
Event correlation with boxed pomsets

Thomas Gazagnaire1 and Löıc Hélouët2

1 IRISA/ENS Cachan,Campus de Beaulieu, 35042 Rennes Cedex, France
2 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. This paper proposes a diagnosis framework for distributed systems
based on pomset languages. Diagnosis is performed by projecting these models
on a collection of observable labels and then synchronization with an observation.
This paper first proposes a new model called boxed pomset languages, which ex-
tends classical pomset-based languages as so called High-level Message Sequence
Charts. It can describe infinite scenarios, and has good properties with respect to
projections. We then give a solution for the event correlation problem (knowing
whether two observed alarms are causally related) for pomset languages.

1 Introduction

Communication systems have become more and more complex over the recent
years. Usually, several telecommunication operators share the same physical net-
work to provide services to their clients. In this context, when a breakdown oc-
curs, finding what really happened and who is responsible for it is becoming a
major challenge.

Such kind of telecommunication breakdown happened in France in November
2004. In several towns, the whole telecommunication network was unavailable,
and worse, even emergency numbers were disabled. It took a full day to restore
normal communication. The cause for this trouble was made public much later:
a software error in a voice over IP application had forced several equipments to
switch off, and as a result, the whole network collapsed.

Similarly, the spreading of DSL (still with several operators sharing a com-
mon network) now cause some reliability problems. When a breakdown occurs
the problem may be due to the physical network (at the level of the local hook-up
or at upper levels), to the service provider, or even worse it may be a consequence
of bad interactions between services from several providers. In this situation,
finding the cause of the failure is difficult, and the time to get an explanation
may be several weeks. According to France Telecom 1, several providers did not
develop sufficient tools needed to detect faults in networks. Beyond technical
concerns (repairing the incriminated hardware or replacing software), there are
also economical reasons for diagnosis techniques: one wants to find who is re-
sponsible for a failure of the system - or equivalently what is the root cause of
the failure. In such a situation, the origin of a breakdown becomes as important
as the fault itself.

In order to quickly fix problems, almost every part of a modern network
provides data about what it is doing: operating systems log systems and security

1 Le monde, 01/08/2007

2 Thomas Gazagnaire, Löıc Hélouët

events, servers keep records of what they do, applications log errors, warnings
and failures, firewalls and VPN gateways record suspicious traffic, routers and
switches watch packets between network segments,... In a protocol such as Simple
Network Management Protocol (SNMP) [7], these equipments forward alerts to
a central management console. Besides monitoring their own behavior, all these
agents receive and relay messages from other network components, and may in
turn generate new alerts, leading to a propagation of an alarm over the whole
network. A single problem can hence generate overabundant alarms, that are
collected in huge log files. After a breakdown, these logs have to be searched,
but they are often so big that data provided by the network can not be exploited
without dedicated tools. Moreover, monitoring everything in a system is not
possible because sensors cannot be placed everywhere, and thus only a subset of
what occurs in the network is reported in logs. Hence to understand completely
what happened during the failure, one needs to rely on partial observations, but
also on his knowledge of the systems.

In practice, logs are often analyzed and simplified with the help of some sim-
ple rules such as compression (takes multiple occurrences of the same event, ex-
amines them for duplicate information, removes redundancies and reports them
as a single event), counting (reports a specified number of similar events as a sin-
gle one), suppression (associates priorities with alarms and suppresses an alarm
with low priority if an event with higher-priority has occurred), generalization

(generates a log of higher-level events from the initial log) [3], correlation which
establishes “cause and effect” relation between events [12]. All these rules are im-
plemented in expert systems, that read complete logs and output simplified log
files. These summaries are then read by a specialist who tries to find a scenario
for the failure and its root causes.

Additionally, several model-based formal techniques have been proposed re-
cently to diagnose systems. Sampath et al [14] propose a fault detection tech-
nique from finite state machines (FSM), that distinguish safe and faulty states.
Lafortune et al also propose a notion of diagnosability for their model. A system,
described as a FSM, is diagnosable if for a given sequence of observable tran-
sitions, one cannot find two compatible runs of the system such that one that
leads to a safe state, and the other to a faulty state. Jeron et al [10] describe a
similar approach with enhanced fault models. Benveniste et al [2] propose Petri
Nets based diagnosis techniques. They recover complete explanations from an in-
complete observation using a Petri Net model of the monitored system. Hélouët
et al [8] show how to recover explanations of a fault from a partial observation
of a distributed system using High-Level Message Sequence Charts (HMSC) [9].

This paper investigates a model-based diagnosis technique using pomset lan-
guages, that are more powerful than FSM and HMSCs. Roughly speaking, such
languages are automata labeled by partial orders. The major difference with
HMSCs resides in the kind of pomset labeling the automata and in the sequen-
tial composition rule that can be parametrized. Using this model, we provide
techniques to retrieve explanations (from a given partial observation o, provide
all explanations; i.e. runs of the model, that are compatible with o) and to per-

Event correlation with boxed pomsets 3

form event correlation (infer from a partial ordering of events in an observation
o whether two events should be causally related). More precisely, we show that
deciding whether two observed events are ordered in all runs of a model is CoNP-
complete. When the collection of possible labels is fixed and the observation has
no auto-concurrency, the problem is in NLOGSPACE and we give an effective
algorithm to compute the reconstructed causal order explaining the observation.

This document is organized as follows: Section 2 introduces the basic defi-
nitions of pomset languages and boxed pomset languages that will be used as
models of monitored systems. Section 3 establishes the main properties of these
languages. Section 4 uses these results to solve the event correlation problem.
Section 5 concludes this work and gives some perspectives.

2 Pomsets, boxed pomsets, and Pomset languages

Pomsets are a very natural representation to describe runs of distributed systems.
Furthermore, they avoid the well known state-space explosion problem due to
interleaving. Popular languages based on partial orders such as HMSCs [9] are
now standardized. This section introduces a new pomset language called boxed

pomsets, that has nice properties with respect to projection and embeds the
expressive power of HMSCs. The following definitions are mainly due to Gischer
[6] and were reused later by Pratt [13].

Pomsets. A labeled partial order (or lpo) over a set E with labels Σ is a
structure (E,≤, λ,Σ) where ≤ partially orders E and λ : E → Σ assigns an
element of Σ to each element of E. When needed, we will denote by (Ep,≤p
, λp, Σp) the components of lpo p. Labels in Σ should be considered as types
of actions that can be performed by a system, E as instances of these actions
representing events in a run of a distributed system. The set of all events is
denoted by E. A lpo is auto-concurrent iff one can find two incomparable events
e, e′ ∈ E (i.e. e � e′ and e′ � e) such that λ(e) = λ(e′).

A map of lpos (f, t) : (E1,≤1, λ1, Σ1) → (E2,≤2, λ2, Σ2) consists of a mono-
tone map f : (E1,≤1) → (E2,≤2) of partially ordered sets and an alphabet map
t: Σ1 → Σ2 such that for all e in E, λ2(f(e)) = t(λ1(e)). An isomorphism of
lpos is a map (f, t) where f is an isomorphism of partially ordered sets and t is
the identity function.

A pomset is the isomorphism class [E,≤, λ,Σ] of a lpo (E,≤, λ,Σ). More
intuitively, pomsets pay attention to cardinality , labeling and ordering of events,
but not to their identity. ¿From now on, we consider that the set of events E
and its labeling function λ : E → Σ are fixed. Thus we will denote a pomset p
by [Ep,≤p] instead of [Ep,≤p, λp, Σp], because Σp is a subset of Σ and λp is the
restriction of λ to the domain Ep. We will also denote by P the set of all possible
pomsets.

A projection of a pomset p on an observable alphabet Σo is a function πΣo
:

P → P which restricts p to observable labels, i.e. πΣo
(p) = [Ep ∩EΣo

,≤p ∩E2
Σo

]
with EΣo

= λ−1(Σo).
Given a predicate ψ which associates a boolean to each pair of Σ2, we can

define the composition of pomsets p1 and p2, denoted by p1 ⊚ψ p2, or simply

4 Thomas Gazagnaire, Löıc Hélouët

p1 ⊚ p2, as an operator that computes the disjoint union of two pomsets and
then adds an ordering between all pairs of events (e, e′) ∈ Ep1 × Ep2 such that
ψ(λ(e), λ(e′)). More formally, we have p1 ⊚ψ p2 = (Ep1 ⊎Ep2 , (≤1 ⊎ ≤2 ⊎ ≤ψ)∗)
where ≤ψ= {(e, e′) ∈ Ep1 × Ep2 | ψ(λ(e), λ(e′))}. This composition is similar
to the local composition of pomsets defined by Pratt [13]. The parameterization
of ψ makes the composition law able to express several classical operators such
as the parallel composition when ψ(a, b) is false for all a, b ∈ Σ, the strong
concatenation, that is sometimes used to compose MSC’s, when ψ(a, b) is true
for all a, b ∈ Σ, and the weak sequential concatenation when Σ is decomposed
into p disjoint sets Σ1, . . . , Σp representing respectively all actions that can be
executed by processes 1, . . . , p and ψ(a, b) holds when ∃i ∈ 1 . . . p such that
a, b ∈ Σi. From now on, when ψ is clear from the context, we will only write
p1 ⊚ p2 instead of p1 ⊚ψ p2. Figure 1 gives an example of pomset composition
and projection. Each event e is represented by a circle labeled by λ(e). As we do
not pay attention to events themselves, they are unnamed. For clarity, we only
show the transitive reduction of the partial orders. Let ψ hold only for pairs
in {(a, a); (c, c); (c, b); (c, d)}. The composition of pomsets p1 and p2 is shown
on Figure 1-a. Added causalities, corresponding to ≤ψ are depicted by dotted
lines. Figure 1-b shows that projections of pomsets composition is, in general,
not equal to composition of pomsets projections. Indeed, for Σo = {a, b}, p4 =
πΣo

(p1) ⊚ πΣo
(p2) is not isomorphic to p5 = πΣo

(p1 ⊚ p2).

(a) p3 = p1 ⊚ p2 (b) p4 6= p5

Fig. 1. Composition of pomsets

Boxed pomsets. In order to manipulate pomsets with projection and com-
position more easily, we introduce a new model called boxed pomsets. A port is
the isomorphism class of a subset E of E where each label appears at most once,
i.e for every letter a of Σ, |λ−1(a) ∩E| ≤ 1.

A partial order ≤ plugs a set of events E1 to another set of events E2 when, for
every label a inΣ, every event of E1 labeled by a precedes any event in E2 labeled
by a. More formally, we note ≤E1 E2

= {(e1, e2) ∈ E1 ×E2 | λ(e1) = λ(e2)} and
we say that ≤ plugs E1 to E2 iff ≤E1 E2

⊆≤.

Definition 1. A boxed pomset is the isomorphism class [E− ⊎ E ⊎ E+,≤] of

structures (E− ⊎ E ⊎ E+,≤), where E− and E+ are isomorphic ports called

Event correlation with boxed pomsets 5

respectively input port and output port, E is a set of events called inside box,
and ≤⊆ (E− ⊎E)× (E ⊎E+) is a partial order relation. Moreover, ≤ plugs E−

to (E ⊎E+) and (E− ⊎E) to E+.

A boxed pomset b can be seen as an encapsulated pomset, with an access, for
each label, to its maximal and minimal events, through respectively output and
input ports. Events which occur before b will only interact with its input port,
events which occur after b will only interact with its output port. When needed
we will detail the components of boxed pomset b as [E−

b ⊎Eb ⊎E
+
b ,≤b]. The set

of all boxed pomsets is denoted by B. Figure 2 show three examples of boxed
pomsets called b1, b2 and b3. They are represented as pomsets in which separate
rectangles distinguish clearly input ports, inside boxes and output ports. Input
ports will always be located above inside boxes, and output ports below. Note
that ports are not real executable events but rather pointers to minimal and
maximal events of a pomset. Hence boxed pomset b3 of Figure 2 and pomset p3

of Figure 1-a have the same meaning.

Fig. 2. Boxed pomsets, where b1 � b2 = b3

Definition 2. A projection of a boxed pomset b on an observable alphabet Σo
is a function π̄Σo

: B → B which restricts the inside box of b to events which are

labeled by Σo, with no modification of the input and output ports, i.e. π̄Σo
(b) =

[E−
b ⊎ (Eb ∩ EΣo

) ⊎ E+
b ,≤b ∩(E′

Σo
)2] where EΣo

= λ−1(Σo) and E′
Σo

= E−
b ⊎

EΣo
⊎ E+

b .

Ports show their usefulness with projections: they are not only labels, but
are also used to memorize causal relations with events that may have occurred

6 Thomas Gazagnaire, Löıc Hélouët

before or after a given pomset, that disappear during projection. We extend
composition over pomsets to composition over boxed pomsets. This composition
does not change the global structure of boxed pomsets: an input port, an inside
box, and an output port. Intuitively, the composition of boxed pomsets b1 and
b2, denoted by b1 �ψ b2 (or simply b1 � b2 when ψ is clear from the context),
performs the composition of intermediate ports (output port of b1 and input
port of b2) and keeps the resulting partial order over elements of inside boxes.
Input and output ports are used to compute new ports that are respectively the
minimal and maximal events of the new object. More formally:

Definition 3. Let bi = [E−
i ⊎ Ei ⊎ E

+
i ,≤i] for i ∈ {1, 2} be two boxed pomsets,

and ψ be a predicate on Σ2. We define the composition of b1 and b2 as b1�ψ b2 =
[E−

1�2 ⊎ E1�2 ⊎ E
+
1�2,≤1�2], where:

– E−
1�2 is a port such that λ(E−

1�2) = λ(E−
1) ∪ λ(E−

2);
– E1�2 is isomorphic to E1 ⊎E2;

– E+
1�2 is a port such that λ(E+

1�2) = λ(E+
1) ∪ λ(E+

2);
– ≤1�2= (≤1 ∪ ≤2 ∪ ≤ψ ∪ ≤E−

1�2
 (E−

1
⊎E−

2
) ∪ ≤(E+

1
⊎E+

2
) E+

1�2

)∗ ∩ E2 where

E = (E−
1�2 ⊎ E1�2 ⊎ E

+
1�2), and ≤ψ= {(e, e′) ∈ E+

1 × E−
2 | ψ(λ(e), λ(e′))}.

Fig. 3. Projection of boxed pomsets, where b4 ⊚ b5 = b6

Input and output ports of b1 �ψ b2 contain labels of input and output ports
of b1 and b2, inside box of b1 � b2 is isomorphic to the union of insides boxes of
E1 and E2, and causality relation of b1 � b2 is the union of causality relations
of b1 and b2, augmented with the composition of output port of b1 with input
port of b2, projected on events of E−

1�2 ⊎ E1�2 ⊎ E+
1�2. Moreover, we also en-

sure that ≤1�2 plugs correctly E−
1�2, E1�2 and E+

1�2. Consider again Figure 2,

Event correlation with boxed pomsets 7

and let ψ hold only for {(a, a); (c, c); (c, b); (c, d)}. Then, boxed pomset b3 is the
composition of boxed pomsets b1 and b2. Added causalities, corresponding to
≤ψ ∪ ≤E−

1�2
 (E−

1
⊎E−

2
) ∪ ≤(E+

1
⊎E+

2
) E+

1�2

are symbolized by dotted lines, and

the created ports are symbolized by rectangles located respectively above and
below b4 and b5.

Let us consider the boxed pomsets b4, b5 and b6 of Figure 3 and the examples
of Figure 2. In this figure, b4 = π̄Σo

(b1), b5 = π̄Σo
(b2) and if we let ψ hold

for {(a, a), (c, c), (c, b), (c, d)}, then we have b6 = b4 � b5. Moreover, we can
remark that b6 = π̄Σo

(b3). Section 3 explains more in detail the relations between
pomsets and boxed pomsets, and shows that boxed pomsets have good properties
with respect to projections. Hence, it will be easier to manipulate boxed pomsets
than pomsets. Thus, we define morphisms to translate problems occurring in
pomsets monoid (P,⊚) to problems in boxed pomsets monoid (B,�), which
should be solved more easily.

The boxing operator B : P → B is used to build a boxed pomset B(p) from a
pomset p. The boxed pomset built has an inside box, which corresponds exactly
to p, and input and output ports plugged adequately, i.e. input port is plugged
to inside box and output port, and inside box is plugged to output port. Thus,
B(p) is defined as B(p) = [E− ⊎ Ep ⊎ E+, (≤p ∪ ≤E− Ep

∪ ≤Ep E+)∗] where
E− and E+ are ports such that λ(E−) = λ(Ep) = λ(E+).

The unboxing operator U : B → P is used to extract the inside box from a
boxed pomset: U(b) = [Eb,≤b ∩E2

b]. Let us consider pomset p1 from Figure 1,
and boxed pomset b1 from Figure 2. We have B(p1) = b1, and U(b1) = p1.

Automata and languages. Single finite pomsets are not sufficient to pro-
vide a model for systems that may produce runs of arbitrary size. A good way
to design unbounded behaviors is to use an automaton to compose an arbitrary
number of pomsets, as in HMSCs. We introduce now classical definitions about
automata. For a given set L, a L-automaton A is a tuple (S,→, L, S0, Sf) where
S is a set of states, L a collection of labels, →⊆ S×L×S a transition relation, S0

a set of initial states and Sf a set of final states. A path ρ of A is a succession of

consecutive transitions of A such that ρ = n0
l1→ n1 . . .

lk→ nk and (ni, li+1, ni+1)
are in →. An accepting path is a path starting with an initial state and ending
with a final one. We define α∗(ρ) = l1 ∗ . . . ∗ lk, the map which assigns to each
path of a L-automaton an element of the monoid (L, ∗). We extend this defini-
tion to L-automaton: L∗(A) is the language of A, i.e. the set of all elements of
(L, ∗) that A generates : L∗(A) = {α∗(ρ) | ρ is an accepting path of A}. When
the composition operator used is not ambiguous, we write α and L instead of
α∗ and L∗. For instance, it shall be clear that we use ⊚ when we manipulate
P-automata, and � when we manipulate B-automata. Figure 4 gives an example
of two L-automata. States are represented by circles, labels by rectangles. Initial
states have an incoming arrow without source and final states have an outgoing
arrow without destination. A1 is a P-automaton, as p1 and p2 (from Figure 1-a)
belong to P. A2 is a B-automaton, as b1 and b2 (from Figure 2) belong to B.

We extend operators over P and B to operators over P-automata and B-
automata. From a map f : L1 → L2, we build a new mapping operator Mf :

8 Thomas Gazagnaire, Löıc Hélouët

(a) A1 (b) A2

Fig. 4. Examples of L-automata

L1-automata → L2-automata, such that, given A a L1-automaton, Mf (A) is
the L2-automaton where each transition (s, l, s′) ∈→ is replaced by a transition
(s, f(l), s′). In this paper, we will mainly consider MB, MU , MπΣo

and Mπ̄Σo

which are, respectively, the conversion of P-automata to their corresponding B-
automata that replaces pomsets by boxed pomsets in transitions, the conversion
of B-automata to their corresponding P-automata that replaces boxed pomsets
in transitions by unboxed ones, the projection of P-automata, that replaces la-
bels of transitions by projected ones, and the projection of B-automata, that
replaces labels of transitions by projected boxed pomsets. For the examples of
Figure 4 as B(p1) = b1 and B(p2) = b2, we have MB(A1) = A2, and con-
versely A1 = MU (A2). Moreover, we can remark that for any automaton and
a pair of mappings f and g, we have Mf (Mg(A)) = Mfg(A). P-automata and
B-automata can not be considered as new models (they are just standard au-
tomata over peculiar alphabets). However, the composition laws on pomsets and
boxed pomsets gives them more expressive power than simple HMSCs.

Finally, we naturally extend operators over P and B to sets of P and set of
B. For instance, we will write πΣo

(L) instead of {πΣo
(p) | p ∈ L}.

3 Properties of Boxed Pomsets

This section introduces the main properties of boxed pomsets. First, we introduce
basic properties of the operators defined in Section 2. Then we show several
results on pomset languages and their projections. The nice properties of boxed
pomsets with respect to projection motivate the use of this new model to answer
diagnosis problems, as a natural way to consider partial observation is to work
with projected runs of a model. More especially, Theorem 2, gives an automaton
construction for the projection of any pomset automaton.

Let us first consider basic properties of B and U operators with respect
to projection and composition. We will focus essentially on pomset and boxed
pomsets objects, i.e. we will not consider pomset and boxed pomset languages.
Proposition 1 below states that the boxing operation is the inverse relation of the
unboxing one. Note that as the unboxing operation is not injective, the converse
property does not hold.

Proposition 1. Let p be a pomset. Then UB(p) = p.

The following proposition shows that boxed pomset projection is a kind of
dual operation of pomset projection, used with unboxing operator.

Event correlation with boxed pomsets 9

Proposition 2. Let b be a boxed pomset labeled by Σ, and Σo be a subset of Σ.

Then, πΣo
U(b) = Uπ̄Σo

(b).

Proposition 3 shows that pomset composition and boxed pomset composition
are also strongly related. Unlike projections, compositions are not compatible
with unboxing operator as in general U(b1) ⊚ U(b2) is not equal to U(b1 � b2).
Fortunately boxing operation and compositions work well together:

Proposition 3. Let p1 and p2 be two pomsets. Then B(p1⊚p2) = B(p1)�B(p2).

The above propositions give us some basic tools to manipulate pomsets and
boxed pomsets together with projections. Let us now focus on pomset and boxed
pomset languages. It is well known (see for instance Genest et al’s paper [5]) that
pomset languages generated by automata are not stable under projection: given
a P-automaton A, there is, in general, no P-automaton A′ such that L(A′) =
πΣo

(L(A)).
Let us now consider the case of boxed pomsets languages. Proposition 4

shows that the boxed pomset projection is distributive over boxed composition
law �, i.e. the projection of the composition of two boxed pomsets is exactly the
composition of the projection of these boxed pomsets.

Proposition 4. Let b1 and b2 be two boxed pomsets labeled by Σ, and Σo be a

subset of Σ. Then π̄Σo
(b1 � b2) = (π̄Σo

(b1)) � (π̄Σo
(b2))

This result naturally extends to boxed pomset languages: given a B-automaton
A, one can easily find another B-automaton A′ such that the projection of
the boxed pomset language generated by A is exactly the boxed pomset lan-
guage generated by A′. Theorem 1 below shows that it is sufficient to take
A′ = Mπ̄Σo

A. Hence, computing A′ can be performed in linear time.

Theorem 1. Let A be a B-automaton whose events are labeled by Σ, and Σo
be a subset of Σ. Then π̄Σo

(L(A)) = L(Mπ̄Σo
(A)).

Proof. First, let us take a path ρ in A. Then, we have α(ρ) = b1 � . . .� bn where
bi are labels of transition of A. Thus, using Proposition 4, we have π̄Σo

(α(ρ)) =
π̄Σo

(b1) � . . . � π̄Σo
(bn). Moreover, π̄Σo

(b1), . . . , π̄Σo
(bn) can be found along a

path of Mπ̄Σo
(A). It means that π̄Σo

(L(A)) ⊆ L(Mπ̄Σo
(A)).

Second, let us take a path ρ in Mπ̄Σo
(A). Then, we have α(ρ) = b1 � . . .�bk,

where bi are labels of transition of π̄Σo
(A), i.e. bi = π̄Σo

(b′i). Thus, using Propo-
sition 4, we have α(ρ) = π̄Σo

(b′1 � . . . � b′k). Moreover, b′1, . . . , b
′
k can be found

along a path of A. It means that L(Mπ̄Σo
(A)) ⊆ π̄Σo

(L(A)). This concludes the
proof of Theorem 1.�

Proposition 5 extends the result of Proposition 3 to languages. More precisely,
it shows that the boxing operator can be applied equivalently to each label of
the initial automaton, or to the resulting language of this automaton.

Proposition 5. Let A be a P-automaton whose events are labeled by Σ, and Σo
a subset of Σ. Then L(MB(A)) = B(L(A)).

10 Thomas Gazagnaire, Löıc Hélouët

The following theorem shows that it is possible to keep an automaton-like
representation of P-automata projections. The main idea is to consider the dual
boxed pomset automaton projection to do so. Roughly speaking, Theorem 2 says
that the projection of a P-automaton language is the unboxing of the language
of the corresponding B-automaton projection.

Theorem 2. Let A be a P-automaton whose events are labeled by Σ, and Σo be

a subset of Σ. Then πΣo
(L(A)) = U(L(Mπ̄ΣoB

(A)))

Proof. We will use the above propositions to demonstrate this main result :

πΣo
(L(A)) = πΣo

UB(L(A)) (Prop. 1) = Uπ̄Σo
(B(L(A))) (Prop. 2)

= Uπ̄Σo
(L(MB(A))) (Prop. 5) = U(L(Mπ̄ΣoB

(A))) (Th. 1) �

This theorem shows the interest of B-automata, and boxed pomsets. Indeed,
for any P-automaton A, there is in general no P-automaton that can generate
πΣo

(L(A)), but the trivial B-automaton Mπ̄ΣoB
(A) generates a language equiv-

alent to πΣo
(A). It seems more convenient for a designer to define the behaviors

of a system with P-automata, as one does not have to care for ports. On the
other hand, B-automata is a kind of model closed under projection. As trivial
transformations allow to switch from one model to another, the framework for
diagnosis seems rather clear: models of our systems will be P-automata, and
formal manipulations will be performed on B-automata.

4 Event Correlation

P-automata can be used to model distributed system or multi-threaded system,
distributed robotics system, business work-flows,... In this paper, we will focus on
telecommunication networks. These systems are composed of concurrent agents
that react to their environment according to their programmed behavior, and
report a part of the events occurring in their neighborhood. These events cor-
respond to a finite subset of all the possible actions that may happen and form
the finite collection Σ of event labels. Figure 5 shows a typical architecture for
a monitored system. It is very similar to the SNMP architecture: each agent
is equipped with a sensor (represented by a diamond), which sends observable
events it monitors to the centralized log system (represented by a cylinder). Con-
nection between agents are represented by dotted lines. The log system receives
observations and records them in a log file that contains few information about
causalities between recorded events.

Note that monitoring systems can not record everything that occurs in a
network. The first obvious reason is that the size of log files on disk is necessarily
limited, and hence designers have to choose what to record. The second reason
is that some actions that one would like to record are performed by hardware, or
in a part of the network that is not owned by the company which monitors the
network. Hence, only a subset Σo of Σ is observable. Furthermore, one can not
record all causal relations among events: this needs very intrusive tools, usually
based on vector clocks instrumentation [4, 11] which impose a time penalty on
communications and again can not be implemented in unobservable places of

Event correlation with boxed pomsets 11

Fig. 5. A monitored system

the network. Hence, most of the time logs contain incomplete information about
causal relations between recorded events. The log file can then be defined as a
lpo o = (Eo,≤o), where λ(Eo) ⊆ Σo. However, we show in this section how the
lost ordering between events can be reconstructed with a model-based approach.

Within this context, the problems we are interested in are event correlation,
i.e. infer causalities lost by the observation process, and root causes elicitation
for faulty behavior, i.e. exhibit the minimal observed events with respect to the
inferred causal ordering. Note that the log file is in general not sufficient to infer
all lost causal relations among observed events. We propose to use some addi-
tional information on the behavior of the monitored system. This information
is provided by a model given in terms of a P-automaton A. A represents all the
knowledge of experts about the system behaviors, hence L(A) is supposed to
model a significant part of possible runs of the system.

Definition 4 (Explanations). An explanation of an observation given as a

lpo o = (Eo,≤o) is a lpo o′ = (Eo,≤) such that ≤o⊆≤. The set of all explana-

tions of o is denoted by JoK. Moreover, given a P-automaton A the model-based
explanation of o by A with observation labels Σo, is denoted by JoKΣo,A. JoKΣo,A

is the set of explanations whose isomorphism class belong to the projection of

the language generated by A on Σo. More formally, l ∈ JoKΣo,A if and only if l

is an instance of an element of πΣo
(L(A)) and l ∈ JoK.

Note that o and its explanations partially orders the same sets of observed
events Eo. Using definition 4, we can formalize the correlation problem as follows:

Definition 5 (Event Correlation Problem). Let A be a P-automaton whose

events are labeled by Σ, o = (Eo,≤o) be an observation labeled by Σo ⊆ Σ, and

(e1, e2) be a pair of events in E2
o . The Event Correlation Problem for the pair

(e1, e2), is denoted by ECP (Σo,A, o, e1, e2) and can be stated as follows: decide

whether e1 ≤ e2 for every p = (Eo,≤) ∈ JoKΣo,A. We denote by ecpΣo,A,o the

lpo (Eo,≤) where e1 ≤ e2 if and only if ECP (Σo,A, o, e1, e2). The set of root
causes of observation o is denoted by rcΣo,A,o and is the collection of minimal

events with respect to ecpΣo,A,o.

12 Thomas Gazagnaire, Löıc Hélouët

(a) Observation (b) c ∈ JoK

(c) JoK{a,b},A1
= {e1, e2, e3} (d) ecp{a,b},A1,o

Fig. 6. Observations, explanations and correlations

Intuitively, ecpΣo,A,o contains all causal orderings that are certain according
to the explanations of o provided by A. Figure 6 illustrates these definitions.
The graphical representation for lpos is similar to the representation adopted
for pomsets, with the slight difference that we associate an unique number to
each event to differentiate distinct occurrences of the same action. We consider in
this figure that Σ = {a, b, c, d} and Σo = {a, b}. Figure 6-a shows the observation
called o. Figure 6-b shows a possible explanation of o called c. Let us suppose
that the model of the systems behaviors is the P-automaton A1 of Figure 4-
a. For this automaton, c is not a model-based explanation of o, as c does not
belong to πΣo

(L(A1)). Lpo’s e1, e2 and e3 in Figure 6-c are possible members of
πΣo

(L(A)) which embed the ordering given by o. As these different explanations
do not agree on the respective ordering of events 3 and 4, 3 and 5, 4 and 5, nor
5 and 6, they shall not be ordered in ecpΣo,A1,o, as depicted in Figure 6-d. For
this case, the root cause of the observation o is event 1 which is labeled by a.

Theorem 3 shows that the ECP problem is hard, but fortunately, Theorem 4
identifies one case where this problem can be solved in polynomial time. More-
over, the constructive proof leads directly to an effective algorithm.

Theorem 3. Let A be a P-automaton whose events are labeled by Σ, o =
(Eo,≤o) be a lpo labeled by Σo ⊆ Σ and (e, e′) be in E2

o . Then ECP (Σo,A, o, e, e′)
is CoNP-complete.

Proof. We want to show that answering to the following question is NP-complete:
Is there a lpo l = (Eo,≤) ∈ JoKΣo,A such that e 6≤ e′ ? This can be proved with

Event correlation with boxed pomsets 13

an extension of the proof of Th. 5 in Alur et al’s paper [1]. First, let us show that
ECP is in NP. A solution is a path ρ of A, such that πΣo

(α⊚(ρ)) = [E,≤] is an
isomorphism class that contains an explanation of o with f(e) 6≤ f(e′), where f is
the map which assigns each event class of E to its instance in Eo. Let us consider
the B-automaton A′ = Mπ̄ΣoB

(A). Theorem 2 says that πΣo
(L(A)) = UL(A′).

Thus, ρ is also a path in A′ such that U(α�(ρ)) = [E,≤] is an isomorphism class
that contains an explanation of o with f(e) 6≤ f(e′). Let us assume that the size
of ρ is greater than |o||A|Σ|2. Then, as ρ should have at most |o| transitions in
A′ with observable events, we can find a sequence of unobservable transitions in
A′ of size at least |A||Σ|2. That means that an unobservable transition t appears
more than |Σ| times in A′. As, for any boxed pomset bi = [E−

i ∪ E+
i ,≤i] we

have b
|Σ|
i = b

|Σ|+1
i and b1 � b2 = b2 � b1, we can remove some occurrences of t to

build a shorter path ρ′ of size bounded by |o||A||Σ|2. Finally, we found ρ′ in A′,
and thus in A, such that |ρ|′ ≤ |o||A||Σ|2 and ρ′ is a solution. This concludes
the NP part.

Second, let us show that ECP is NP-hard. We provide a reduction from the
NP-complete problem ONE-IN-THREE-3SAT : given a 3-CNF formula φ, is
there a satisfying assignment to the variables such that each clause of φ gets
exactly one literal assigned true ? From a 3-CNF formula φ = C1 ∧ . . . ∧ Cn
over variables x1 . . . xm, we define a P-automaton A whose events are labeled by
Σ = {ai | 1 ≤ i ≤ n} ∪ {bj | 1 ≤ j ≤ m}. A has only one state, which is initial
and final, and has 2m transitions labeled by pxj

and px̄j
, for 1 ≤ j ≤ m.

Each pxj
contains an event bj and an event ai for each clause Ci where

variable xj appears positively. Similarly, each px̄j
contains an event bj and an

event ai for each clause Ci where variable xj appears negatively. Now, consider
the lpo o = (Eo, ∅) which contains exactly one event for each possible label,
and no causal ordering among these events, and a predicate ψ that returns false
to any entry in Σ2. Moreover, let us simply call eσ the event of Eo labeled by
σ. Thus, for any σ, σ′ in Σ, deciding not(ECP (Σ,A, o, eσ, eσ′)) is equivalent to
knowing if there exists l = (Eo,≤) ∈ JoKΣo,A such that eσ 6≤ eσ′ . As all events
of o are independent, and as labeling is bijective, solving ECP for o means that
there exists a valuation which answers ONE-IN-THREE-3SAT. This concludes
the proof.�

Theorem 4. Let A be a P-automaton whose events are labeled by Σ and o =
(Eo,≤o) be a lpo labeled by Σo ⊆ Σ. If o has no auto-concurrency and Σ is

fixed, then for every (e, e′) ∈ E2
o , ECP (Σo,A, o, e, e

′) is NLOGSPACE. More

precisely, ECP can be solved in O(|A||o||Σ||Σo|).

Proof. Let us show that the ECP problem can be translated into finding acces-
sible states of an automaton of size O(|A||o||Σ||Σo|). We will use lpos instead of
pomsets when we need to recall the identity of events, which is the case for ECP.
Of course, the operations and mappings defined for pomsets and boxed pomsets
extend to lpos and to boxed lpos.

To complete the proof, we need to define the notion of unfolding for boxes
lpos. The unfolding of a boxed lpo b, denoted by Ub, is a finite boxed lpo au-
tomaton, i.e. an automaton labeled by boxed lpos. Ub = (S,→,B, s0, sf), where:

14 Thomas Gazagnaire, Löıc Hélouët

– S is the set of prefixes of B(l), i.e. the set of boxed lpos {b′ | ∃b′′, b = b′�b′′}.
Note that prefixes depend also on relation ψ used for composition;

– B is a set of boxed lpos that are used by the transition relation;
– s0 = ǫB is the initial state, and sf = b is the final state;

– s1
b′

→ s2 iff s1 � b′ is an explanation of s2, i.e. if they have the same event
set and ≤s2⊆≤s1�b′ .

Fig. 7. Unfolding and synchronization

Note that for a boxed lpo in our unfolding, all labels in ports are not useful.
For instance, consider boxed lpo b5 in Figure 7: label d does not have to appear
in the ports of this lpo as it is not connected to an event of the inside box of b5.
Hence, we can define a smaller set of labels B for our unfolding by considering
only boxed lpo b whose ports are defined over labels that are connected to the
inside box of b.

Lemma 1. Let l be a lpo labeled by Σo. Then U(L(UB(l))) = JlK. If l has no

auto-concurrency then the number of states of Ul is bounded by |l||Σ||Σo|.

Proof. (⇒) If l′ ∈ U(L(UB(l))) then there exists b′ = b′1 � . . . � b′k such that
U(b′) = l′. Let us make an induction on k. First, let us assume that k = 1. Then,
as b′ is an explanation of B(l), U(b′) = l′ is an explanation of UB(l) = l (Prop.
1). Let us then have b′1 � . . . � b′k−1 an explanation of bk−1, the state reached
after reading b′1 . . . b

′
k−1. By definition of UB(l), bk−1 � b′k is an explanation of

Event correlation with boxed pomsets 15

bk. Let us remind that we manipulate only boxed lpos with minimal number
of events in ports. Thus Ebk−1

= Eb′
1
�...�b′

k−1
and ≤bk−1

⊆≤b′
1
�...�b′

k−1
, and we

obtain that b′1 � . . . � b′k is an explanation of bk. (⇐) If l′ ∈ JlK then l′ is an
explanation of l and B(l′) is a possible transition in UB(l) from s0 to sf .

About the complexity statement : If we want to count the number of possible
prefix of a boxed lpo, the simplest way is to consider that each event in output
ports records a prefix of the boxed lpo. Moreover, if b has no auto-concurrency,
it suffices to record only one event for each observable label - corresponding to
the maximal observed event for this label - in order to record a prefix. �

The product of a boxed lpo automaton A1 and a B-automaton A2, denoted by
A1 ×A2 is the boxed lpo automaton resulting on the cartesian product of states

of these automata and such that (s1, s2)
l
→ (s′1, s

′
2) iff s1

l
→ s′1 and s2

b
→ s′2,

with l an instance of the boxed pomset b.

Lemma 2. Let A be a P-automaton whose events are labeled by Σ and l be a

lpo labeled by Σo ⊆ Σ. Then U(L(UB(l) × Mπ̄ΣoB
(A))) = JlKΣo,A. If l has no

auto-concurrency then the number of states is bounded by |A||l||Σ||Σo|.

Proof. l′ ∈ U(L(UB(l) ×Mπ̄ΣoB
(A))) is equivalent to l′ ∈ U(L(UB(l))) and l′ is

an instance of an element of U(L(Mπ̄ΣoB
(A))), using definition of ×. Moreover,

this is also equivalent to l′ ∈ JlK (Lemma 1) and l′ is an instance of an element
of πΣo

(L(A)) (Theorem 2). This is also equivalent, by definition, to l′ ∈ JlKΣo,A.
Complexity comes from Lemma 1 and the definition of ×.�

Corollary 1. Let A be a P-automaton whose events are labeled by Σ and o =
(Eo,≤o) be a lpo labeled by Σo ⊆ Σ.

Then ecpΣo,A,o = (Eo, (
⋂

(Eo,≤l)∈L

≤l)∗), where L = U(L(UB(l)×Mπ̄ΣoB
(A))).

The constructive proof of Theorem 4 and its corollary immediately provide
an algorithm to find ecpΣo,A,o for a given observation o and a model A. The first
step is to compute Mπ̄ΣoB

(A). The second step is to compute the product of the
unfolding of B(o) with Mπ̄ΣoB

(A), and restrict this product to accessible states.
Each accepting path of the product generates an explanation for o, and ecpΣo,A,o

can then be obtained by intersecting the orders given by these explanations.
Figure 7 shows an example of synchronization UB(o)×Mπ̄Σo

(A2), where o is the
lpo of Figure 6-a, and A2 is the automaton of Figure 4-b. States of this product

are boxed lpos which are prefixes of B(o). Path ρ1 = s1
b4→ s2

b5→ s4 corresponds

to e1 (as Uα�(ρ1) = e1), path ρ2 = s1
b4→ s3

b5→ s5 corresponds to e2 and path

ρ2 = s1
b4→ s3

b4→ s6 corresponds to e3, where e1, e2, and e3 are the model-based
explanations of o given in Figure 6-c.

Theorem 4 explicitly rules out observations with autoconcurrency. This re-
striction is only due to complexity reasons, as considering autoconcurrency would
make our algorithm exponential in the size of the observation rather than in the
size of the observed labels. This should not be considered as a severe limita-
tion of the approach, as these requirements are naturally met in an observation

16 Thomas Gazagnaire, Löıc Hélouët

framework where each sensor produces different observed labels (for instance
by tagging an action name with a unique identity), and where local sequential
ordering on each sensor is not lost during communication to the log system.

5 Conclusion

We have shown how to perform event correlation from an observation with a par-
tial order model. This work opens two perspectives. The first one is to distribute
computations as proposed previously [8]. Indeed, we know that the complexity of
correlation is in O(|A||o||Σ||Σo|). We can define distributed monitoring architec-
tures, where local log systems observe only a subset of the network. Within this
kind of architecture, Σo is partitioned into subsets of observable actions. Event
correlation can be performed in parallel by each local log system with lower
complexity. The main challenge is then to combine the local results to obtain a
global view. The second perspective is to look at probabilistic models. So far,
we can only answer whether a causal relation among some events is sure or not.
It may be interesting to have a more qualitative answer, given as a probability.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In Proc. of ICALP’01, number 2076 in LNCS, pages 797–808, 2001.

2. A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Transactions on Automatic Control,
48(5):714–727, 2003.

3. C. Dousson and V.D. Thang. Discovering chronicles with numerical time con-
straints from alarm logs for monitoring dynamic systems. In Proc. of IJCAI’99,
pages 620–626, 1999.

4. C. Fidge. Logical time in distributed computing systems. IEEE Computer,
24(8):28–33, 1991.

5. B. Genest, L. Hélouët, and A. Muscholl. High-level message sequence charts pro-
jection. In Proc. of CONCUR’03, number 2761 in LNCS, pages 308–322, 2003.

6. J.L. Gischer. The equational theory of pomsets. TCS, 61(2-3):199–224, 1988.
7. IETF Network Working Group. A simple network management protocol (snmp).

Technical report, IETF, 1990.
8. L. Hélouët, T. Gazagnaire, and B. Genest. Diagnosis from scenarios. In

WODES’06, 2006.
9. ITU-TS. Recommendation Z.120: Message Sequence Chart (MSC). 2004.

10. T. Jéron, H. Marchand, S. Pinchinat, and M.O. Cordier. Supervision patterns in
discrete event systems diagnosis. In WODES’06, 2006.

11. F. Mattern. Virtual time and global states of distributed systems. In Workshop
on Parallel and Distributed Algorithms, 1989.

12. Y.A. Nygate. Event correlation using rule and object based techniques. In Proc.
of the 4th Integrated network Management, pages 278–289, 1995.

13. V. Pratt. Modeling concurrency with partial orders. International Journal of
Parallel Programming, 15(1):33–71, 1986.

14. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C Teneket-
zis. Failure diagnosis using discrete-event models. IEEE Transactions on Control
Systems Technology, 4(2):105–124, 1996.

