside

the clustera € [0, 1] controls how much the amount of resources influences the
distance metric. Fom = 0, just the distances between cluster members enter into
the metric;a = 1 means that nodes withtimes more resources have mtimes
stronger influence.

Now, we define how the virtual distance is calculated. Rjirstle introduce the
cost of a path a®Costp ") = w(u,x}) + $ITw(d, X7, ;) +w(x,v). The
virtual distance between andv is the cost of the shortest path, gived by:
D(u,v) = PCostp{"*") = miny, (PCos( pé”"’))> ,(forb=12..m

The virtual distance using only nodes inside the clusteefsdd by:

(U,V)

D, (U,v) = PCostp*)), wherep** € P(u,v)|x € ¢ andPCost p{"")) =
min (PCos(pt()”’V))) forb=1,2,...m

Goal: Minimum i.e.min{cost(Cy, (G,w,r)), fork=1,2,..,n}

The minimum intracommunication-cost clusteriimgan NP-complete problem.
The proof can be performed by means of reducingphsdition problemto our
clustering problempartition problem<, minimum intracommunication-cost clus-
tering). The complete proof can be seen/in [6].

4 The Emergent Clustering Heuristic

Our heuristic cluster construction process consists of suloparts: (1) The clus-
terhead election, responsible for selecting a subset adsxadd vesting them with
the extra responsibility of leading and representing thustek; (2) The member-
ship selection, responsible for selecting the members hfster. Both subparts use
behaviors and principles observed in the nature.
Clusterhead election (Sectibn 4.2) is inspired by divisibtabor and task allo-

cation in swarms of social insects, described in detail bpdbeau et al. [3]. The
possible tasks (or roles) that a node can assume are:

Clusterhead (CH): The clusterhead nodes are the reprégentaf the clusters.
The identification of the cluster is given by the clusterhdddreover, special
tasks are assigned to the clusterhead. Once the clusteiheat present in a
cluster anymore, the cluster ends its existence.

Member (Me):  The members of the cluster are the nodes thatdeided which
cluster they belong to.

Ordinary Node (Not member, Nm):  Nodes that neither decidentr a cluster
nor become clusterhead.

In the case of membership selection (Sedtion 4.3), we ardicing division of
labor with the concept of emergence of self-organizati@if-&ganizing systems
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acquire structure by themselves and are normally compogedidarge number of
locally interacting components. [4] presents two basic esoaf interaction among
the components: positive and negative feedback. Our emieohestering heuris-
tic is specifically inspired on the behavior of the male billesunfish (Lepomis

macrochirug, which uses for nesting these two modes of interaction.

Positive feedback can be simplified as the behavioral rulee$t where others
nest”. The nesting pattern appears in a large lake with éialihbmogeneous struc-
ture due to the amplification of fluctuations: if the densityphuegills is sufficient,
through a random process, several nesting sites will besamtally close enough
to provide a sufficient attraction that stimulates even nibwegills to nest nearby.
This random pattern of nest sites now becomes unstable aludtarcof nest sites
will grow. A process like this, with positive feedback, isalcalled an autocatalytic
process.

The negative feedback is responsible for controlling anapsiy the system
in a particular pattern. Without it, a potential destruetexplosion may be easily
reached. The feedback can be rephrased as “I nest where ot#str unless the area
is overcrowded”. Physical constraints like depletion af thuilding blocks can be
also included in the negative feedback.

As the result of the interplay of these modes of interactonice-shaped cluster
of nests emerges at the bottom of a lake. This happens widmyutentral control
or blueprint, exactly like in our heuristic.

4.1 Overview of the Approach

The first task of the heuristic is to elect the clusterheadhefmetwork using the
response functioffig,, :

Nonmember— Clusterhead:  The response threshold funcligpreturns the prob-
ability of a nonmembev to become a clusterhead. The function is responsible for
modeling the emergence of clusterheads in areas of the WShwbelustering
is already taking place.

A clusterhead is now a unitary cluster with some resouRe<(r(v), v is the
clusterhead of clusté). When a clusterhead is elected in some part of the network,
as a consequence of missing resources it starts to “atmaet’'members with help
of the response functio :

recry;j

Nonmember— Member of x:  The response function (recruitment functip,, )

models the recruiting of new cluster members through a ipediéedback pro-
cess. It provides the probability that nodwill enter into the clustelD = .

The idea is that a cluster incrementally grows until it acegeat least the re-
quirementq of resources. The intensity of the attraction force (andseqgaently
the stimulus to enter into the cluster) is regulated by thewrh of resources al-
ready in the cluster. A growing cluster exercises an afttadbrce to the nodes
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that are in the vicinity. This attraction force is expresbgda higher stimulus in
theTg, . response function (positive feedback). Then, when a alastieacts nodes

that bring enough resources, the attraction force beconues msmaller (negative
feedback).

4.2 Clusterhead Election

As we mentioned before, the clusterhead has an extra rabpim®f represent-
ing the cluster and leading the selection of members. Nodge Hifferent pre-
dispositions to be a clusterhead, i.e. they have distinohectivity and distinct
amounts of energy. It is obvious that the clusterhead shuaN@ good connectivity
to other nodes and enough energy to cover the extra activiyta the leadership
(build-up and maintenance of a cluster). The opposite s tale: nodes with poor
connectivity and an almost depleted source of energy argauat candidates. This
concept is derived from the division of labor of social insednstead of having
just a certain number of fixed morphology agents (likerttegorsandminorsin the
Pheidolegenus), we have here the complete spectrum of nodes: froesnvedy ca-
pable of assuming the clusterhead role to nodes not suigdlalk for this task. We
model the probability of nodeto become a clusterhead with the response function

Hy
T9CHV (sch,) = -{H\,*egHv.

The fitness of the node to the role of clusterhead is modeldeinesponse func-
tion with the thresholdfc). A small threshold means that the node is very suitable
to be a clusterhead. Parametg models the stimulus to become a clusterhead. For
a given threshold, a high stimulus increases the probgloilithe node to become a
clusterhead.

The definition of threshold is in Equation 2.

_ ZUENgtNm(V) W(U7V) : |Ngb\lm(v)‘
bch, = ki (W) +ko(1—-Ey)+ks <1— min (l, 7Max_Neighb>> 2)

WhereNghym(V) is the set of all neighbor nodes which are in nonmember state,
w(u,Vv) measures the quality of the link between two nodes, Bndescribes the
energy level of the node.

As we said before, factors that influence the threshold anel gonnectivity (the
first and the third term) and amount of energy (the second)tdtach factor has a
different importance for the overall threshold, which iptaed with weightsks,
ko, k3). Weights range from 0.0 to 1.0, and the sum of them is 1.0.

The stimulus function is given kst = klttife':l‘;:jJrkz (1 — \Ngme(‘\,/\i\g&\\lx?tm(v)l ) .

Whereteiapsedis the elapsed time since the clustering heuristic hasestamd
trequired IS the maximum running time of the algorithigh(v) is the set of all neigh-
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bors of the node, Nghye(v) is the set of nodes in member state and is subset of
Ngh(v), the same foNglch (V).

As we can see, there are two factors that stimulates a nodectmte a cluster-
head: (1) nodes that for a long time did not belong to any et§irst term); and (2)
nodes without clusters in the vicinity (second term).

Based on the response function presented, each node patipdests whether
it should become a clusterhead. Initially, all nodes arenmembers. With time,
clusterheads will emerge and attract other nodes to be a grevhtheir clusters.

If a clusterhead, after a certain number of attempts, coatckeep the require-
mentq of resources per cluster, then the (incomplete) clustéicedse its existence
and the current members will be free to join other existingtrs.

4.3 Member Selection

Once clusterheads emerge, they start to send messageadoragtv members. Each
nonmember that receives this message will evaluate itsapitity of assuming the

task of member of the cluster using the response funclign; = Srsf%
\Al ecrw ecrw

Where the threshold and the stimulus have the following nmegani

ThresholdBrecr,;:  measures how connected the neds to the cluster. A smalll
value means high suitability to be a member.

Stimulusseecr,;:  represents the volition of a cluster to attract new membéese
the positive and negative feedback act.

The threshold function for nodeis defined by:

v . [ D(v,Clusterheagd o cry r(v)
brecr, =ka-Di ke mln{ Max_dist 1 p+ka-min Max_connecf1 tha q ®)

WhereD} is the distance to the nearest member of the clustedD (v,Clusterheag)
is the distance to the clusterhe&hP = ¥ ec{Ngh(b)ng;} (1 — w(b,e)) measures the
connectivity to the neighbors that are already in the ctuséeng the link metriav.

The first factor that influences the threshold (first term)uces$ the distance
among members of the cluster. The factor that influenceshhpesof the cluster
is captured in the second term. Advantage is given to flat gordtions (small clus-
ter diameter).

The selection of nodes that are well connected to membehg afaster increases
the probability of reducing the cluster cost. This idea fiered in the third term.

The fourth term covers the idea that nodes with higher resoavailability will
potentially reduce the cost of the cluster because theyceethe necessity of taking
additional nodes.

The stimulus of a node to belong to the clusteis given by secr,; = k-

(p(R)-9(R))-
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If two clusters are trying at the same time to attract the ptide equation is used
with the higher stimulus. The stimulus is the combinatiorpositive and negative
feedbacks.

Aggregation Through Positive Feedback

Positive feedback is used to control the stimulus of neighiganodes to enter a
determined cluster. It is performed by considering theation force (or stimulus in
the response function) to be proportional to the amountszfuecedR; of the cluster
i plus some bias, i.ep(R)) = ki + kz - R.. This equation denotes the relationship
between the amount of resources and the “force” (that isatefiiein the stimulus)
to attract new nodes to the cluster.

Creating Structure Through Negative Feedback

The negative feedback is responsible for “controlling” thelosive nature of

the positive feedback and to shape the emergent structurte® iself-organizing

: .\ B .
process. In our case, we use EquatiR; ) = 1 — (%) as negative feedback.

Atraction Force

0 02 04 06 08 1 12

Resources of a clustex()

Fig. 1 Resulting attraction force after combination of the positind the negative feedback

It is important to remark that the negative feedback in owweceontrols how
much the positive feedback takes effect, i.e., the resuttudtis is given by the
multiplication of the feedbacks, a fact that is shown in Fegl.

4.4 Cluster Construction Process

In this section we will present the steps performed by therisge to build the
clusters based on the concepts presented in the previdisnsec

At the beginning, there is no cluster in the network. Everdatests periodi-
cally whether it should become clusterhead (using the respéunctionTg,, ). An
information flow based on beacons is used to provide the neidbghe necessary
knowledge for the response function.

When the node decides to become clusterhead, a new cluster (we call iieeliys
i = clusterID) comes into existence. Initially, this cluster has the veseR; =r(v).

Now, it starts to broadcast to the neighborhood periodiats! current resource
state R). The message is calletlisteringForward. The basic function of thelus-
teringForward message is to inform all members of the cluster and nearlghnei
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bors the actual amount of resources of the cluster. Thisad bg the nodes to cal-
culate the current attraction force of the cluster. ThesteringForward message
is forwarded by the members of the cluster until arriving @des outside the clus-
ter. During this phase, a spanning tree having the clusterbs root is generated.
Nodes outside the cluster that receivelasteringForward message will generate
theclusteringBackward message that travels back to the clusterhead, gathering
formation about nodes with intention to enter or leave thistelr. Each node that is
not a leaf of the spanning tree waits until receiving thesteringBackward mes-
sage from its children before sending a fushasteringBackward message to its
own parent.

We will call this process of sending tledusteringForward message and gath-
ering information through thelusteringBackward message aluster construction
round

As already said, the cluster construction round is startethéclusteringFor-
ward message issued by the clusterhead. When receiving this geessaodeu
stores it temporarily in order to select the message withsthallest link metric to
the clusterhead. This is used to build a good spanning tréeethe clusterhead as
root.

The way of responding to the incoming message varies depgiodithe current
status of the node:

Nodeu is not a member of clustér The first action of the node is to determine
whether it should enter the clusterThis is done using the response function

Torecr,, (recruitment function) to evaluate whether the nadeishes to enter the

cluster (recruitment function). This response functioesuthe connectivity to
the cluster as threshold (good connected nodes have |leshitid to enter the
cluster), and the stimulus is given by the combination of fibsitive/negative
feedback presented in Section]4.3. If the test of the rewarit function returns
positive, theclusteringBackward message will carry the membership intention
of the nodeu. The nextclusteringForwardmessage will confirm (or not, if the
cluster is overcrowded) the acceptance of the noihethe cluster.

Nodeuis a member of cluster The node will test whether it should leave the
cluster using the response functidg,, . . If the test returns negative, the node
just retransmits (forwards) the messafesteringForward in order to continue
the construction of the spanning tree. If the node is willindeave the clus-
ter (because its connection is getting loose), it also foie#heclusteringFor-
ward message, but indicating this intention of leaving the @uskhis will force
previous children to select another parent because thie isogoing to be dis-
connected from the cluster. If they could not find anotheepgrthey must also
disconnect themselves from the cluster.

n_

The clusteringBackward message is used to inform the clusterhead about nodes

with intention to enter the cluster and nodes willing to keaMoreover, thed of
all members of the cluster is collected in this message.€fbes, the clusterhead
can re-check the complete membership of the cluster to semrif node has for
example disappeared due to failure or a drastic topologpgda
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When the clusterhead receives ttiasteringBackward message from all its
direct children, it can decide which nodes that are williognter the cluster will be
accepted. This decision is based on their thresholds to gr@eluster: nodes with
less threshold have higher priority.

It is important to state here that after the cluster is coteplthe clusterhead
ceases to start new rounds. When some member of the clustetdatiarge topol-
ogy change, the clusterhead is informed and a new roundrigdti® re-check the
complete cluster (reactive response to topology changes).

An example of the cluster construction round is shown in Fédd

clusteringBackward message
clusteringForward message O clusterhead

! ) ing t
fusion point spanning tree

transition function:
should I enter in the cluster?

(a) (b)

wireless links

Stimulus to enter in the cluster
Fig. 2 Example of cluster construction round. (a) Clusterhead stat®tind sending the message
clusteringBackward with the current amount of resources of the cluster. (b) Whenrimagr at
nodes outside the cluster, they decide whether they are guttlifoin the cluster. This information
is sent back using theusterBackward message.

The first purpose of the positive/negative feedback is tacedhe amount of in-
formation aggregated in th@usteringBackwaranessage. Nodes badly connected
to the cluster will decide not to enter the cluster, thus oauythe amount of infor-
mation that theclusteringBackwaranessage must carry.

The second purpose of the positive/negative feedback méshds to control
the competition among neighboring clusters and belongseaynamic part of our
heuristic (which is not the main focus of this paper). Thadfesck curves are de-
signed in such a way that an already formed cluster may jaselsome members
till the g limit is achieved, because, when this limit is achieved,dbsire to attract
new members is at maximum. In the same way, if there are tvaieztsiunder con-
struction, this method avoids that one cluster steals mesribem the other one,
reaching the state where no cluster has fulfilled its requén on resources.

5 Results

We implemented our emergent clustering heuristic using/antebased wireless ad
hoc simulator called ShoX [9]. Some parts of the heuristicensdso implemented
in the specification and modeling language AsmL. As input,geeerated 35 in-
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stances of the problem with 16 nodes in a field of 50m by 50mse&hestances
were generated by random selection of the node positions.

We used the received signal strength (RSSI) for the freeespaadel with
isotropic point sources as link metric. We decided to testlmuristic for dense
networks, therefore the radio range was 70m, covering theptaie field.

In this paper, we evaluate our heuristic for static netwankd for networks of
homogeneous devices (i.e., each node has a unit of resoWeedin our algorithm,
let it converge to a stable configuration, and compare theigteuresult with the
optimal one and also with an existing heuristic called exizagring [10]. In order
to calculate the optimal result, we model aainimum intracommunication-cost
clusteringas an integer linear programming model and, for each siediastance,
we find the optimal solution for that configuration with tpe solve program.

Figure[3 shows results of performed experiments. In averdgecost of our
heuristic was 198 times higher than the optimal solution and the expandimg r
was about £9 times higher. To run the simulation of the complete nekwibtook
10 seconds while the optimal solution needed more than 1sheintel Core Duo
2.7 GHz computers.

—=— Emergent clustering

~———Optimal -“J" [t‘/-
08
s
§

Normalized clustering cost

H
5
clusterin 2
@
Expanding ring (average) J-'J j
02

1.3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 0 1 2 3 4 5 6 7

Simulation run Normalized clustering cost

Fig. 3 Normalized results of performed experifig. 4 Cumulative distribution of normalized
ments simulation results

In Figure 4, the cumulative distribution of the normalizedults can be seen. Itis
possible to notice that for more than 80% of all simulatighe,emergent clustering
heuristic could find results that were belov8 2mes the optimal one. In the case of
the expanding ring, results were belov2 5imes the optimal one.

6 Conclusion

In this paper, we introduce a useful clustering problem aexelbp an efficient
heuristic inspired by biological systems to solve it. Theigic has two parts: the
clusterhead election, which is responsible for selectisglzset of nodes and vest-
ing them with extra responsibility of representation of ghester, and membership
selection, which is responsible for selecting membersdeioto fulfill the resource
requirements of each cluster.
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The selection of the task for a node is based on its suitaliditthat task. In the
same way that ants with different morphology have tendeaqyetform different
tasks, different nodes have different probabilities ofuasisg the clusterhead or
cluster member roles. This concept is combined with a pegitegative feedback
stimulus, which is responsible to shape the size and formeo€luster.

The results of the simulations show that the heuristic peréowell, with cost in
average just B8 times the optimal one. This was achieved in a distributadmar
and using only locally available information to make demis. This makes this
heuristic suitable for ad hoc networks with resource-aairs¢d devices or sensor
networks.

The results obtained here re-enforces our confidence thhbefefound in nature
can be successfully transferred to computer systems.

In the future, we plan to simulate the heuristic in networkwnoderate topol-
ogy changes, evaluating our approach with dynamic scenario
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