
Wapee: A Fault-tolerant Semantic Middleware in
Ubiquitous Computing Environments

Yoonhee Kim1, Eun-kyung Kim1, Beom-Jun Jeon2,
In-Young Ko2, and Sung-Yong Park3

1 Dept. of Computer Science, Sookmyung Women's University, Seoul Korea

{yulan, kimek}@sookmyung.ac.kr
2 School of Engineering, Information and Communications University, Korea

{shadow, iko}@icu.ac.kr
3 Department of Computer Science and Engineering Sogang University, Seoul Korea

parksy@sogang.ac.kr

Abstract. A middleware in ubiquitous computing environment (UbiComp) is
required to support seamless on-demand services over diverse resource
situations in order to meet various user requirements [11]. Since UbiComp
applications need situation-aware middleware services in this environment. In
this paper, we propose a semantic middleware architecture to detect errors,
analyze causes of errors, and plan semantically meaningful strategies to deal
with a problem with associating fault and service ontology in UbiComp
environment. We implemented a referenced prototype, Web-service based
Application Execution Environment (Wapee), as a proof-of-concept, and
showed the efficiency in runtime recovery.

Keywords: Ubiquitous, semantic, ontology, fault-tolerance

1 Introduction

The advent of Ubiquitous Computing (UbiComp), which runs dynamically over
heterogeneous environment emphasizes the needs of service-oriented middleware
services in the concept of computing anytime, anywhere, and any devices, instead of
resource in computing environment. In the UbiComp environment, the concept of
situation-aware middleware has played an important role in meeting user needs with
available computing resources appropriately in dynamic environment. An UbiComp
system consists of a heterogeneous set of computing devices; a set of supported tasks;
and some infrastructures the devices may rely on in order to carry out their tasks. It
hides the heterogeneity of the resource environments and provides necessary services
to UbiComp applications.1

As the diversity and complexity of situations in UbiComp environment, it is not
trivial and realistic to come up with semantically meaningful middleware services to

1 This work was supported by the SRC/ERC program of MOST/KOSEF (R11-2005-017)

support high availability, especially to recover from faulty situations with predefined
recovery strategies in real world. In addition, pursing sophisticated controls over
complicated faulty situation takes quite amount of time to analyze the cause and plan
recovery strategies to support fault tolerance, in order to achieve service continuity in
various running environment.

Fault-tolerance issues have been addressed in various areas of computing systems
such as computer architecture, operating systems, distributed systems, mobile
computing and computer networks. In this paper, we discuss semantically meaningful
fault-tolerant middleware architecture to improve availability of application services
in UbiComp environments. In this paper, we have suggested a semantic middleware
architecture for fault tolerance with application fault ontology to provide high
availability service delivery. To enable a service to seamlessly run in ubiquitous
environment, we introduce the Web-service based Application Execution
Environment (Wapee). It consists with Fault Management (FM) and Runtime Service
Management (RSM) with high fault-tolerance, or continuous availability. The FM
provides ontology-based context understanding service in the application areas. The
RSM can be dynamically service reconfiguration by the runtime service manager.
Both are presented for the fast execution time, fault-tolerance and continuous
availability.

The rest of paper is organized as follows. The related works are introduced in
section 2. Section 3 presents overall architecture and the detailed description of
Wapee. In section 4, the experiments of our prototype have demonstrated the
semantically meaningful fault detection and recovery functionality of the mechanism
in our architecture and the efficiency in runtime. We conclude with some directions
for future work at the end of this paper.

2 Related Works

Research on fault tolerance has been more emphasized to provide seamless and
continuous services in Grid, ubiquitous, or distributed computing environment.

Grid Enactor and Management Service (GEMS) [4] supports the detection of
individual job process failures for parallel message-passing applications. Failed Jobs
can be canceled and restarted, either on the same local resource if sufficient nodes are
available in a restart queue, or on another resource. GEMS requires that a local
resource manager support certain fault-detection and reporting capabilities.

CORBA [2] have long lacked real support for fault tolerance. In most cases, a
failure was simply reported to the client and the system undertook no further action.
For example, if a referenced object could not be reached because its associated server
was unavailable, a client was left on its own. In CORBA version 2.6, fault tolerance is
explicitly addressed.

The Adaptive Reconfigurable Mobile Objects of Reliability (Armor) [3]
middleware architecture offers a scalable low-overhead way to provide high-
dependability services to applications. It uses coordinated multithreaded processes to
manage redundant resources across interconnected nodes, detect errors in user
applications and infrastructural components, and provide failure recovery. The

authors describe their experiences and lessons learned in deploying Armor in several
diverse fields.

3 Wapee Overview

Wapee (Web-service based Application Execution Environment) focuses on
providing autonomic fault-tolerance services with fault detection, fault analysis and
recovery with application level service reconfiguration and its runtime level
deployment (see Figure 1). Application level service reconfiguration can be achieved
by autonomic detection and analysis services in application level Fault Management
with semantically meaningful ontology of U-services and faults in a ubiquitous
environment. The service reconfiguration information in an Application Description
Graph (ADG) is fed in to Runtime Service Management (RSM) to be realized as U-
services on a prepared resource pool. Based on the ADG, the RSM asks RSL
Generation Service to create Application Deployment Description (ADD), which
includes service deployment information such as resource description of service
managers, local schedulers, input and output data file path, and executables; and
runtime dependency of the U-services in the ADG.

Fig. 1. Architecture of Wapee

3.1 Fault Management

When a fault cannot be resolved in the service manager level, the Wapee’s fault
manager reconfigures the application to utilize an alternative service that provides the
same or similar functionality as the service that caused the fault. There are some
requirements of the application-level fault manager to ensure the functional reliability
and continuity of an application:
• Functional consistency: An alternative service must provide the same or similar

functionality as the original one to achieve the consistent goal.
• Interoperability: An alternative service must be interoperable with the adjacent

services of the original one. Not only the interface-level interoperability, but also
the semantic interoperability among the adjacent services must be ensured.

• Effectiveness: An alternative service must be selected in a way that the service
contributes to resolve the fault situation.

• Operational continuity: The execution of an application must be continued after
the reconfiguration of the application structure with an alternative service.

To meet these requirements, the fault manger in our framework supports

description models to formally describe the types of fault conditions and the
functionality of services. The fault manager also provides a service brokering
mechanism that identifies a fault condition based on an exception event and service
status, and finds alternative services that are interoperable with other services in an
application and effectively resolve the fault condition.

3.1.1 Ontology-based Fault and Service Description Models

We have developed ontology-based description models to describe semantics of
service faults and functionalities. We define three ontology hierarchies: the fault,
service, and recovery strategy ontologies. The fault ontology is for abstracting types
of faults based on their causes such as the limitation of memory resource, and service
errors. The fault ontology has a property to represent the resource condition that
might cause a fault. The service ontology is for describing the functionality and
resource requirements of a service. Finally, the recovery strategy ontology is for
describing possible strategies to resolve a fault condition.

The fault ontology includes a property that holds a pointer to a recovery strategy
that might resolve the fault condition. The candidate services that can substitute the
faulty service are dynamically inferred based on the strategy specified in this ontology.
This tri-structure ontology makes the service brokering task much more flexible and
scalable by allowing faults and services not to be directly associated and separately
managed.

Step 1. Identifying and
relaxing the fault type

Status
Info.

<A>5
<x>7</x>

Alternative
Service
Name

‘D’

Service
Ontology

Recovery Strategy
Ontology

Fault
Ontology

Step 3. Finding and relaxing
alternative services

An Ontological
Concept

SubClassOf RequiredStrategy

z z

y

x

x

ResourceStatus

2

3 2

13

ResourceRequirement

Identified fault type

Step 2. Matching
recovery strategies

The service that
caused the fault

Step 4. Filtering out
services that do not support

the recovery strategies

A B

A

A

B
C E

D D

D

Fig. 2. Major steps of the semantically-based service brokering process

3.1.2 Semantically-based Service Brokering

Fig. 2 shows the major steps to find alternative services of a service that caused an
exception. When an exception occurs in a service, the system reports the current
status of the service and its environment. The service broker matches this fault
information against the resource-condition property of the fault ontology to identify
the corresponding fault semantics [6]. To find relevant fault semantics as much as
possible, we adopt a semantic relaxation method, which, in an ontology hierarchy,
collects nodes that have the same set of properties and are on the same subsumption
hierarchy – direct parents and children (Step 1 in Fig. 2).

Once a set of possible faults is identified, the service broker retrieves relevant
recovery strategies to resolve the faults (Step 2 in Fig. 2). The service broker then
finds services that provide the same or similar functionality as the original service. A
semantic relaxation method, which is similar to the method that we used for the fault
ontology, is applied to the service ontology to extend the service set (Step 3 in Fig. 2).
The resource-requirement property of each service is then compared with the resource
description in each of the recovery strategies retrieved. Only the services that can
contribute to resolve the fault (the services that meet the resource requirements) are
selected as candidate services that can be used to substitute the original service (Step
4 in Fig. 2).

3.2 Runtime Service Management (RSM)

RSM is responsible for job execution management and interaction with users (See Fig.
3). The RSM make estimates of the resource usage of job submissions in order to
ensure efficient use of grid resources [1]. Examples of service failures include service
crashes due to bugs and operating system errors, faulty operation of services like
sensing incorrect context, wrong inferring delivery of events. Service failures can
potentially lead to failure of the UbiComp system.

Fig. 3. The architecture of RSM

3.2.1 Job Submission Service

One of main services a runtime application in Ubiquitous Environment must provide
is to job submission to remote resources. On such environment, users can execute jobs
that consist of large number of independent tasks with a single sign-on authentication.
We are able to support such uniform job submission to remote computing resources
while using the Grid Resource Allocation and Management (GRAM) in Globus [7]
toolkit to access Grid resources securely.

The client creates a request file by using the Wapee Application Client. The
component of submission service will create a job description file using the XML.
This file includes details of which distributed machine will be used, where the data
files are, and where the result file should be written. Then, the job submission
component will invoke the WS-GRAM service on the remote computation resource
with the XML file. The WS-GRAM resource on the remote site will parse the XML
file and submit a job to the local job scheduling system[5].

3.2.2 Monitoring Service

The purpose of Monitoring service is to provide real-time job monitoring and status
feedback to a steering service while operating in close interaction with an execution
service, such as Condor, to provide interactivity, fault tolerance and error detection.
Once a job is submitted in Wapee, Monitoring services periodically monitors a job
that has been submitted for execution in the Virtual Organization (VO) and reports
job status. A VO is basically groups that are authorized to run Grid jobs on a set of
Grid resources. Whenever the state of a job changes the Monitoring service will
update the repository. WS-GRAM [10] supports querying job status and monitoring
of output and error streams of running jobs. It will interact with execution service to
collect monitoring data and then this data will be stored in the data store. Monitoring
data will be provided to the clients once it has been requested.

3.2.3 Replication and Service Reconfiguration

To meet the requirement of high availability and fault tolerance, replication scheme is
used. Fig. 3 depicts the implementation of the RM in a typical deployment scenario at
a local site replicates data from one or more remote sites. The operations of RM
include location, identifying where desired data files exist on the Grid; transfer,
moving the desired data files to the local system efficiently; and registration. We
considered primary-backup replication for achieving fault-tolerance.

It also addresses automatic reconfiguration because different invocations of the
same service may result in the selection of different components. In the Wapee
architecture, the RSM is primarily responsible for planning and initiating
configuration changes in the system. Development of this adaptive reconfiguration

mechanism requires identification of output information provided by the system and
input information that the mechanism can inject into the system to affect change. The
dynamic resource management service we have designed is in charge of detecting
configuration changes, updating the distribution of directory entries on cluster nodes
in the event of a configuration change, triggering reconfiguration of distributed
services when needed.

4 Wapee Implementation

Our main goal is to develop a workflow solution for complex grid applications to
support the design, execution, monitoring, and performance visualization phases of
development in a user-friendly way. We have developed a GUI based tool, Wapee
Client, for workflow management, as shown in Fig. 4. A visual interface that allows
for the graphical manipulation of workflow process instances provides a rich medium
for the communication of dependencies and relationships between constituent jobs of
a workflow process instance.

A job in workflow is represented by a set of interdependent tasks arranged in a
Directed Acyclic Graph (DAG) [9]. After the creation of the DAG the resources
identified in the workflow must be mapped onto the available grid resources [8]. The
RSM supports run-time execution and job monitoring. Output results can also be
available for a view from the Wapee Client.

5 Experiment Results

An experiment scenario is web-based applications, such as aggregation, searching and
ranking about enormous web-based information. First, user can gather tremendous
editorials on various newspaper website in the same breath using ‘Wrapper
Applications’ of distinct type. Each ‘Wrapper Application’ takes different time when
it finishes. We choose three ‘Wrapper Applications’ for this experiment. And then,
user can both view the result and send input-file for other applications at next phase.
We select ‘Ranking Application’ and ‘Search Application’ for mid-applications of our
experiment. The ‘Search application’ searches some words at forepart result. The
‘Ranking Application’ finds selected word at forepart result and then shows ranking.
Finally we join the whole information through different applications using
‘Aggregation Application’.

For example, when a fault occurs at ‘Searching Application’ phase, Wapee analyze
fault properties and classify the fault type, and replace another useful similar
‘Searching Application’ using fault recovery strategy of Fault Manager. On Fig. 5, we
show a workflow of our scenario.

Fig. 4. Implementation of prototype

In Fig. 6 we showed the success rate and percentage of used fault-tolerance
mechanism in Wapee. If Runtime-Level fault occurs, as shown in Fig. 6 (a), Wapee
detect fault and recover them through Runtime Service Manager (RSM). The whole
procedure takes about 326 seconds. This fault-tolerance mechanism is very basic
algorithms that try to allocate resources on the nearest surrogate possible.

If faults cannot be resolved at the service manager level then the RSM notify the
fault handling information to the Fault Manager at application level. The whole
procedure takes about 350 seconds, if Wapee detected these faults and recovered them
using semantically Ontology, as shown in Fig. 6 (b).

These figures tell us that using fault recovery system, Wapee, increases service
availability and executes resource efficiently in ubiquitous computing environments.
It also shows us that the overhead ratio of middleware and application is kept in a
relatively stable level (16.16% using RSM, 24.68% using FM) regardless of the
variation of resource environment and service configurations. Our experiment
validates the practicability and soundness of Wapee. The overhead of middleware is
kept in a small ratio with respect to the overall system cost.

Fig. 5. Our test scenario: If fault occurs during using ‘Advance Searching’ application, we can
overcome the fault using RSM and FM. If fault is classified that cannot be resolved at the
runtime service manager level. To overcome such situation, we extend the fault handling
mechanism to the application level, Fault Manager, such that the application can be
reconfigured to utilize an alternative service that provides the same or similar functionality as
the service that caused the fault. Its case is alterative service, ‘Simple Searching’.

(a)

(b)

Fig. 6. Experiment results

6 Conclusion & Future Works

Wapee, a fault-tolerant semantic middleware, executes likely faulty applications
successfully with semantically meaningful service and fault ontology in ubiquitous

computing environments. When a fault is found in runtime execution, Runtime
Service Management (RSM) autonomically identifies the faults and decides if the
fault might be resolved in runtime level or not. For resolvable faults in runtime, RSM
configures Application Deployment Description again to obtain alternative resources
for the application. Otherwise, Fault Management reconstructs alternative Application
Description Graph (ADG) with the help of the semantics of services and faults
ontology; and informs the ADG for new deployment of the application autonomically.
In addition, Wapee client, one of other strengths of Wapee, provides easy-of-use user
interface for application construction, runtime execution, real-time monitoring and
visualization of results.

For future work in Wapee, we are planning to implant an effective and autonomic
meta-scheduler in collaboration with various local schedulers. Scheduling will be
done with some consideration of application configuration information,
environmental condition, user profile, and other special requirement such as fault
tolerance policies to improve the quality of an application and resource utilization.

References

1. I. Foster. C. Kesselman, S. Tuecke. “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations” International J. Supercomputer Applications, 2001.

2. CORBA Fault http://www.omg.org/cgi-bin/apps/doc?formal/01-09-29.pdf
3. Zbigniew Kalbarczyk,Ravishankar K Iyer, Long Wang," Application Fault Tolerance with

Armor Middleware" Internet Computing, March/April 2005 (Vol 9, No 2) pp 28-37
4. Satish Tadepalli, Calvin Ribbens, Srinid Varadarahan "GEMS: A Job Management System

for Fault Tolerant Grid Computing", High Peformance Computing Symposium, 2004
5. Matthew L Massie, Brent N Chun, David E Culler,"The Ganglia Distributed Monitoring

System: Design, Implementation, and Experience",Parallel Computing, Vol 30, Issue 7,
July 2004

6. Y. Hainning, E. Letha, “Towards a semantic-based approach for software reusable
component classification and Retrieval”, In Proceedings of the 42nd annual Southeast
regional conference, 110-115, 2004

7. Globus Project, http://www.globus.org/
8. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke, "Condor-G: A

Computation Management Agent for Multi-Institutional Grids", Proceedings of the Tenth
IEEE Symposium on High Performance Distributed Computing (HPDC10) San Francisco,
California, August 7-9, 2001

9. Condor DAGMan http://www.cs.wisc.edu/condor/dagman/
10. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman "Grid Information Services for

Distributed Resource Sharing", Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10), IEEE Press, August 2001

11. M. Weiser, "The computer for the 21st Century." Scientific American, Vol. 265, No. 3, pp.
94-104, September, 1991

