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Abstract. We consider distributed systems modeled as communicating finite
state machines with reliable unbounded FIFO channels. As an essential sub-
routine for control, monitoring and diagnosis applications, we provide an algo-
rithm that computes, during the execution of the system, an estimate of the current
global state of the distributed system for each local subsystem. This algorithm
does not change the behavior of the system; each subsystem only computes and
records a symbolic representation of the state estimates, and piggybacks some ex-
tra information to the messages sent to the other subsystems in order to refine their
estimates. Our algorithm relies on the computation of reachable states. Since the
reachability problem is undecidable in our model, we use abstract interpretation
techniques to obtain regular overapproximations of the possible FIFO channel
contents, and hence of the possible current global states. An implementation of
this algorithm provides an empirical evaluation of our method.

1 Introduction

During the execution of a computer system, the knowledge of its global state may be
crucial information, for instance to control which action can or must be done, to moni-
tor its behavior or perform some diagnostic. Distributed systems, are generally divided
into two classes, depending on whether the communication between subsystems is syn-
chronous or not. When the synchrony hypothesis [1] can be made, each local subsystem
can easily know, at each step of the execution, the global state of the system (assuming
that there is no internal action). When considering asynchronous distributed systems,
this knowledge is in general impossible, since the communication delays between the
components of the system must be taken into account. Therefore, each local subsys-
tem can a priori not immediately know either the local state of the other subsystems or
the messages that are currently in transfer. In this paper, we consider the asynchronous
framework where a system is composed of n subsystems that asynchronously commu-
nicate through reliable unbounded FIFO channels and modeled by communicating finite
state machines (CFSM) [3]. This model appears to be essential for concurrent systems
in which components cooperate via asynchronous message passing through unbounded
buffers (they are e.g. widely used to model communication protocols). We thus assume
that the distributed system is already built and the architecture of communication be-
tween the different subsystems is fixed. Our aim is to provide an algorithm that allows
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us to compute, in each subsystem of a distributed system T , an estimate of the current
state of T . More precisely, each subsystem or a local associated estimator computes a
set of possible global states, including the contents of the channels, in which the system
T can be; it can be seen as a particular case of monitoring with partial observation.
We assume that the subsystems (or associated estimators) can record their own state
estimate and that some extra information can be piggybacked to the messages normally
exchanged by the subsystems. Without this additional information, since a local subsys-
tem cannot observe the other subsystems nor the FIFO channel contents, the computed
state estimates might be too rough. Our computation is based on the use of the reach-
ability operator, which cannot always be done in the CFSM model for undecidability
reasons. Therefore, we rely on the abstract interpretation techniques we presented pre-
viously in [13]. They ensure the termination of the computations by overapproximating
in a symbolic way the possible FIFO channel contents (and hence the state estimates)
by regular languages. Computing state estimates is useful in many applications. For
example, this information can be used to control the system in order to prevent it from
reaching some given forbidden global states [4], or to perform some diagnosis to detect
some faults in the system [7, 19]. For these two potential applications, a more precise
state estimate allows the controller or the diagnoser to take better decisions.
This problem differs from the synthesis problem (see e.g. [15, 8, 5]) which consists
in synthesizing a distributed system (together with its architecture of communication)
equivalent to a given specification. It also differs from the methodology described in [9]
where the problem is to infer from a distributed observation of a distributed system
(modeled by a High Level Message Sequence Chart) the set of sequences that explains
this observation. It is also different from model checking techniques [2, 10] that pro-
ceed to a symbolic exploration of all the possible states of the system, without running
it. We however use the same symbolic representation of queue contents as in [2, 10].
In [21], Kumar and Xu propose a distributed algorithm which computes an estimate of
the current state of a system. Local estimators maintain and update local state estimates
from their own observation of the system and information received from the other es-
timators. In their framework, the local estimators communicate between them through
reliable FIFO channels with delays, whereas the system is monolithic and therefore in
their case, a global state is simpler than for our distributed systems composed of sev-
eral subsystems together with communicating FIFO channels. In [20], Tripakis studies
the decidability of the existence of controllers such that a set of responsiveness proper-
ties is satisfied in a decentralized framework with communication delays between the
controllers. This problem is undecidable when there is no communication or when the
communication delays are unbounded. He conjectures that the problem is decidable
when the communication delays are bounded. See [18, 14] for other works dealing with
communication (with or without delay) between agents.
Below, in section 2, we define the formalism of communicating finite state machines,
that we use. We formally define, in section 3, the state estimate mechanisms and the
notion of state estimators. In section 4, we provide an algorithm to compute an estimate
of the current state of a distributed system and prove its correctness. We explain, in sec-
tion 5, how the termination of this algorithm is ensured by using abstract interpretation
techniques. Section 6 gives some experimental results. Proofs can be found in [11].



2 Communicating Finite State Machines as a Model of the System

We model a distributed system by communicating finite state machines [3] which use
reliable unbounded FIFO channels (also called queues) to communicate. A global state
in this model is given by the local state of each subsystem together with the content
of each FIFO queue. As no bound is given either in the transmission delay, or on the
length of the queues, the state space of the system is a priori infinite.

Definition 1 (Communicating Finite State Machines). A communicating finite state
machine (CFSM) T is defined as a 6-tuple 〈L, `0, Q,M,Σ,∆〉, where (i) L is a finite
set of locations, (ii) `0 ∈ L is the initial location, (iii) Q is a set of queues that T
can use, (iv) M is a finite set of messages, (v) Σ ⊆ Q × {!, ?} ×M is a finite set of
actions, that are either an output a!m to specify that the message m ∈M is written on
the queue a ∈ Q or an input a?m to specify that the message m ∈ M is read on the
queue a ∈ Q, (vi) ∆ ⊆ L×Σ × L is a finite set of transitions.

A transition 〈`, i!m, `′〉 indicates that when the system moves from the ` to `′, a message
m is added at the end of the queue i. 〈`, i?m, `′〉 indicates that, when the system moves
from ` to `′, a message m must be present at the beginning of the queue i and is removed
from this queue. Moreover, throughout this paper, we assume that T is deterministic,
meaning that for all ` ∈ L and σ ∈ Σ, there exists at most one location `′ ∈ L such that
〈`, σ, `′〉 ∈ ∆. For σ ∈ Σ, Trans(σ) denotes the set of transitions of T labeled by σ.
The occurrence of a transition will be called an event and given an event e, δe denotes
the corresponding transition. The semantics of a CFSM is defined as follows:

Definition 2. The semantics of a CFSM T = 〈L, `0, Q,M,Σ,∆〉 is given by an infinite

Labeled Transition System (LTS) [[T ]] = 〈X, x0, Σ,→〉, where (i) X
def= L× (M∗)|Q|

is the set of states, (ii) x0
def= 〈`0, ε, . . . , ε〉 is the initial state, (iii) Σ is the set of

actions, and (iv)→def=
⋃

δ∈∆
δ−→⊆ X ×Σ ×X is the transition relation where δ−→ is

defined by:

δ = 〈`, i!m, `′〉 ∈ ∆ w′
i = wi ·m

〈`, w1, . . . , wi, . . . , w|Q|〉
δ→ 〈`′, w1, . . . , w

′
i, . . . , w|Q|〉

δ = 〈`, i?m, `′〉 ∈ ∆ wi = m · w′
i

〈`, w1, . . . , wi, . . . , w|Q|〉
δ→ 〈`′, w1, . . . , w

′
i, . . . , w|Q|〉

A global state of a CFSM T is thus a tuple 〈`, w1, ..., w|Q|〉 ∈ X = L × (M∗)|Q|

where ` is the current location of T and w1, ..., w|Q| are finite words on M∗ which give
the content of the queues in Q. At the beginning, all queues are empty, so the initial
state is x0 = 〈`0, ε, · · · , ε〉. Given a CFSM T , two states x,x′ ∈ X and an event e, to

simplify the notations we sometimes denote x
δe→ x′ by x

e→ x′. An execution of T is a
sequence x0

e1−→ x1
e2−→ . . .

em−−→ xm where xi
ei+1−−−→ xi+1 ∈−→ ∀i ∈ [0,m− 1]. Given

a set of states Y ⊆ X , ReachT∆′(Y ) corresponds to the set of states that are reachable
in [[T ]] from Y only firing transitions of ∆′ ⊆ ∆ in T . It is defined by ReachT∆′(Y ) def=⋃

n≥0(PostT∆′(Y ))n where (PostT∆′(Y ))n is the nth functional power of PostT∆′(Y ),



defined by: PostT∆′(Y ) def= {x′ ∈ X|∃x ∈ Y,∃δ ∈ ∆′ : x
δ→ x′}. Although there is no

general algorithm that can exactly compute the reachability set in our setting [3], there
exist some techniques that allow us to compute an overapproximation of this set (see
section 5). Given a sequence of actions σ = σ1 · · ·σm ∈ Σ∗ and two states x, x′ ∈ X ,
x

σ→ x′ denotes that the state x′ is reachable from x by executing σ.
Asynchronous Product. A distributed system T is generally composed of several sub-
systems Ti (∀i ∈ [1, n]) acting in parallel. In fact, T is defined by a CFSM resulting
from the asynchronous (interleaved) product of the n subsystems Ti, also modeled by
CFSMs. This can be defined through the asynchronous product of two subsystems.

Definition 3. Given 2 CFSMs Ti = 〈Li, `0,i, Qi,Mi, Σi,∆i〉 (i = 1, 2), their asyn-
chronous product, denoted by T1||T2, is defined by a CFSM T = 〈L, `0, Q,M,Σ,∆〉,
where L

def= L1 × L2, `0
def= `0,1 × `0,2, Q

def= Q1 ∪ Q2, M
def= M1 ∪ M2,

Σ
def= Σ1 ∪Σ2, and ∆

def= {〈〈`1, `2〉, σ1, 〈`′1, `2〉〉|(〈`1, σ1, `
′
1〉 ∈ ∆1) ∧ (`2 ∈ L2)} ∪

{〈〈`1, `2〉, σ2, 〈`1, `′2〉〉|(〈`2, σ2, `
′
2〉 ∈ ∆2) ∧ (`1 ∈ L1)}.

Note that in the previous definition, Q1 and Q2 are not necessarily disjoint; this allows
the subsystems to communicate between them via common queues. Composing the
various subsystems Ti (∀i ∈ [1, n]) two-by-two in any order gives the global distributed
system T whose semantics (up to state isomorphism) does not depend on the order.

Definition 4 (Distributed system). A distributed system T = 〈L, `0, Q,M,Σ,∆〉 is
defined by the asynchronous product of n CFSMs Ti = 〈Li, `0,i, Qi,M,Σi,∆i〉 (∀i ∈
[1, n]) acting in parallel and exchanging information through FIFO channels.

Note that a distributed system is also modeled by a CFSM, since the asynchronous
product of several CFSMs is a CFSM. In the sequel, a CFSM Ti always denotes the
model of a single process, and a distributed system T = 〈L, `0, Q,M,Σ,∆〉 always
denotes the model of the global system, as in Definition 4. Below, unless stated explic-
itly, T = T1|| . . . ||Tn is the considered distributed system.
Communication Architecture of the System. We consider an architecture for the sys-
tem T = T1|| . . . ||Tn defined in Definition 4 with point-to-point communication i.e.,
any subsystem Ti can send messages to any other subsystem Tj through a queue Qi,j .
Thus, only Ti can write a message m on Qi,j (this is denoted by Qi,j !m) and only Tj

can read a message m on this queue (this is denoted by Qi,j?m). Moreover, we sup-
pose that the queues are unbounded, that the message transfers between the subsystems
are reliable and may suffer from arbitrary non-zero delays, and that no global clock
or perfectly synchronized local clocks are available. With this architecture, the set Qi

of Ti (∀i ∈ [1, n]) can be rewritten as Qi = {Qi,j , Qj,i | (1 ≤ j ≤ n) ∧ (j 6= i)}
and ∀j 6= i ∈ [1, n], Σi ∩ Σj = ∅. Let δi = 〈`i, σi, `

′
i〉 ∈ ∆i be a transition of

Ti, global(δi)
def= {〈〈`1, . . . , `i−1, `i, `i+1, . . . , `n〉, σi, 〈`1, . . . , `i−1, `′i, `i+1, . . . ,

`n〉〉 ∈ ∆ |∀j 6= i ∈ [1, n] : `j ∈ Lj} is the set of transitions of ∆ that can be built
from δi in T . We extend this definition to sets of transitions D ⊆ ∆i of the subsys-
tem Ti : global(D) def=

⋃
δi∈D global(δi). We abuse notation and write ∆ \∆i instead

of ∆ \ global(∆i) to denote the set of transitions of ∆ that are not built from ∆i.
Given the set Σi of Ti (∀i ∈ [1, n]) and the set Σ of T , the projection Pi of Σ onto



Σi is standard: Pi(ε) = ε and ∀w ∈ Σ∗, ∀a ∈ Σ, Pi(wa) = Pi(w)a if a ∈ Σi,
and Pi(w) otherwise. The inverse projection P−1

i is defined, for each L ⊆ Σ∗
i , by

P−1
i (L) = {w ∈ Σ∗ | Pi(w) ∈ L}.
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Example 1. Let us illustrate the concepts of distributed system
and CFSM with our running example depicted on the right hand
side. It models a factory composed of three components T1, T2
and T3. The subsystem T2 produces two kinds of items, a and
b, and sends these items to T1 to finish the job. At reception, T1
must immediately terminate the process of each received item.
T1 can receive and process b items at any time, but must be in
a turbo mode to receive and process a items. The subsystem T1
can therefore be in normal mode modeled by the location A0

or in turbo mode (locations A1 and A2). In normal mode, if T1
receives an item a, an error occurs (transition in location Aer).
Since T1 cannot always be in turbo mode, a protocol between
T1 and T2 is imagined. At the beginning, T1 informs (connect

action, modeled by
Q1,2!c→ ) T2 that it goes in a turbo mode, then T2 sends a and b items. At

the end of a working session, T2 informs T1 (disconnect action, modeled by
Q2,3!d→ ) that

it has completed its session, so that T1 can go back in normal mode. This information
has to transit through T3 via queues Q2,3 and Q3,1, as T3 must also record this end of
session. Since d can be transmitted faster than some items a and b, one can easily find a
scenario where T1 decides to go back to A0 and ends up in the Aer location by reading
the message a. Indeed, as T1 cannot observe the content of the queues, it does not know
whether there is a message a in queue Q2,1 when it arrives in A0. This motivates the
interest of computing good state estimates of the current state of the system. If each
subsystem maintains good estimates of the current state of the system, then T1 can
know whether there is a message a in Q2,1, and reach A0 only if it is not the case.

3 State Estimates of Distributed Systems

We introduce here the framework and the problem we are interested in.
Local View of the Global System. A global state of T = T1|| . . . ||Tn is given by a
tuple of locations (one for each subsystem) and the content of all the FIFO queues. In-
formally our problem consists in defining one local estimator per subsystem, knowing
that each of them can only observe the occurrences of actions of its own local subsys-
tem, such that these estimators compute online (i.e., during the execution of the system)
estimates of the global state of T . We assume that each local estimator Ei has a precise
observation of subsystem Ti, and that the model of the global system is known by all the
estimators (i.e., the structure of each subsystem and the architecture of the queues be-
tween them). Each estimator Ei must determine online the smallest possible set of global
states Ei that contains the actual current global state. Note that if Ei observes that the
location of Ti is `i, a very rough state estimate is L1× . . .×{`i}×· · ·×Ln× (M∗)|Q|.
In other words all the global states of the system such that location of Ti is `i; however,
this rough estimate does not provide a very useful information.



Online State Estimates. The estimators must compute the state estimates online. Since
each estimator Ei is local to its subsystem, we suppose that Ei synchronously observes
the actions fired by its subsystem; hence since each subsystem is deterministic, each
time an event occurs in the local subsystem, it can immediately infer the new location
of Ti and use this information to define its new state estimate. In order to have better
state estimates, we also assume that the estimators can communicate with each other by
adding some information (some timestamps and their state estimates) to the messages
exchanged by the subsystems. Notice that, due to the communication delay, the estima-
tors cannot communicate synchronously, and therefore the state estimate attached to a
message might be out-of-date. A classical way to reduce this uncertainty is to timestamp
the messages, e.g., by means of vector clocks (see section 4.1).
Estimates Based on Reachability Sets. Each local estimator maintains a symbolic
representation of all global states of the distributed system that are compatible with its
observation and with the information it received previously from the other estimators.
In section 4.2, we detail the algorithms which update these symbolic representations
whenever an event occurs. But first, let us explain the intuition behind the computation
of an estimate. We consider the simplest case: the initial state estimate before the system
begins its execution. Each FIFO channel is empty, and each subsystem Ti is in its initial
location `i,0. So the initial global state is known by every estimator Ei. A subsystem
Tj may however start its execution, while Ti is still in its initial location, and therefore
Ei must thus take into account all the global states that are reachable by taking the
transitions of the other subsystems Tj . The initial estimate Ei is this set of reachable
global states. This computation of reachable global states also occurs in the update
algorithms which take into account any new local event occurred or message received
(see section 4.2). The reachability problem is however undecidable for distributed FIFO
systems. In section 5, we explain how we overcome this obstacle by using abstract
interpretation techniques.
Properties of the Estimators. Estimators may have two important properties: sound-
ness and completeness. Completeness refers to the fact that the current state of the
global system is always included in the state estimates computed by each state esti-
mator. Soundness refers to the fact that all states included in the state estimate of Ei
(∀i ∈ [1, n]) can be reached by one of the sequences of actions that are compatible with
the observation of Ti performed by Ei.

Definition 5 (Completeness and Soundness). The estimators (Ei)i≤n are (i) com-
plete if and only if, for any execution x0

e1−→ x1
e2−→ . . .

em−−→ xm of T , xm ∈
⋂n

i=1 Ei,
and (ii) sound if and only if, for any execution x0

e1−→ x1
e2−→ . . .

em−−→ xm of T ,
Ei ⊆ {x′ ∈ X|∃σ ∈ P−1

i (Pi(σe1 .σe2 . . . σem)) : x0
σ→ x′} (∀i ≤ n) where σek

(∀k ∈ [1,m]) is the action that labels the transition corresponding to ek.

4 Algorithm to Compute the State Estimates

We now present our algorithm that computes estimates of the current state of a dis-
tributed system. But first, we recall the notion of vector clocks [12], a standard concept
that we shall use to compute a more precise state estimates.



4.1 Vector Clocks

To allow the estimators to have a better understanding of the concurrent execution of
the distributed system, it is important to determine the causal and temporal relationship
between the events that occur in its execution. In a distributed system, events emitted by
the same process are ordered, while events emitted by different processes are generally
not. When the concurrent processes communicate, additional ordering information can
however be obtained. In this case, the communication scheme can be used to obtain a
partial order on the events of the system. In practice, vectors of logical clocks, called
vector clocks [12], can be used to time-stamp the events of the distributed system. The
order of two events can then be determined by comparing the value of their respective
vector clocks. When these vector clocks are incomparable, the exact order in which the
events occur cannot be determined. Vector clocks are formally defined as follows:

Definition 6 (Vector Clocks). Let 〈D,v〉 be a partially ordered set, a vector clock
mapping of width n is a function V : D → Nn such that ∀d1, d2 ∈ D : (d1 v d2) ⇔
(V (d1) ≤ V (d2)).

In general, for a distributed system composed of n subsystems, the partial order on
events is represented by a vector clock mapping of width n. The method for comput-
ing this vector clock mapping depends on the communication scheme of the distributed
system. For CFSMs, this vector clock mapping can be computed by the Mattern’s al-
gorithm [16], which is based on the causal and thus temporal relationship between the
sending and reception of any message transferred through any FIFO channel. This infor-
mation is then used to determine a partial order, called causality (or happened-before)
relation ≺c, on the events of the distributed system. This relation is the smallest transi-
tive relation satisfying the following conditions: (i) if the events ei 6= ej occur in the
same subsystem Ti and if ei comes before ej in the execution, then ei ≺c ej , and (ii) if
ei is an output event occurring in Ti and if ej is the corresponding input event occurring
in Tj , then ei ≺c ej . In Mattern’s algorithm [16], each process Ti (∀i ∈ [1, n]) has a
vector clock Vi ∈ Nn of width n and each element Vi[j] (∀j ∈ [1, n]) is a counter which
represents the knowledge of Ti regarding Tj and which means that Ti knows that Tj has
executed at least Vi[j] events. Each time an event occurs in a subsystem Ti, the vector
clock Vi is updated to take into account the occurrence of this event (see [16] for de-
tails). When Ti sends a message to some subsystem Tj , this vector clock is piggybacked
and allows Tj , after reception, to update its own vector clock. Our state estimate algo-
rithm uses vector clocks and follows Mattern’s algorithm, which ensures the correctness
of the vector clocks that we use (see section 4.2).

4.2 Computation of State Estimates

Our state estimate algorithm computes, for each estimator Ei and for each event occur-
ring in the subsystem Ti, a vector clock Vi and a state estimate Ei that contains the
current state of T and any future state that can be reached from this current state by
firing actions that do not belong to Ti. This computation obviously depends on the in-
formation that Ei receives. As a reminder, Ei observes the last action fired by Ti and can
infer the fired transition. Ti also receives from the other estimators Ej their state estimate
Ej and their vector clock Vj . Our state estimate algorithm proceeds as follows :



Algorithm 1: initialization(T )
input : T = T1|| . . . ||Tn .
output: The initial state estimate Ei of the estimator Ei (∀i ∈ [1, n]).
begin1

for i← 1 to n do for j ← 1 to n do Vi[j]← 02

for i← 1 to n do Ei ← ReachT∆\∆i
(〈`0,1, . . . , `0,n, ε, . . . , ε〉)3

end4

– When the subsystem Ti sends a message m to Tj , Ti attaches the vector clock Vi

and the state estimate Ei of Ei to this message. Next, Ei receives the action fired
by Ti, and infers the fired transition. It then uses this information to update its state
estimate Ei.

– When the subsystem Ti receives a message m from Tj , Ei receives the action fired
by Ti and the information sent by Tj i.e., the state estimate Ej and the vector clock
Vj of Ej . It computes its new state estimate from these elements.

In both cases, the computation of the new state estimate Ei depends on the computation
of reachable states. In this section, we assume that we have an operator that can compute
an approximation of the reachable states (which is undecidable is the CFSM model).
We will explain in section 5 how such an operator can be computed effectively.

State Estimate Algorithm. Our algorithm, called SE-algorithm, computes estimates
of the current state of a distributed system. It is composed of three sub-algorithms: (i)
the initialization algorithm, which is only used when the system starts its execution,
computes, for each estimator, its initial state estimate (ii) the outputTransition algo-
rithm computes online the new state estimate of Ei after an output of Ti, and (iii) the
inputTransition algorithm computes online the new state estimate of Ei after an input
of Ti.

INITIALIZATION Algorithm: According to the Mattern’s algorithm [16], each compo-
nent of the vector Vi is set to 0. To take into account that, before the execution of the first
action of Ti, the other subsystems Tj (∀j 6= i ∈ [1, n]) could perform inputs and outputs,
the initial state estimate of Ei is given by Ei = ReachT∆\∆i

(〈`0,1, . . . , `0,n, ε, . . . , ε〉).

Algorithm 2: outputTransition(T , Vi, Ei, δ)
input : T = T1|| . . . ||Tn, the vector clock Vi of Ei, the current state estimate Ei of Ei,

and a transition δ = 〈`1, Qi,j !m, `2〉 ∈ ∆i.
output: The state estimate Ei after the output transition δ.
begin1

Vi[i]← Vi[i] + 12
Ti tags message m with 〈Ei, Vi, δ〉 and it writes this tagged message on Qi,j3

Ei ← ReachT∆\∆i
(PostTδ (Ei))4

end5



OUTPUT Algorithm: Let Ei be the current state estimate of Ei. When Ti wants to ex-
ecute a transition δ = 〈`1, Qi,j !m, `2〉 ∈ ∆i corresponding to an output on the queue
Qi,j , the following instructions are computed to update the state estimate Ei:

• according to the Mattern’s algorithm [16], Vi[i] is incremented (i.e., Vi[i]← Vi[i]+1)
to indicate that a new event has occurred in Ti.
• Ti tags message m with 〈Ei, Vi, δ〉 and writes this information on Qi,j . The estimate

Ei tagging m contains the set of states in which T can be before the execution of δ.
The additional information 〈Ei, Vi, δ〉 will be used by Tj to refine its state estimate.
• Ei is updated as follows, to contain the current state of T and any future state that

can be reached from this current state by firing actions that do not belong to Ti:
Ei ← ReachT∆\∆i

(PostTδ (Ei)). More precisely, PostTδ (Ei) gives the set of states in
which T can be after the execution of δ. But, after the execution of this transition,
Tj (∀j 6= i ∈ [1, n]) could read and write on their queues. Therefore, we define the
estimate Ei by ReachT∆\∆i

(PostTδ (Ei)).

Algorithm 3: inputTransition(T , Vi, Ei, δ)
input : T = T1|| . . . ||Tn , the vector clock Vi of Ei, the current state estimate Ei of Ei

and a transition δ = 〈`1, Qj,i?m, `2〉 ∈ ∆i. Message m is tagged with the triple
〈Ej , Vj , δ

′〉 where (i) Ej is the state estimate of Ej before the execution of δ′ by
Tj , (ii) Vj is the vector clock of Ej after the execution of δ′ by Tj , and (iii) δ′ =
〈`′1, Qj,i!m, `′2〉 ∈ ∆j is the output corresponding to δ.

output: The state estimate Ei after the input transition δ.
begin1
\\We consider three cases to update Ej2

if Vj [i] = Vi[i] then Temp1 ← PostTδ (ReachT∆\∆i
(PostTδ′(Ej)))3

else if Vj [j] > Vi[j] then4

Temp1 ← PostTδ (ReachT∆\∆i
(ReachT∆\∆j

(PostTδ′(Ej))))

else Temp1 ← PostTδ (ReachT∆(PostTδ′(Ej)))5

Ei ← PostTδ (Ei) \\We update Ei6
Ei ← Ei ∩ Temp1 \\ Ei = update of Ei ∩ update of Ej (i.e., Temp1)7
Vi[i]← Vi[i] + 18
for k ← 1 to n do Vi[k]←max(Vi[k], Vj [k])9

end10

INPUT Algorithm: Let Ei be the current state estimate of Ei. When Ti executes a tran-
sition δ = 〈`1, Qj,i?m, `2〉 ∈ ∆i, corresponding to an input on the queue Qj,i, it also
reads the information 〈Ej , Vj , δ

′〉 (where Ej is the state estimate of Ej before the ex-
ecution of δ′ by Tj , Vj is the vector clock of Ej after the execution of δ′ by Tj , and
δ′ = 〈`′1, Qj,i!m, `′2〉 ∈ ∆j is the output corresponding to δ) tagging m, and the fol-
lowing operations are performed to update Ei:

• we update the state estimate Ej of Ej (this update is denoted by Temp1) by using
the vector clocks to guess the possible behaviors of T between the execution of the
transition δ′ and the execution of δ. We consider three cases :



Q1,2!cT1

T2

T3

[1, 0, 0]

[1, 1, 0] [1, 2, 0] [1, 3, 0]

[1, 3, 1] [1, 3, 2]

[2, 3, 2] [4, 3, 2][3, 3, 2]

Q1,2?c Q2,1!a Q2,3!d

Q2,3?d Q3,1!d

Q3,1?d Q1,2!dQ2,1?a

Fig. 1: An execution of the running example.

− if Vj [i] = Vi[i] : Temp1 ← PostTδ (ReachT∆\∆i
(PostTδ′(Ej))). In this case,

thanks to the vector clocks, we know that Ti has executed no transition be-
tween the execution of δ′ by Tj and the execution of δ by Ti. Thus, only
transitions in ∆ \ ∆i could have occurred during this period. We then update
Ej as follows. We compute (i) PostTδ′(Ej) to take into account the execution
of δ′ by Tj , (ii) ReachT∆\∆i

(PostTδ′(Ej)) to take into account the transitions
that could occur between the execution of δ′ and the execution of δ, and (iii)
PostTδ (ReachT∆\∆i

(PostTδ′(Ej))) to take into account the execution of δ.
− else if Vj [j] > Vi[j] : Temp1 ← PostTδ (ReachT∆\∆i

(ReachT∆\∆j
(PostTδ′(Ej)))). In-

deed, in this case, we can prove (see Theorem 1) that if we reorder the transitions
executed between the occurrence of δ′ and the occurrence of δ in order to execute
the transitions of ∆i before the ones of ∆j , we obtain a correct update of Ei.
Intuitively, this reordering is possible, because there is no causal relation between
the events of Ti and the events of Tj , that have occurred between δ′ and δ. So, in
this reordered sequence, we know that, after the execution of δ, only transitions in
∆ \∆j could occur followed by transitions in ∆ \∆i.

− else Temp1 ← PostTδ (ReachT∆(PostTδ′(Ej))). Indeed, in this case, the vector
clocks do not allow us to deduce information regarding the behavior of T be-
tween the execution of δ′ and the execution of δ. Therefore, to have a correct state
estimate, we update Ej by taking into account all the possible behaviors of T
between the execution of δ′ and the execution of δ.

• we update the estimate Ei to take into account the execution of δ: Ei ← PostTδ (Ei).
• we intersect Temp1 and Ei to obtain a better state estimate: Ei ← Ei ∩ Temp1.
• according to the Mattern’s algorithm [16], the vector clock Vi is incremented to take

into account the execution of δ and subsequently is set to the component-wise maxi-
mum of Vi and Vj . This last operation allows us to take into account the fact that any
event that precedes the sending of m should also precede the occurrence of δ.

Example 2. We illustrate SE-algorithm with a sequence of actions of our running exam-
ple depicted in Figure 1 (the vector clocks are given in the figure). A state of the global
system is denoted by 〈`1, `2, `3, w1,2, w2,1, w2,3, w3,1〉 where `i is the location of Ti

(for i = 1, 2, 3) and w1,2, w2,1, w2,3 and w3,1 denote the content of the queues Q1,2,
Q2,1, Q2,3 and Q3,1. At the beginning of the execution, the state estimates of the three
subsystems are (i) E1 = {〈A0, B0, C0, ε, ε, ε, ε〉}, (ii) E2 = {〈A0, B0, C0, ε, ε, ε, ε〉,
〈A1, B0, C0, c, ε, ε, ε〉}, and (iii) E3 = {〈A0, B0, C0, ε, ε, ε, ε〉, 〈A1, B0, C0, c, ε, ε, ε〉,



〈A1, B1, C0, ε, b
∗, ε, ε〉, 〈A1, B2, C0, ε, b

∗(a+ ε), ε, ε〉, 〈A1, B3, C0, ε, b
∗(a+ ε), d, ε〉}.

After the first transition 〈A0, Q1,2!c, A1〉, the state estimate of E1 is not re-
ally precise, because a lot of events may have happened without the estima-
tor E1 being informed: E1 = {〈A1, B0, C0, c, ε, ε, ε〉, 〈A1, B1, C0, ε, b

∗, ε, ε〉,
〈A1, B2, C0, ε, b

∗a, ε, ε〉, 〈A1, B3, C0, ε, b
∗(a+ε), d, ε〉, 〈A1, B3, C1, ε, b

∗(a+ε), ε, ε〉,
〈A1, B3, C0, ε, b

∗(a + ε), ε, d〉}. But, after the second transition 〈B0, Q1,2?c,B1〉, E2
has an accurate state estimate: E2 = {〈A1, B1, C0, ε, ε, ε, ε〉}. We skip a few steps and
consider the state estimates before the sixth transition 〈C1, Q3,1!d, C0〉: E1 is still the
same, because T1 did not perform any action, E3 = {〈A1, B3, C1, ε, b

∗(a + ε), ε, ε〉},
and we do not indicate E2, because T2 is no longer involved. When T3 sends the mes-
sage d to T1 (the transition 〈C1, Q3,1!d, C0〉), it attaches E3 to this message. When T1
reads this message, it computes E1 = {〈A2, B3, C0, ε, b

∗(a + ε), ε, ε〉} and when it
reads the message a, it updates E1: E1 = {〈A2, B3, C0, ε, b

∗, ε, ε〉}. Thus, E1 knows,
after this action, that there is no a in Q2,1, and that after writing d on Q1,2, it cannot
reach Aer from A0. This example shows the importance of knowing the content of the
queues as without this knowledge, E1 may think that there is an a in Q2,1, so an error
might occur if 〈A2, Q1,2!d, A0〉 is enabled. �

Properties. As explained above, we assume that we can compute an approximation of
the reachable states. In this part, we present the properties of our state estimate algo-
rithm w.r.t. the kind of approximations that we use.

Theorem 1. SE-algorithm is complete, if the Reach operator computes an overapprox-
imation of the reachable states.

Theorem 2. SE-algorithm is sound, if the Reach operator computes an underapproxi-
mation of the reachable states.

The proofs of these theorems are given in [11]. If we compute an underapproximation
of the reachable states, our state estimate algorithm is not complete. If we compute an
overapproximation of the reachable states, our state estimate algorithm is not sound. So,
depending on the approximations, our algorithm is either complete or sound. Complete-
ness is a more important property, because it ensures that the computed state estimates
always contain the current global state. Therefore, in section 5, we define an effec-
tive algorithm for the state estimate problem by computing overapproximations of the
reachable states. Finally, note that our method proposes that we only add information to
existing transmitted messages. We can show that increasing the information exchanged
between the estimators (for example, each time an estimator computes a new state esti-
mate, this estimate is sent to all the other estimators) improves their state estimate. This
can be done only if the channels and the subsystems can handle this extra load.

5 Effective Computation of State Estimates by Means of Abstract
Interpretation

The algorithm described in the previous section requires the computation of reachability
operators, which cannot always be computed exactly in general. In this section, we



overcome this obstacle by using abstract interpretation techniques (see e.g. [6, 13]) to
compute, in a finite number of steps, an overapproximation of the reachability operators
and thus of the state estimates Ei.
Computation of Reachability Sets by the Means of Abstract Interpretation. For
a given set of global states X ′ ⊆ X and a given set of transitions ∆′ ⊆ ∆, the
states reachable from X ′ can be characterized by the least fixpoint: ReachT∆′(X ′) =
µY.X ′ ∪ PostT∆′(Y ). Abstract interpretation provides a theoretical framework to com-
pute efficient overapproximation of such fixpoints. The concrete domain (i.e., the sets
of states 2X ), is substituted by a simpler abstract domain Λ, linked by a Galois Connec-
tion 2X −−→←−−α

γ
Λ [6], where α (resp. γ) is the abstraction (resp. concretization) function.

The fixpoint equation is transposed into the abstract domain: λ = F ]
∆′(λ), with λ ∈ Λ

and F ]
∆′ w α ◦F∆′ ◦ γ. In this setting, a standard way to ensures that the fixpoint com-

putation converges after a finite number of steps to some overapproximation λ∞, is to
use a widening operator ∇. The concretization c∞ = γ(λ∞) is an overapproximation
of the least fixpoint of the function F∆′ .
Choice of the Abstract Domain. In abstract interpretation based techniques, the quality
of the approximation we obtain depends on the choice of the abstract domain Λ. In our
case, the main issue is to abstract the content of the FIFO channels. As discussed in [13],
a good abstract domain is the class of regular languages, which can be represented by
finite automata. Let us recall the main ideas of this abstraction.
Finite Automata as an Abstract Domain. We first assume that there is only one queue
in the distributed system T ; we explain later how to handle a distributed system with
several queues. With one queue, the concrete domain of the system T is defined by
X = 2L×M∗

. A set of states Y ∈ 2L×M∗
can be viewed as a map Y : L 7→ 2M∗

that associates a language Y (`) with each location ` ∈ L; Y (`) therefore represents
the possible contents of the queue in the location `. To simplify the computation, we
substitute the concrete domain 〈L 7→ 2M∗

,⊆,∪,∩, L×M∗, ∅〉 by the abstract domain
〈L 7→ Reg(M),⊆,∪,∩, L ×M∗, ∅〉, where Reg(M) is the set of regular languages
over the alphabet M . Since regular languages have a canonical representation given by
finite automata, each operation (union, intersection, left concatenation,...) in the abstract
domain can be performed on finite automata.
Widening Operator. The widening operator is also performed on a finite automaton,
and consists in quotienting the nodes4 of the automaton by the k-bounded bisimulation
equivalence relation ≡k; k ∈ N is a parameter which allows us to tune the precision,
since increasing k improves the quality of the abstractions in general. Two nodes are
equivalent w.r.t. ≡k if they have the same outgoing path (sequence of labeled transi-
tions) up to length k. While we merge the equivalent nodes, we keep all transitions and
we obtain an automaton recognizing a larger language. Note that for a fixed k, the class
of automata which results from such a quotient operation from any original automaton,
is finite and its cardinality is bounded by a number which is only function of k. So,
when we apply this widening operator regularly, the fixpoint computation terminates
(see [13] for more details).

4 The states of an automaton representing the queue contents are called nodes to avoid the con-
fusion with the states of a CFSM.
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Fig. 2: Illustration of the 1-bounded bisimulation relation ≡1 for A.

Example 3. We consider the automaton A depicted in Figure 2, whose recognized lan-
guage is a+ ba+ bba+ bbba. We consider the 1-bounded bisimulation relation i.e., two
nodes of the automaton are equivalent if they have the same outgoing transitions. So,
nodes 0, 1, 2 are equivalent, since they all have two transitions labeled by a and b. Nodes
3 and 4 are equivalent to no other node since 4 has no outgoing transition whereas only
a is enabled in node 3. When we quotient A by this equivalent relation, we obtain the
automaton on the right side of Figure 2, whose recognized language is b∗a. �

When the system contains several queues Q = {Q1, . . . , Qr}, their content can be rep-
resented by a concatenated word w1] . . . ]wr with one wi for each queue Qi and ], a
delimiter. With this encoding, we represent a set of queue contents by a finite automaton
of a special kind, namely a QDD [2]. Since QDDs are finite automata, classical oper-
ations (union, intersection, left concatenation,...) in the abstract domain are performed
as was done previously. We must only use a slightly different widening operator not to
merge the different queue contents [13].
Effective SE-algorithm. The Reach operator is computed using those abstract inter-
pretation techniques: we proceed to an iterative computation in the abstract domain of
regular languages and the widening operator ensures that this computation terminates
after a finite number of steps [6]. So the Reach operator always gives an overapproxi-
mation of the reachable states regardless the distributed system. The efficiency of these
approximations is measured in the experiments of section 6. Because of Theorem 1, our
SE-algorithm is complete.

6 Experiments

We have implemented the SE-algorithm as a new feature of the McScM tool [17], a
model checker for distributed systems modeled by CFSM. Since it represents queue
contents by QDDs, this software provides most of the functionalities needed by our
algorithm, like effective computation of reachable states. We have also added a mech-
anism to manage vector clocks, and an interactive simulator. This simulator first com-
putes and displays the initial state estimates. At each step, it asks the user to choose a
possible transition.

We proceeded to an evaluation of our algorithm measuring the size of the state esti-
mates. Note that this size is not the number of global states of the state estimate (which
may be infinite) but the number of nodes of its QDD representation. We generated ran-
dom sequences of transitions for our running example and some other examples of [10].
Table 1 shows the average execution time for a random sequence of 100 transitions,
the memory required (heap size), the average and maximal size of the state estimates.



example # subsystems # channels time [s] memory [MB] maximal size average size
running example 3 4 7.13 5.09 143 73.0
c/d protocol 2 2 5.32 8.00 183 83.2
non-regular protocol 2 1 0.99 2.19 172 47.4
ABP 2 3 1.19 2.19 49 24.8
sliding window 2 2 3.26 4.12 21 10.1
POP3 2 2 3.08 4.12 22 8.5

Table 1: Experiments

Default value of the widening parameter is k = 1. Experiments were done on a stan-
dard MacBook Pro with a 2.4 GHz Intel core 2 duo CPU. These results show that the
computation of state estimates takes about 50ms per transition and that the symbolic
representation of state estimates we add to messages are automata with a few dozen
nodes. A sensitive element in the method is the size of the computed and transmitted
information. It can be improved by the use of compression techniques to reduce the size
of this information. A more evolved technique would consist in the offline computation
of the set of possible estimates. Estimates are indexed in a table, available at execution
time to each local estimator. If we want to keep an online algorithm, we can use the
memoization technique. When a state estimate is computed for the first time, it is asso-
ciated with an index that is transmitted to the subsystem which records both values. If
the same estimate must be transmitted, only its index can be transmitted and the receiver
can find from its table the corresponding estimate. We also highlight that our method
works better on the real-life communication protocols we have tested (alternating bit
protocol, sliding window, POP3) than on the examples we introduced to test our tool.

7 Conclusion and Future Work

We have proposed an effective algorithm to compute online, locally to each subsystem,
an estimate of the global state of a running distributed system, modeled as communi-
cating finite state machines with reliable unbounded FIFO queues. With such a system,
a global state is composed of the current location of each subsystem together with the
channel contents. The principle is to add a local estimator to each subsystem such that
most of the system is preserved; each local estimator is only able to compute informa-
tion and in particular symbolic representations of state estimates and to piggyback some
of this computed information to the transmitted messages. Since these estimates may be
infinite, a crucial point of our work has been to propose and evaluate the use of regular
languages to abstract sets of FIFO queues. In practice, we have used k-bisimilarity rela-
tions, which allows us to represent each (possibly infinite) set of queue contents by the
minimal and canonical k-bisimilar finite automaton which gives an overapproximation
of this set. Our algorithm transmits state estimates and vector clocks between subsys-
tems to allow them to refine and preserve consistent state estimates. More elaborate
examples must be taken to analyze the precision of our algorithm and see, in practice, if
the estimates are sufficient to solve diagnosis or control problems. Anyway, it appears



important to study the possibility of reducing the size of the added communication
while preserving or even increasing the precision in the transmitted state estimates.
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