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Abstract. Modeling software features with model programs in C# is a way of
formalizing software requirements that lends itself to automated analysis such
as model-based testing. Unordered structures like sets and maps provide a useful
abstract view of system state within a model program and greatly reduce the num-
ber of states that must be considered during analysis. Similarly, a technique called
linearization reduces the number of states that must be considered by identifying
isomorphic states, or states that are identical except for reserve element choice
(such as the choice of object IDs for instances of classes). Unfortunately, lin-
earization does not work on unordered structures such as sets. The problem turns
into graph isomorphism, for which no polynomial time solution is known. In this
paper we discuss the issue of state isomorphism in the presence of unordered
structures and give a practical approach that overcomes some of the algorithmic
limitations.

1 Introduction

Model programs are a useful formalism for software modeling and design analysis and
are used as the foundation of industrial tools such as Spec Explorer [24]. The expres-
sive power of model programs is due largely to two characteristics. First, one can use
complex data structures, such as sequences, sets, maps and bags, which is sometimes
referred to as having a rich background universe. Second, one can use instances of
classes or elements from user-defined abstract types; we use the word object to mean
either case.

The lack of symmetry checking when program states include both unordered struc-
tures and objects is a serious practical concern for users of tools like Spec Explorer. If
symmetric states are not pruned, the number of states that must be considered during
exploration will often become infeasibly large. This problem is known as state space
explosion. Symmetry reduction is not a universal solution for the state explosion prob-
lem but helps to relieve it in many cases. In this paper we present a symmetry reduction
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based on state isomorphism for programs that contain both complex data structures and
objects.

Taking into account practical experience with Spec Explorer and user feedback, we
can characterize a typical usage scenario of model programs as a three step process:
describe, analyze and test [14].

Describe: A contract model program is written to capture the intended behavior of
a system or subsystem under consideration. Complex data structures and abstract
elements are utilized to produce a contract, or trace oracle, at the desired level of
abstraction.

Analyze: Zero or more scenario model programs are written to restrict the contract to
relevant or interesting cases. The scenarios are composed with the contract and the
resulting model program is explored to validate the contract. The possible traces
of a composition of model programs is the intersection of possible traces of the
constituent model programs.

Test: The model program, that is, the contract possibly composed with additional sce-
narios, is used to generate test cases or used as a test oracle.

The expressive power of combining abstract, unordered data types with objects is
useful when describing a model but complicates analysis. The core problem is to ef-
ficiently identify “relevant” states during exploration. By a state we mean a collection
of all state variables and their values at a given point along the exploration path. It is
often the case that two states that are isomorphic should be treated as being equivalent.
Isomorphism between states with a rich background universe is well defined. It exists
when there is a one-to-one mapping of objects (within each abstract type) that induces a
structure-preserving mapping between the states [1].4 Informally, two states are isomor-
phic if they differ in choice of object IDs (or elements of the reserve) but are otherwise
structurally identical.

Consider for example a state signature containing two state variables V and E.
(States are introduced in the next section.) The type of V is a set of vertices (distinct val-
ues of an abstract type Vertex) and the type of E is a set of vertex sets. Let v1, v2, v3, v4

be vertices and let S1 be a state where,

V = {v1, v2, v3, v4},
E1 = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}}.

Intuitively, the state S1 is an undirected graph that is a circle of four vertices. Let S2 be
a state where V has the same value as in S1 and,

E2 = {{v1, v3}, {v3, v2}, {v2, v4}, {v4, v1}}.

States S1 and S2 are isomorphic because structure is preserved if the reserve element
v2 is swapped with v3. This is an isomorphism that maps v3 to v2, v2 to v3 and every
other vertex to itself. Let S3 be a state where V has the same value as in S1 and,

E3 = {{v1, v2}, {v2, v3}, {v3, v1}, {v4, v1}}.
4 In ASM theory, what we call objects are called reserve elements.



State S3 is not isomorphic to S1, because all vertices in S1 are connected to two vertices
but v4 is only connected to one vertex in S3, i.e., there exists no structure-preserving
mapping from S1 to S3.

The example illustrates the point that state isomorphism is as hard as graph isomor-
phism, when objects and unordered data structures are combined. A customer survey
of Spec Explorer users within Microsoft has shown that this combination occurs often
in practice. It occurs in the standard Spec Explorer example included in the distribution
[21] known as the chat model [24, 23], where chat clients are objects and the state has
a state variable that maps receiving clients to sets of sending clients with pending mes-
sages. The state isomorphism problem for reserve elements in unordered structures was
not solved in Spec Explorer and to the best of our knowledge has not been addressed in
other tools used for model based testing or model checking that support unordered data
structures. There are model checkers that support scalar sets [13], which are basically
ranges of integers, but we do not know of instances where such sets can contain objects
with abstract object IDs.

In practical terms this means that users must either use various pruning techniques
that only partially address the problem or extend the model program with custom sce-
nario control that tries to work around the problem by restricting the scope of explo-
ration. The results are not always satisfactory.

The pruning techniques that have been partially helpful in this context are state
grouping [9] and multiple state grouping [4, 24]. The grouping techniques have an or-
thogonal usage that is similar to abstraction in model checking, but state isomorphism
is a clearly defined symmetry reduction that is closely related to state symmetry re-
duction in explicit state model checking [18]. In general, it is not possible to write a
grouping expression that maps two states into the same value if and only if the states
are isomorphic; the “only if” part is the problem.

If objects are not used, then state isomorphism reduces to state equality. State equal-
ity can be checked in linear time. This is possible because the internal representation
of all (unordered) data structures can then be ordered in a canonical way. The same ar-
gument is true if objects are used but no unordered data structures are used. Then state
isomorphism reduces to what is called heap canonicalization in the context of model
checking and can be implemented in linear time [12, 19].

In this paper we describe a solution for the state isomorphism problem for model
programs with states that have both unordered structures and objects. We do so by
providing a mapping from model program states to rooted labeled directed graphs and
use a graph isomorphism algorithm to solve the state isomorphism problem. The graph
construction and the labeling scheme use techniques from graph partitioning algorithms
and strong hashing algorithms to reduce the need to check isomorphism for states that
are known not to be isomorphic. We also outline a graph isomorphism algorithm that is
customized to the particularities of state graphs. Our algorithm extends a linearization
based symmetry-checking algorithm as in [16, 27] with backtracking and is, arguably,
better suited for this application than existing graph isomorphism algorithms.

Before we continue with the main body of the paper, we illustrate why state isomor-
phism checking is useful on a small example, shown in Figure 1, that we use also in the
later sections. The example is small but typical for similar situations that arise for exam-



namespace Triangle
{
[Abstract]
enum Side { S1, S2, S3 }

[Abstract]
enum Color { RED, BLUE }

static class Contract
{

static Map<Side, Color> colorAssignments = Map<Side, Color>.EmptyMap;

static bool AssignColorEnabled(Side s)
{ return !colorAssignments.ContainsKey(s); }

[Action]
static void AssignColor(Side s, Color c)
{ colorAssignments = colorAssignments.Add(s, c); }

}
}

Fig. 1. A model program where a color, either RED or BLUE, is assigned to the sides of a triangle.

ple in the chat model [23] or when modeling multithreaded applications where threads
are treated as objects [26]. The example is written in C# and uses a modeling library
and a toolkit called NModel. The formal definition of a model program is given in Sec-
tion 2, where it is also explained how the C# code maps to a model program. NModel
is going to be an open source project that supports the forthcoming text book [14] that
discusses the use of model programs as a practical modeling technique. All algorithms
described in this paper have been implemented in NModel.

Example

Let us look at a simple model program that describes ways to assign colors to the sides
of a triangle. The model program is given in Figure 1. The triangle in the program has
three sides, S1, S2, and S3 and each side can be associated with the color RED or BLUE.
The model program has a single action that assigns a color to one side at a time. There
are (|Color| + 1)|Side| = 27 possible combinations of such assignments, including
intermediate steps where some sides have not been colored yet. There are three sides;
each side has three possible values if you count “no color” as a value.

The state transition graph visualizing all possible transitions and all distinct states
of the triangle program is given in Figure 2. In this case the [Abstract] attributes of
Side and Color have not been taken into account and each combination of Side 7→
Color is considered distinct.

2 Definitions

A formal treatment of model programs builds on the ASM theory [11] and can for
example be found in [25]. Here we provide some basic terminology and intuition and
illustrate the main concepts with examples. A state here is a full first-order state, that is
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Fig. 2. The result of exhaustive exploration of the triangle example in Figure 1. Each combination
of Side 7→ Color is considered distinct and thus the blowup of the state space. The numbers
denote exploration sequence of the state space.

intuitively a mapping from a fixed set of state variables to a fixed universe of values.
States also have a rich background [1] that contains sequences, sets, maps, sets of sets,
maps of sets, etc. We assume here that all state variables are nullary.5 For example, the
model program in Figure 1 has one state variable colorAssignments.

Since states have a rich background universe they are infinite. However, for repre-
sentation, we are only interested in the foreground part of a state that is the interpretation
of the state variables. All values have a term representation. Terms that do not include
state variables are called value terms and are defined inductively over a signature of
function symbols. This signature includes constructors for the background elements.6

We identify a state with a conjunction of equalities of the form x = t, where x is a state
variable and t a value term.

The interpretation of a value term is the same in all states. Value terms are not
unique representations of the corresponding values, i.e., value terms that are syntacti-
cally distinct may have the same interpretation. We say value for a value term when it
is clear from the context that the particular term representation is irrelevant.

For example, a set of integers, containing the values 1, 2, and 3 is represented by
the term Set<int>(1,2,3). The term Set<int>(2,1,3) has the same interpreta-
tion. We use a relaxed notation where the arity of function symbols is omitted but is
implicitly part of the symbol. For example Set<int>(1,2) represents a set contain-
ing 1 and 2, so the constructor Set<int> is binary here and ternary in the previous
case. Function symbols are typed. For example, a set containing two sets of strings
Set<string>("a") and Set<string>("b") is represented by the term

Set<Set<string>>(Set<string>("a"),Set<string>("b"))

Model programs typically also have user-defined types that are part of the background.
For example the model program in Figure 1 has the user-defined type Color. This type

5 In ASM theory, state variables are called dynamic functions and may have arbitrary arities.
Dynamic functions with positive arities can be encoded as state variables whose values are
maps.

6 In ASM theory, these function symbols are called static, their interpretation is the same in all
states.



has two elements Color.RED and Color.BLUE, respectively. The initial state of this
model program is (represented by the equality)

colorAssignments = Map<Side,Color>.EmptyMap.7

A user-defined type may be annotated as being abstract, e.g., Color in Figure 1
is abstract. Elements of an abstract type are treated as typed reserve elements in the
sense of [11]. Intuitively this means that they are interchangeable elements so that a
particular choice must not affect the behavior of the model program. A valid model
program must not explicitly reference any elements of an abstract type. For example,
even though the Color enumeration type provides an operation to return the string
name of a color value, the model program must not use that operation if color is to be
considered abstract. Abstract types are similar to objects8 that are treated the same way.

An update rule is a collection of (possibly conditional) assignments to state vari-
ables. An update rule p that has formal input parameters x̄ is denoted by p[x̄]. The
instantiation of p[x̄] with concrete input values v̄ of appropriate type, is denoted by
p[v̄]. An update rule p denotes a function [[p]] : State× Valuen → State. Update rules in
model programs are called actions.

A guard ϕ is a state dependent Boolean formula that may contain free logic vari-
ables x̄ = x1, . . . , xn, denoted by ϕ[x̄]; ϕ is closed if it contains no free variables.
Given values v̄ = v1 . . . , vn we write ϕ[v̄] for the replacement of xi in ϕ by vi for
1 ≤ i ≤ n. A closed formula ϕ has the standard truth interpretation s |= ϕ in a state s.
A guarded update rule is a pair (ϕ, p) containing a guard ϕ[x̄] and an update rule p[x̄];
intuitively (ϕ, p) limits the execution of p to those states and arguments v̄ where ϕ[v̄]
holds. The guard restricts firing the update rule based on but the update rule itself may
contain conditionals to update the state appropriately.

We use a simplified definition a model program here, by omitting control modes.
The state isomorphism problem is independent of the presence of explicit control modes.
Thus, this simplification does not affect the main topic of this paper.

Definition 1. A model program P has the following components:

– A finite vocabulary X< of state variables
– A finite vocabulary Σ of action symbols
– An initial state s0 given by a conjunction

∧
x∈X x = tx where tx is a value term.

– A reset action symbol Reset ∈ Σ.
– A family (ϕf , pf )f∈Σ of guarded update rules.

• The arity of f is the number of input parameters of pf .
• The arity of Reset is 0 and [[pReset]](s) = s0 for all s |= ϕReset.

An action has the form f(v1, . . . , vn) where f is an n-ary action symbol and each
vi is a value term that matches the required type of the corresponding input parameter

7 The namespace Triangle.Contract is implicit here.
8 By “objects” we mean object IDs. Instance fields associated with objects are considered to

be state variables in their own right and not part of any nested structure. In this way, we can
consider only global variables without loss of generality.



of pf . We say that an action f(v̄) is enabled in a state s if s |= ϕf [v̄]. An action f(v̄)
that is enabled in a state s can be executed or invoked in s and yields the state [[pf ]](s, v̄).

The model program in Figure 1 has a single action symbol AssignColor. The
guard of AssignColor is given by the Boolean function AssignColorEnabledwhich
is associated with AssignColor by naming. The action a =AssignColor(Side.S1,

Color.RED) is enabled in the initial state s0 as AssignColorEnabled(Side.S1)
returns true in s0. The execution of a in s0 yields the state

colorAssignments = Map<Side,Color>(Side.S1 7→ Color.RED).

The unwinding of a model program from its initial state gives rise to a labeled
transition system (LTS). The LTS has the states generated by the unwinding of the
model program as its states and the actions as its labels.

Definition 2. A rooted directed labeled graph, G, is a graph that has a fixed root, has
directed edges, and contains labels of vertices and edges. Such graph can be formally
represented as a triple G = (vr, V, E) where vr ∈ V is the root vertex, V is a set of
vertices v that are pairs v = (id, lv), where id is an identifier uniquely determining a
vertex in a graph and lv is the label of the vertex. E is the set of triples (v1.id, le, v2.id)
where v1 is the start vertex, v2 is the end vertex and le is the edge label.

3 States as Graphs

In this section we present a graph representation of the state of a model program.
The states of a model program can contain object instances and other complex data

structures, thus we do not deal only with primitive types, such as integers and Boolean
values, but also with instances of objects that can be dynamically instantiated and refer
to other instances of objects. The state space of a model program may be infinite, but
concrete states are finite first order structures. We look at the configuration of values
and object instances that have been assigned to the fields of objects and data structures
contained in the program.

A state is defined by an assignment of term representations of values to fields, s =∧
x∈X<

x = tx. There are two kinds of fields in a model program: global fields, like
colorAssignments in the program on Figure 1 and fields of dynamically instantiated
objects. For the sake of brevity, we will look only at states containing global fields.
Assignments to global fields are simple equations x = t. It is important to note that it is
possible to establish a binary relation of total ordering, <, of field names. This can be
achieved by, for example, ordering the field names alphabetically.

Figure 3 outlines the procedure of creating a graph from a state. In general the
procedure is straightforward: the function CreateGraph creates the graph by analyzing
the terms corresponding to each state variable x. The analysis of a term, TermToGraph,
adds a field index to value mapping to the label of the parent node, if t denotes a value,
and adds a new node to the graph, if t is an object. A specialized procedure is used
for creating nodes corresponding to built-in abstract data types. In fact, each ADT is
handled in a slightly different way.

A Set becomes a node that has the count of its elements in the label of the incoming
edge. All outgoing edges of a set are given a label with a function symbol 0, denoting



class State {
Sequence<Pair> X;

}

class G {
Vertex v r = new Vertex();
Set<Vertex> vertices = Set<Vertex>.EmptySet.Add(v r);
Set<Edge> eds = Set<Edge>.EmptySet ;

}

G CreateGraph(State s) {
g=new G();
foreach (x in s.X) g = TermToGraph(t,g.v r, g.SequenceNumber(x), g);
return g;

}

G TermToGraph(Term t, Vertex parent, int fieldIdx, G g) {
if (!isObject(t))

parent.label.Add(new Lbl(fieldIdx,t));
switch(t.functionSymbol) {

case Set:
Vertex setv=g.NewVertex();
g.eds=g.eds.Add(new Edge(parent,new Lbl(fieldIdx,t.argCount),setv));
forall (Term elem in t.arguments)

TermToGraph(elem,setv,0,g);
break;

case Bag:
Vertex bagv=g.NewVertex();
Bag<Pair> bagCounts = Bag<Pair>.EmptyBag;
forall (Pair<Term,Term> (elem,count) in t.GetArgumentsByPair()) {

TermToGraph(elem,setv,count,g);
bagCounts.Add(count);

}
g.eds=g.eds.Add(new Edge(parent,new Lbl(fieldIdx,bagCounts.Sort()),setv));
break;

case Map:
forall (Pair<Term,Term> (key,val) in t.GetArgumentsByPair()) {

Vertex maplet=g.NewVertex();
TermToGraph(key,maplet,0,g);
TermToGraph(val,maplet,1,g);
g.eds=g.eds.Add(new Edge(parent,new Lbl(fieldIdx,t.PairCount()),maplet));

}
break;

default:
if (isObject(t)) {

Vertex newVertex=new Vertex();
g.eds=g.eds.Add(new Edge(parent, new Lbl(fieldIdx),newVertex));
if (arity(t)>0)

forall (Term arg in t.arguments)
TermToGraph(arg,newVertex,sequenceNumber(arg),g);

}
}
return g;

}

Fig. 3. Code for generating a rooted labeled directed graph from a state of a model program



membership in a set. It is possible that the label is extended with more arguments as the
set may contain other sets.

The representation of a bag (or multiset) has a sorted list of element multiplicities
on the incoming label. The label of the edge pointing to each element of a Bag is labeled
by the corresponding multiplicity. In fact, a Bag is a set of pairs, and using a specialized
representation is an optimization that helps to reduce the number of nodes in the state
graph. A Map is also a Set of pairs but can be converted to a reduced fragment of the
graph.

The labelings of outgoing edges may be unique, as in the case of different field
indices of a structure, or unordered, as in the case of a set.

Thus, it is possible to classify the outgoing edges of a node into ordered and un-
ordered edges. The graph representations of the abstract data structures Set, Bag, and
Map are summarized in Figure 4.

Obj:1 Obj:2 Obj:3

Set:0

in in in

size(3)

Obj:1 Obj:2 Obj:3

Bag:0

in(2)in(1) in(1)

size(2, 1, 1, 2)

Obj:1

Map:0

key

Obj:2

value

Obj:3

Map:1

value key

size(2) size(2)

Set Bag Map

Fig. 4. Graph representations of abstract data types used by model programs. The corre-
sponding term representations are Set(Obj.O1,Obj.O2,Obj.O3), Bag(Obj.O1,2,
Obj.O2,1,Obj.O3,1) and Map(Obj.O1,Obj.O2,Obj.O3,Obj.O2).

There are some graphs representing the states of the triangle example in Figure 5.
The state graphs have been generated using the procedure outlined in Figure 3.

S1

Map:0

key

RED

value

S2

Map:1

valuekey

S3

Map:2

value key

Root:1

cA(3) cA(3) cA(3)

S1

Map:0

key

BLUE

value

REDS2

Map:1

valuekey

S3

Map:2

value key
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cA(3) cA(3) cA(3)

S1

Map:0

key

RED

value

S2

Map:1

key

BLUE

value

S3

Map:2

value key

Root:1

cA(3) cA(3)cA(3)

State 11 State 12 State 14

Fig. 5. State graphs of states 11, 12, and 14 of the triangle example on Fig. 2 and Fig. 6. State 14
is isomorphic to state 12 but neither 12 nor 14 is isomorphic to 11. The abbreviation cA stands
for colorAssignments and (3) denotes that there are 3 key-value pairs in the map.



State graphs of states of the triangle example denoted by numbers 11, 12, and 14 on
Figure 2 and Figure 6 are given in Figure 5. State 14 is isomorphic to state 12 but neither
12 nor 14 is isomorphic to 11. The abbreviation cA stands for colorAssignments and
(3) denotes that there are 3 key-value pairs in the map.

Figure 6 illustrates the effects of isomorphism-based symmetry reduction applied
to the triangle example studied previously. The state graph on the left shows at which
stages of the search isomorphic states were encountered. The dashed arrows point to
states that are isomorphic to the state the arrow starts from. The graph on the right is
obtained by showing a representative example of a family of isomorphic states.

0
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1

8 10

7 9

11 12

13 14

0

1
S3 -> RED

7
S3 -> RED
S2 -> RED

9
S3 -> RED

S2 -> BLUE

12
S3 -> RED
S2 -> RED

S1 -> BLUE

11
S3 -> RED
S2 -> RED
S1 -> RED

a) b)

Fig. 6. State space of the Triangle example from Fig. 1, where exploration of isomorphic states has
been pruned. The dashed lines on (a) exhibit encounters of isomorphic states during exploration.
(b) exhibits the structure of the state graph when isomorphic states are collapsed.

Field maps

As mentioned earlier, objects are just abstract ids or reserve elements. So how do we
deal with fields of objects? Fields of objects are represented by state variables, called
field maps, whose values are finite maps from objects of the given type to values of the
given field type.9 From the point of view of this paper, field maps are handled in the
same way as map-valued state variables. A difference compared to map-valued state
variables is that field maps can not be referenced as values inside of a model program,
which can sometimes be used to simplify the graph representation of a state.

In order to illustrate field maps, consider a version of the triangle example, shown
in Figure 7, where sides are instances of a class Side. The fact that sides are reserve

9 The name of a field map is uniquely determined from the fully qualified name of the class and
the name of the field.



namespace Triangle
{
[Abstract]
enum Color { RED, BLUE }

class Side : LabeledInstance<Side> { public Color color; }

static class Contract
{

static Set<Side> sides = Set<Side>.EmptySet;

[Action]
static void AssignColor([New] Side s, Color c)
{

s.color = c;
sides = sides.Add(s);

}

static void AssignColorEnabled(Side s)
{ return sides.Count < 3; }

}
}

Fig. 7. A version of the triangle model where sides are objects. The AssignColor action is
enabled if not all sides have been colored. The New keyword indicates that the side is a new
object (reserve element).

elements is indicated by the base class. This model program has two state variables,
sides and color, where color is a field map. In the initial state, both color and
sides are empty. When a color c is assigned to a side s, the color map gets a new
entry s 7→ c.

The presented approach is also extended to states resulting in the composition of
model programs, as presented in [25]. The root of a state of a composition of model
programs becomes a set of two rooted graphs that may share objects.

4 Isomorphism checking

Unlike arbitrary graphs, state graphs are rooted and encode state information in a way
that partially reflects the underlying static structure of a program. For example, all ob-
jects of a given type have a fixed set of fields that are ordered alphabetically. Several
built-in ordered data types, such as sequences and pairs, also have an order of the ele-
ments contained in them according to their position. Moreover, user-defined types, other
than abstract types, have a fixed alphabetical order of fields. A typical model program
uses both ordered and unordered data structures. As explained above, the resulting state
graph includes both ordered and unordered edges.

Our intent was to devise an algorithm for graph isomorphism that takes advantage
of the ordered edges as much as possible while handling the unordered cases as a last
resort through backtracking. The starting point is that all vertices of the graph have
been given strong labels through object ID-independent hashing10 that already reduces

10 The hashing part of the algorithm is outside the scope of this paper.



the possible pairings of vertices dramatically. In the case when all edges are ordered
the algorithm should not do any backtracking at all. The basic idea of the algorithm
is an extension of the linearization algorithm used in Symstra [27] with backtracking.
The algorithm reduces to linearization when the graphs that are being compared are
fully ordered, i.e. have no unordered edges. A small difference compared to Symstra is
that the linearizations are computed and compared simultaneously for the two graphs
as depth first walks, rather than independently and then compared.

Linearization with backtracking

The following is an abstract description of the algorithm. Given are two state graphs
G1 and G2. The algorithm either fails to produce an isomorphism or returns an isomor-
phism from G1 to G2. The abstract description of the algorithm is non-deterministic. In
the concrete realization of the algorithm the choose operation is implemented through
backtracking to the previous backtrack point where more choices were possible. The
details of the particular backtracking mechanism are omitted here.

We say that an edge with label l is an l-edge. The edge labels that originate from
ordered background data structures are called functional. It is known that for all func-
tional edge labels l and for all nodes x, there can be at most one outgoing l-edge from
x. Other edge labels are called relational.

Bucketing: Compute a “bucket map” Bi for all nodes in Gi, for i = 1, 2. Each node n
in Gi with label l is placed in the bucket Bi(l). If either B1 and B2 do not have the
same labels and the sames sizes of corresponding buckets for all labels then fail.
Otherwise execute Extend(∅, r1, r2), where ri is the root of Gi, for i = 1, 2.

Extend(ρ, x1, x2): Given is a partial isomorphism ρ and isomorphism candidates x1

and x2. If x1 and x2 have distinct labels then fail, else if x1 is already mapped to
x2 in ρ the return ρ, else if either x1 is in the domain of ρ or x2 is in the range of ρ
then fail, else let ρ0 = ρ ∪ {x1 7→ x2} and proceed as follows.
Let l1, . . . , lk be the outgoing edge labels from x1 ordered according to a fixed
label-order.11 For j = 1, . . . , k,

– For i = 1, 2, choose lj-edges (xi, yi) in Gi for some yi.
If Extend(ρj−1, y1, y2) fails then fail, else let ρj = Extend(ρj−1, y1, y2).

Return ρk.

Notice that the algorithm is deterministic and reduces to linearization when all
choices are made from singleton sets. A sufficient (but not necessary) condition for
this to be true is when all edge labels are functional. A heuristic we are using in the
implementation of this algorithm is that all functional edge labels appear before all
relational edge labels in the label-order that is used in the algorithm.

The implementation of the algorithm has also some optimizations when backtrack
points can be skipped, that have been omitted in the above abstract description. One
particular optimization is the following. When there are multiple l-edges outgoing from
a node x for some fixed relational edge label l, but all of the target nodes of those edges
11 At this point we know that x2 must have the same outgoing edge labels in G2 as x1 has in G1

or else x2 would have a different label than x1.



have the same label and degree 1, then an arbitrary but fixed order of the edges can be
chosen that uses the order of the node labels and choice points can be cut. The algorithm
bears certain similarities to the practical graph isomorphism algorithm in [16], by using
a partitioning scheme of nodes that eliminates a lot of the backtracking. The algorithm
has been implemented in NModel.

5 Related work

Two program states, in the presence of pointers or objects, can be considered equivalent
if the structure of the logical links between data objects is equivalent while the con-
crete physical addresses the pointers point to differ, i.e. when the actual arrangement
of objects in memory is different due to the effects of memory allocation and garbage
collection. This is known as one form of symmetry reduction and has been used in soft-
ware model checking. The principles of such symmetry reductions have been outlined
by Iosif in [12]. One of the key ideas in [12] is to canonicalize the representation of
program heap by ordering the heap graph during a depth first walk. The order of out-
going edges (pointers) from a node (for example an object) is given by a deterministic
ordering by edge labels (field name and order number, for example position in the ar-
ray, in the parent data structure). Lack of such ordering would render state comparison
to an instance of the graph isomorphism problem, which requires exponential time in
the number of nodes in the general case [17]. In [19] Musuvathi and Dill elaborate on
Iosif’s algorithm to allow incremental heap canonicalization, i.e. take into account that
state changes are often small and modify only a small part of the heap, thus it should
not be necessary to traverse the whole heap after each state change.

In addition to dSpin [6] where the above mentioned principles were initially imple-
mented, there are several analysis tools specifically targeted for object-oriented software
that utilize the approach, for example, XRT [10] and Bogor [20].

XRT is a software checker for common intermediate language, CIL. It processes
.Net managed assemblies and provides means for analyzing the processed programs.

Bogor is a customizable software model checking engine that supports constructs
that are characteristic to object-oriented software. Although there is support for using
abstract data types, like sets, the underlying state enumeration and comparison engine
performs heap canonicalization based on an ordering of object IDs based on the previ-
ously mentioned work by Iosif [12].

Korat [3] is a tool for automated test generation based on Java specifications. It also
uses the concept of heap isomorphism to generate heaps that are non-isomorphic.

We have layered ASM semantics on top of the underlying programming environ-
ment and thus the concrete memory locations have been abstracted by interpreting the
program state in the ASM semantics. But in addition to using the concrete data struc-
tures, we can declare some types to represent instances of abstract objects and there are
some data structures, such as the Set, Map and Bag, that are designed to accommodate
such objects, among others.

Symstra [27] uses a technique that linearizes heaps into integer sequences to reduce
checking heap isomorphism to just comparing the integer sequence equality. It starts
from the root and traverses the heap depth first. It assigns a unique identifier to each



object, keeps this mapping in memory and reuses it for objects that appear in cycles.
It extends the previously mentioned approaches [12, 19] in that it also assigns a unique
identifier to each symbolic variable, keeps this mapping in memory and reuses it for
variables that appear several times in the heap.

In [5] a glass box approach of analyzing data structures is presented. The reductions
described therein involve isomorphism-based reductions, but encoding the task requires
manual attribution of the data structures to be analyzed. The approach does not present
a general way how to handle object-oriented programs containing abstract data types.

Spec Explorer [24, 21] is a tool for the analysis of model programs written in AsmL
and Spec#. It is possible in some cases to specify symmetry reductions in Spec Explorer
using state groupings but the tool does not have a built-in isomorphic state checking
mechanisms.

Graph isomorphism is a topic that has received scientific attention for decades. Ull-
mann’s (sub)graph isomorphism algorithm [22] is a well known backtracking algorithm
which combines a forward looking technique. As the algorithm is relatively straightfor-
ward to implement, we used it as an oracle for testing purposes.

The algorithm described in Section 4 builds on another well known approach also
known as the Nauty algorithm, which uses node labelings and partitioning based on
such labelings [16].

It is known that there exist certain classes of graphs for which there is a polynomial
time algorithm for deciding graph isomorphism. In [15] a method for deciding isomor-
phism of graphs with bounded valence in polynomial time is presented. The reason why
such algorithms are not directly usable in practice is that the polynomial complexity re-
sult contains large constants [8].

There are model checkers, such as for example Murφ [7] and Symmetric Spin [2],
that allow modeling using scalar sets [13]. These sets are similar to the sets described
in the current paper but they do not have support for abstract object IDs. A survey of
symmetry reductions in temporal logic model checking is given in [18].

6 Conclusion

In this paper we showed how state isomorphism for states with both unordered struc-
tures and objects may be understood in the context of model programs. We reviewed
how the concept of background structures and reserve elements can formalize the mean-
ing of isomorphism for program states. We then described how to represent state as a
rooted directed labeled graph so that existing isomorphism algorithms could be applied.
Finally, we showed an isomorphism-checking algorithm that takes advantage of the in-
formation contained in states with elements drawn from a rich background universe.

The techniques in this paper can be applied in a variety of industrially relevant
modeling and testing contexts and are motivated by practical concerns that arose from
the industrial use of the Spec Explorer tool in Microsoft.

While this current paper gives a solid notion how program states of object-oriented
programs can be viewed as graphs, it also leads to a number of interesting open prob-
lems. For example, how can one speed up isomorphism checking for the particular



graphs of program states? Would it be useful to describe graph isomorphism as a SAT
problem? How could this be accomplished?

As future work, we plan on showing how hashing techniques can be used to improve
the performance of isomorphism checks for larger numbers of states.
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