
5GaaS: DLT and Smart Contract-Based Network
Slice Management in a Decentralized Marketplace

Kurdman Rasol∗, Alfonso Egio∗, Miguel Catalan-Cid∗, Leonardo Lossi†, Hélio Simeão‡, Shuaib Siddiqui∗
∗i2CAT Foundation, Spain. {kurdman.rasol, alfonso.egio, miguel.catalan, shuaib.siddiqui}@i2cat.net

†Nextworks, Italy. l.lossi@nextworks.it
‡Ubiwhere, Portugal. hsimeao@ubiwhere.com

Abstract—The proper orchestration of end-to-end network
slices demands dynamic and meticulous resource management
while addressing the complexities of multi-tenancy and multi-
service scenarios. In this context, integrating network orchestra-
tors with distributed ledger technologies has gained significant
attention for its potential to implement decentralized finance
marketplaces and service-level agreements using smart con-
tracts. This approach can support the evolution of business
models beyond traditional network-sharing agreements, such
as crowdfunding. To this end, we propose the 5G-as-a-Service
(5GaaS) system architecture, which leverages distributed ledger
technologies and smart contracts to orchestrate and optimize
network slicing, enabling ubiquitous computing and connectivity
in 5G networks. We evaluated the feasibility of this system across
various Ethereum testnets, demonstrating the cost-effectiveness,
scalability, and minimal latency of the 5GaaS system, making it
suitable for seamless integration into existing telecommunications
frameworks.

Keywords—DLT; Network Slicing; Smart Contracts

I. INTRODUCTION

The landscape for Mobile Network Operators (MNOs) is

undergoing a significant transformation. As MNOs transition

from non-standalone (NSA) to standalone (SA) 5G deploy-

ments, a crucial shift takes place, fueled by softwarisation

and virtualization paradigms. The adoption of 5G SA will

unlock advanced network slicing functionalities, which can

revolutionize MNOs’ capabilities by allowing the creation of

multiple virtual networks on the same physical infrastructure

and adapted to specific service requirements.

Network slicing will be key for adopting network sharing

and multi-tenancy [1]. The worldwide expansion of 5G net-

works is expected to prompt operators to deploy small cell in-

frastructure on a massive scale, which in turn requires finding

suitable urban spaces with both backhaul and energy avail-

ability. Therefore, network sharing is becoming increasingly

necessary to facilitate large-scale commercial deployments.

These developments are largely based on a service-oriented

architecture for managing the life cycle of slices.

In these scenarios, the motivation for exploring the applica-

tion of blockchain technology in network slicing management

and orchestration has grown [2]. One notable avenue involves

the integration of blockchain technology into platforms with

the aim of streamlining accounting processes. To this end,

the 5G-as-a-Service (5GaaS) project proposes a novel concept

that empowers MNOs and service providers to offer highly

differentiated services to vertical industries through network

slicing. The main challenge involves integrating dynamic

finance and accounting processes for digital assets into an

already existing and complex network service orchestration

layer. The goal is to achieve this in a minimally disruptive

way through asynchronous workflows that support end-to-end

real-time dynamic operations in an open and decentralized

marketplace environment.

The remainder of this paper is structured as follows. Section

II presents the related work on the network slicing concept

and the applicability of blockchain technology in the 5G

marketplace using smart contracts. Section III introduces the

architecture necessary to support the 5GaaS system. Section

IV covers the integration of the Slice Manager and DLT

using a Smart Contract System, while Section V describes its

application to a crowdfunding scenario. Section VI evaluates

the cost of adopting the solution. Finally, Section VII expounds

conclusions and future work.

II. RELATED WORK

Collaboration among multiple stakeholders in a multi-

domain and multi-tenancy business model has been identified

as advantageous in the context of 5G service deployment and

operation [3]. In the context of 6G, multi-tenancy will be also

a key feature to address sustainability through cost-effective

infrastructure and services [4]. In pursuit of a neutral and

decentralized billing model, the natural choice leads to the

utilization of DLT technologies, which offer trust and security

to create a safe environment for resource negotiation. DLT

features such as consensus and immutability can be exploited

through a decentralized marketplace to create an economic

platform for service providers to exchange services, virtual

network functions (VNFs), or resources.

With the help of blockchain technology, the full potential

of network slicing can be extended from a single domain

to a global scale in a seamless and automated way [5]. By

using smart contracts to enforce Service Level Agreements

(SLAs), the reliability of the offered global services can be

significantly improved. Furthermore, integrated pay-as-you-go

charging can be implemented using blockchain technology [6].

Authors in [7] introduced the Slice Leasing Ledger, where

each involved stakeholder (consumer or provider) possesses

a unique digital key for signing and verifying transactions.

The goal of this approach is to facilitate verifiable transactions

for charging, billing, and SLA agreements between consumers

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP



5GaaS User Interface

API Controller

NEST Catalogue 
Repository

Sm
art Contract 

Log System

NFVO Client RAN Controller ClientVIM Client

Management Layer

5G Core

RAN inv i/f

CU near-RT RICRU

RAN OAM i/f Non-RT RIC i/fRAN NSSMF i/f

O1 i/f A1 i/f

Offer Catalogue i/f

Vertical Service Lifecycle 
Engine

Vertical Service 
Blueprint Catalogue i/f

NSMF Slice Manager Driver

Sm
art Contract System

 event 
Notification i/f

Offer Catalogue Service

Service to Slice 
Translator

Vertical Service Blueprint 
Repository

Extended VSMF
Vertical Slicer

NSMF
Slice Manager

Ethereum
 Virtual M

achine RPC

EVM
 Client

Sm
art 

Contract 
M

anager
Event 

Listeners

EVM
 Client

Sm
art 

Contract 
M

anager
Event 

Listeners

EVM
 Client

Sm
art 

Contract 
M

anager
Event 

Listeners

Smart 
Contract 

System Pool 
Shared DB

Smart Contract 
System

RAN 
Controller

dRAX
DU

OSM

Apps

VIM

Fig. 1: Modular architecture of the 5GaaS framework

and providers. Furthermore, leveraging Blockchain technology

streamlines the process of service creation, saving time and

enabling more dynamic operations. However, it’s worth noting

that no implementation or performance analysis has been

provided for this concept.

The system described in [8] is based on the Hyperledger

blockchain to support roaming bill automation between dif-

ferent operators. Since Hyperledger is a permissioned net-

work, it requires some centralized governance from the start,

allowing it to strictly control nodes and smart contracts in

a closed environment. Therefore, it cannot be considered a

fully decentralized solution. Authors in [9] delve into the

application of Ethereum smart contracts related to 5G NFV

infrastructure, facilitating interactions between consumers and

providers. Notably, the transactions are directed towards the

primary blockchain, eschewing a peer-to-peer workflow in

favor of optimizing performance and scalability. However, the

evaluation doesn’t include a real integration with a MANO

framework neither with a slice management system.

To this end, this paper presents 5GaaS, a blockchain-

based decentralized marketplace for 5G network slicing, which

centers around the adoption of a Slice Manager as the central

orchestration layer. The 5GaaS marketplace connects supply

and demand in a single digital marketplace, simplifying the

trade of assets and services, using the programmability of

smart contracts.

III. 5GAAS DESIGN

The 5GaaS platform is composed of several components,

each with its own distinctive function and objective. In this

section, we describe each component and how they interact

within the 5GaaS platform, which is depicted in Figure 1.

The 5GaaS User Interface (UI) is the gateway for service

providers and consumers in the 5G-as-a-Service marketplace.

It features Ethereum wallet integration for secure user au-

thentication. Users register and log in using Ethereum wallets

via MetaMask web browser extension, ensuring a safe and

streamlined experience. The UI collects and transmits user

information and facilitates offer creation and purchase. Service

providers can create offers, and users can easily access and

purchase them through the UI.

The 5GaaS UI interacts with the Vertical Slicer (VS)[10],

which constitutes a fundamental element within the manage-

ment and orchestration (MANO) components of the 5GaaS

platform. The primary objective is to bridge the gap between

the specialized needs of verticals, focusing on business and

service-level requirements, and the challenges faced by service

providers when interacting with MNOs to automate the setup,

coordination, and configuration of 5G networks to fulfill these

demands. The VS facilitates browsing, customization, and

purchase of vertical service offers (VSO) while shielding users

from the underlying complexities of the 5GaaS MANO stack.

The Slice Manager (SM) is responsible for overseeing

the provisioning and lifecycle management of Network Slice

Instances within the virtualization infrastructure. Additionally,

it is responsible for establishing communication with the

Smart Contract System (SCS) for deploying the corresponding

Smart Contracts. The SCS, in turn, notifies the VS when the

Smart Contracts are deployed, enabling the VSO Information

Model (IM) to be enriched with the requisite information for

accessing the VSO Smart Contracts.

The SM plays a central role, particularly in providing the

necessary logic for dynamically creating and managing slices,

each defined as a collection of logical network partitions

2024 20th International Conference on Network and Service Management (CNSM)



Fig. 2: Workflow between VS, SM and SCS comprising the different stakeholders’ blockchain interfacing agents

or segments combined with the network services deployed

on top of them [11]. The SM receives Vertical Slicer calls

concerning the slice parameters required to deploy a service

instance in accordance with the requirements of the issuer,

provisioning and managing various computational, software,

radio, and network resources.

First, the SM interfaces with Virtualized Infrastructure

Managers (VIMs) to allocate and oversee cloud and edge

computational resources, ensuring their optimal utilization in

the context of service deployment. Secondly, it integrates with

OSM which functions as a multi-VIM NFV management and

orchestration stack compliant with the ETSI NFV architecture.

Lastly, the SM integrates with the RAN Controller to align

the RAN configuration with the requirements of the services.

The RAN controller uses the NETCONF/O1 protocol to

manage the configuration of the RAN nodes, including radio

parameters and slice parameters.

Follows a description of the application of the 5GaaS plat-

form to network slicing by detailing the workflows involving

the Vertical Slicer, the Slicer Manager, and the RAN Controller

A. Vertical Slicer interactions

The 5GaaS MANO stack models a VSO as a Vertical

Service Instance (VSI) composed by a Network Slice Instance

built onto a NEST [12] and deployed over a virtual infras-

tructure managed by one or more VIMs. The Vertical Service

functions, characteristics, capabilities, and mobile connectivity

requirements are described on the VS by means of intents

called Vertical Service Blueprints (VSB), whose information

model is not defined by any standard. VSBs provides service-

related parameters to enable the mapping onto one or more

NESTs inside the SM catalogue defining the internal topology

of the vertical application components and the service profile

of the required network slice. This design allows the VS

to translate the service-level and business-level requirements

defined in the high-level service intent from the verticals to

the concrete characteristics of the mobile connectivity to be

offered by the operators according to a rule-based logic.

As illustrated in Figure 2, first, the MNO advertises through

the platform’s user interface an infrastructure suitable for

deploying 5G-related services and applications using the Slice

Manager. Then, a service provider can then select and con-

figure it according to the requirements of suitable vertical

application use cases. This involves creating a network slice

that can be utilized by a third party (the vertical customer) to

deploy their own application instances.

B. Slice Manager interactions

The Slice Manager holds responsibility for resource parti-

tioning at three distinct levels within the 5GaaS framework.

These levels encompass infrastructure, network slice, and

vertical service management. At the infrastructure level, the

SM receives slice requirements. It then creates and activates

the radio and computing virtualized infrastructure at the RAN,

Edge, and Data Center levels, while reserving resource chunks

and associating them with a specific end-to-end Slice ID. At

the network slice level, the SM deploys and configures the

5G Core network. At the vertical service level, third-party

actors can deploy a specific set of services published on

any segment of the 5GaaS marketplace. The SM configures

DNS and DHCP within a slice, making VNFs reachable

within the network slice. However, the SM delegates VNF

deployment, monitoring, scaling, and migration operations to

the corresponding orchestrator.

Within the workflow outlined Figure 2, the Slice Manager

contributes to a validated NEST catalog, offering customizable

parameters for networking and radio configurations to the

Vertical Slicer. Moreover, it actively manages the lifecycle

of NESTs by orchestrating their instantiation into service

slices. NEST providers gain the capability to automate billing

for NEST service instances on behalf of other stakeholders.

Importantly, the integration allows for a nuanced approach

2024 20th International Conference on Network and Service Management (CNSM)



to billing, enabling the separation of charges for distinct

components within the NEST template. For instance, billing

for radio infrastructure usage can occur separately from the

computational resources responsible for running the 5G Core,

catering to the needs of different stakeholders.

The versatility of the SM is showcased through its support

for multi-tenancy and its ability to handle diverse controllers

across different locations at a granular level. This versatility

extends to its role as the central integration point with the

Smart Contract System. Each user of the SM can deploy

their smart contract interfacing agent, enabling them to re-

ceive streaming messages regarding actions performed on

their resources and services orchestrated by this component.

Additional details on the integration of the SM and the SCS

will be provided in Section IV.

C. Resource Controllers interactions

Once received the request to deploy a slice, the SM interacts

with different resource controllers in order to initiate resource

reservation, configuration and activation. The main orchestra-

tion procedures involving the RAN and 5G Core deployment

and configuration, are described as follows:

• In the case of radio resources, the RAN Controller

receives a request specifying the 5G cells included in the

slice and the required configuration, which comprehends

parameters such as the PLMNID of the operator, the

S-NSSAI of the slice or the N2 configuration to reach

the AMF (e.g., AMF IP, port, and VLAN). The RAN

Controller then interacts with the CU-CP (i.e., setting

AMF configuration) and CU-UP (i.e., settting PLMN

and S-NSSAI identifiers) components associated with the

selected cells.

• In case it is specified in the slice description, the SM is

also able to interact with the VIM to deploy a 5G Core

instance configured according to the slice parameters. We

have implemented this through OpenStack and Open5GS,

an open-source implementation of the 5G Core. The SM

deploys all the required NFs and, mainly, configures

the AMF (N2 configuration, supported PLMNID, sup-

ported S-NSSAIs), the UPF (N3 configuration), the SMF

(supported S-NSSAIs), and the NSSMF (supported S-

NSSAIs). Additionally, the Slice Manager may configure

the Open5GS UE database with an initial list of allowed

IMSIs and Data Network Names (DNNs). This allows the

automated deployment of a end-to-end 5G slice ready to

be used by the verticals.

Additionally, in case an application or service is included in

the slice in the form of an NFV, the Slice Manager is able to

interact with the NFVO and the VIM, respectively, OSM and

Openstack, to deploy the application in the specified compute

resources and connect it to the data plane of the deployed RAN

slice (i.e., to the network connected to the N6 interface).

IV. INTEGRATION WITH DLTS AND SCS

This section delves into the integration of the 5GaaS plat-

form with DLTs and Smart Contract Systems. It explores the

use of Apache Kafka for asynchronous integration, alongside

the architecture of independent agents. Additionally, it details

the implementation of state channels for payment processing,

along with the importance of event tracking and visualization

for transaction monitoring. Note that 5G offering parties could

easily integrate their own permissioned blockchain network

with 5GaaS by just changing a line in the configuration file

and with the only requirement of supporting Ethereum Virtual

Machine-like smart contracts. We selected Ethereum due to

its flexibility to choose between public and own-deployed

networks.

A. API Choice and Operation Mapping with Apache Kafka

Slice Manager operations are offered through a synchronous

REST API. On the other hand, many DLT technologies,

especially the one targeted in this work, a Ethereum-like

blockchain, rely on RPC-kind (remote procedure command)

APIs. Since blockchain operations often exceed the duration

of typical orchestration tasks handled by the Slice Manager,

taking in some cases several minutes, these APIs feature

an asynchronous nature. To further analyze the relationship

between these two kinds of APIs, special attention has been

given to the types of actions being mapped between the slice

manager and the DLT, including but not limited to:

• Billing smart contract deployment according to infras-

tructure registration on the marketplace.

• Payment channel opening and closing, accounting for

parts of a slice between infrastructure owners, service

providers, and vertical use case customers.

• SLA incident reporting on the billing smart contract in

case there’s a defined penalty.

Accordingly, an asynchronous integration between the Slice

Manager and the different DLT/Smart contract operations has

been implemented to avoid additional friction between the

slicing orchestration workflows and the DLT consolidation

operations. To achieve this integration in an asynchronous

operation mode, Apache Kafka has been used. The mechanics

of the integration mainly rely on adding to the Slice Manager

a logging system able to broadcast messages about operations

performed by each of the users through Apache Kafka streams

classified under relevant topics.

For instance, whenever a user registers a radio infrastruc-

ture, such as some number of 5G cells set up under a certain

topology, the SM will broadcast a message regarding that event

through a topic labeled as RAN infrastructure. This will be

considered by the Smart Contract System developed to support

this work, and accordingly, it will deploy a smart contract on

behalf of the user who owns the infrastructure. Eventually,

when a service provider requires using this infrastructure to

deploy a service, the Smart Contract System middleware will

transact with the specific smart contract to initiate a payment

channel opening transaction in the DLT.

B. Internal Architecture of Independent Agents

Taking as a starting point the mentioned integration through

the Apache Kafka message streaming system, we consid-

2024 20th International Conference on Network and Service Management (CNSM)



ered the ability to deploy multiple agents belonging to each

stakeholder without the need for a central authority. These

agents, which can be distributed among different and indepen-

dent computational infrastructures (e.g., on private or public

clouds), allow users to hold their private keys in their own

custody and perform automated operations without the need

to interact with a graphical user interface whenever a workflow

requires a signature. Since the system relies on a pool of agent

instances (one for each stakeholder) that can be independently

hosted in a distributed manner, it horizontally scales by design

on the number of users; each agent can operate independently

as a Blockchain interfacing agent and also between each other

in peer to peer protocols avoiding bottlenecks. In addition,

having the ability to deploy these agents on stakeholders’ own

controlled infrastructure, guarantees that the private keys can

be kept without the need for a central service that may imply

risks as a single point of failure.

The mentioned agents consist of a software artifact that ac-

cepts configuration parameters, including the user’s blockchain

private key and their own ID recognized in the SM, among

other assets like smart contract templates, parameters regard-

ing payment deviation thresholds, SLA policies, etc. Internally,

those agents comprise an event listener able to read the Apache

Kafka streaming system and a smart contract manager able

to perform smart contract deployment and automate smart

contract transaction operations. Any of the stakeholder’s agent

has access to the SLA related events and designated stake-

holders acting as referees could trigger penalties and closing

conditions of the payment smart contracts in case their agent

intercepts a SLA breach. To support that kind of operations,

each agent contains an Ethereum Virtual Machine client that

can be connected directly to an Ethereum node of any EVM

compliant network.

C. State Channels for Payment Processing

Regarding blockchain trade-offs, which could impact the

latency and/or friction of different operations like smart con-

tract deployment times or transaction fees, the considered

approach has consisted of using a state channel paradigm [13]

regarding the support of billing or crowdfunding operations.

The main idea behind state channels relies on a workflow

that involves writing an entry in the smart contract deployed

on the blockchain. This entry can be regarded as a state

channel containing the digital signatures of the agents involved

within the pool of instances connected to Apache Kafka.

Such a state channel serves as an anchoring point for billing

and SLA incident monitoring workflows. Once the entry is

written, each participating agent can initiate peer-to-peer off-

chain transactions. These transactions will ultimately conclude

with a second operation, corresponding to the closure of the

state channel, in accordance with the withdrawal conditions

specified in the smart contract. This closure is executed

through a final blockchain transaction.

Once these initial transactions take place in the main

blockchain through specific smart contract procedure callings,

the stakeholders’ agents will hold a protocol exchanging

Fig. 3: SCS Agent: Detailed Interaction Diagram

messages through a common database that would be signed

accordingly. Each of these messages contains an incremental

payment commitment according to the billing conditions that

can be anchored in the blockchain hosted smart contract at any

time. For example, whenever a service operation reaches its

end of life, the agent corresponding to the infrastructure owner

supporting the service would trigger the payment channel

closing method of the corresponding smart contract triggering

the corresponding value transfer between both accounts.

D. Event Tracking and Visualization

In addition to the integration of the SM through the

Apache Kafka system, various blockchain interfacing agents

will generate notifications for each consolidated transaction

on the blockchain. These transactions include smart contract

deployment and disabling, as well as state channel opening and

closing. These notifications will be managed through an event

tracking Vertical Slicer endpoint, providing visibility into the

smart contract status for proper UI visualization.

Figure 3 illustrates an exemplar workflow involving the SCS

of two distinct instances: a Service Provider Agent and a

Vertical Costumer Agent.

1) A message is streamed from the slice broker, conveying

the registration of a new infrastructure stack.

2) This message undergoes processing by the provider’s

instance, triggering the deployment of a smart contract

through the EVM client (steps 3 and 4).

3) Subsequently, a customer deploys a service on a slice

created over the infrastructure, and the corresponding

message is captured by the customer’s instance (step 5).

4) Then, the customer’s instance initiates the accounting

process by opening a payment channel on the previously

deployed smart contract (steps 6, 7, and 8).

5) The event of channel opening is monitored by the

provider’s instance, prompting the start of an execution

thread that awaits payment validation (steps 9 and 10).

2024 20th International Conference on Network and Service Management (CNSM)



Fig. 4: 5GaaS Platform sample workflow regarding crowdfunding and billing processes (blue background corresponds to the
crowdfunding part of the workflow and yellowish one to the billing subprocess)

.

6) Following the channel opening, the customer’s instance

initiates the signing process (step 11) and transmits ap-

propriately signed off-chain payments through a shared

database (step 12).

7) These payments are then subject to validation by the

provider’s instance accounting modules (step 13).

V. APPLICATION TO CROWDFUNDING SCENARIOS

In addition to the billing scenario discussed in the previous

section, we explored another use case involving the support of

crowdfunding workflows. Recognizing that resource sharing

is a fundamental aspect of slicing technology, it became

imperative to facilitate a scenario where multiple interested

stakeholders could contribute to the funding of infrastructure

deployment. This includes accessing a decentralized finance

marketplace tailored for 5G resources. The proposed approach

in this work revolves around a crowdfunding smart contract. In

this setup, a stakeholder, such as a mobile network operator,

can register a commitment to invest in and deploy specific

infrastructure based on the interest of potential customers look-

ing to fulfill their business requirements by slicing and offering

portions of the infrastructure as services or applications for

their own customers.
The workflow for this scenario illustrated in Figure 4 that

also includes previously described billing workflow; it involves

the crowdfunding stakeholder deploying a dedicated smart

contract linked to a hashed human-readable document. This

document outlines conditions such as the features of the yet-to-

be-deployed infrastructure, SLAs, deployment time deadlines,

pricing conditions, etc. Once the crowdfunding initiative is

consolidated in the blockchain, any interested stakeholder can

lock funds as a commitment to subscribe to resource consump-

tion. When the funds locked by interested stakeholders surpass

a contract-defined threshold, the crowdfunding initiator is

guaranteed to deploy the infrastructure and unlock the funds

into a billing smart contract, similar to the one described in the

previous section, initiating the payment processes seamlessly

and automatically.

In the event that the infrastructure isn’t deployed because

the crowdfunding stakeholder fails to fulfill the initial com-

mitment, the smart contract provides a mechanism to recover

the locked funds for each interested party, along with ac-

cessing a pre-provisioned guarantee escrow secured by the

crowdfunding campaign initiator as compensation for the loss

of liquidity. Similar to the billing smart contract, this crowd-

funding approach also supports cascading behavior, enabling

seamless and automated decentralized finance operations in

intricate scenarios, particularly in current 5G markets. This

ensures trust and transparency among multiple stakeholders.

2024 20th International Conference on Network and Service Management (CNSM)



VI. GAS COSTS, DEPLOYMENT AND TYPICAL

TRANSACTION CONFIRMATION TIMES

In Ethereum, gas is the unit used to measure the amount of

computational effort required to execute operations, such as

transactions and smart contract deployments. Each operation in

Ethereum consumes a specific amount of gas, and users must

pay in Ether (ETH), the native cryptocurrency of Ethereum.

Computationally intensive operations require more gas, lead-

ing to higher costs. The practicality of any smart contract-

based system depends on computational deployment costs,

operational expenses, and confirmation times. Therefore, we

considered these metrics to assess the feasibility of applying

5GaaS smart contract implementation in real-world scenarios.

The deployment times and gas units usage for typical trans-

actions using the smart contracts in this study were measured

across 200 runs on various testnets, with all values showing

less than a 5% deviation. The results are presented in Table

I. Time estimations were measured over the Goerli testnet,

and gas units evaluation was performed using the Gas Usage

Analytics for Hardhat tool1.

Contract Dep. time Dep. Gas Tx time Tx Gas
PaymentChannel 90 s 2.8e6 45 s 7.5e4
Crowdfunding 95 s 1.5e6 67 s 8.1e4

TABLE I: Average Smart Contract Deployment Times and Gas

Usage Across 200 Transactions with <5% Deviation

The metrics indicate that the 5GaaS system is well-suited for

widespread adoption by any telecommunications stakeholder

consortium. It offers minimal friction, with only marginal costs

(most expensive operation at current gas costs are of the order

of units of USDs) and negligible latency impacting business

operations. This suggests that the system can seamlessly inte-

grate into existing frameworks, providing a scalable solution

with efficient performance and cost-effectiveness for industry-

wide deployment.

VII. CONCLUSIONS

The application of blockchain and smart contracts in net-

work slice management offers a transformative approach for

the secure, transparent, and efficient handling of transactions

and interactions between different stakeholders in the 5G

network ecosystem. 5GaaS decentralized marketplace is built

on top of innovative solutions which facilitate and automate the

composition, offering, billing and deployment of E2E network

slices. The proposed framework relies on the integration a pool

of user agents that scale horizontally and have automation

capabilities to mirror hierarchically complex network slices

and service deployment scenarios into smart contract business

rules. Additionally, the smart contracts used implement state

channels to ensure scalability and peer-to-peer operational

capabilities. These workflows could bridge the gap, especially

in 5G deployment and adoption, where many private and

public companies and entities can benefit from cooperation in

1https://github.com/cgewecke/hardhat-gas-reporter

a frictionless marketplace. The results of this study, including

the evaluation of gas costs, deployment times, and transaction

confirmation times, indicate that 5GaaS is well-suited for

adoption by telecommunications stakeholders, with minimal

friction and negligible latency affecting business operations.

Future work includes the application of AI/ML-based strate-

gies to further automate and optimize the selection and man-

agement of slice resources. Additionally, the smart contracts

developed and tested so far only consider the option of

executing value transfers in the native currency of the targeted

Ethereum Virtual Machine (ETH for Ethereum and MATIC for

Polygon). To mitigate the volatility associated with exchange

values and ensure alignment with business requirements, an

extension of these smart contracts to handle specific utility

tokens and/or stablecoin tokens should be explored as well.

ACKNOWLEDGMENT

Funding for this research has been provided by the European

Union’s (EU) Horizon Europe research and innovation pro-

gramme XGain (Grant Agreement Number 101060294). This

work was also supported by the Spanish Ministry of Economic

Affairs and Digital Transformation, along with the European

Union – NextGenerationEU, under the framework of the

Recovery, Transformation, and Resilience Plan (PRTR) (Call

UNICO I+D 5G 2021, ref. numbers TSI-063000-2021-12 –

6GENABLERS-DLT and TSI-063000-2021-15 – 6GSMART-

EZ).

REFERENCES

[1] M. Catalan-Cid and et al., “i2Slicer: Enabling Flexible and Automated
Orchestration of 5G SA End-to-End Network Slices,” in 2023 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2023, pp. 159–162.

[2] F. Javed and et al., “Distributed ledger technologies for network slicing:
A survey,” IEEE Access, vol. PP, pp. 1–1, 2022.

[3] A. Fernández-Fernández and et al., “Unlocking the path towards in-
telligent telecom marketplaces for beyond 5g and 6g networks,” IEEE
Communications Magazine, vol. PP, pp. 1–7, 03 2023.

[4] Hexa-X-II, “ D3.1: Environmental and social view on 6G,” Tech. Rep.,
2023.

[5] S. Bao and et al, “Blockchain for network slicing in 5g and beyond:
Survey and challenges,” Journal of Communications and Information
Networks, vol. 7, no. 4, pp. 349–359, 2022.

[6] N. Hamdi and et al., “A survey on sla management using blockchain
based smart contracts,” in Intelligent Systems Design and Applications.
Cham: Springer International Publishing, 2022, pp. 1425–1433.

[7] J. Backman and et al., “Blockchain network slice broker in 5g: Slice
leasing in factory of the future use case,” in 2017 Internet of Things
Business Models, Users, and Networks, 2017, pp. 1–8.

[8] B. Mafakheri and et al., “Smart contracts in the 5g roaming architecture:
The fusion of blockchain with 5g networks,” IEEE Communications
Magazine, vol. 59, no. 3, pp. 77–83, 2021.

[9] F. Javed and J. Mangues-Bafalluy, “Blockchain-based 6g inter-provider
agreements: Auction vs. marketplace,” in GLOBECOM 2022-2022 IEEE
Global Communications Conference. IEEE, 2022, pp. 1271–1277.

[10] X. Li and et al., “5growth: An end-to-end service platform for automated
deployment and management of vertical services over 5g networks,”
IEEE Communications Magazine, vol. 59, no. 3, pp. 84–90, 2021.

[11] A. Papageorgiou and et al., “On 5g network slice modelling: Service-,
resource-, or deployment-driven?” Computer Communications, vol. 149,
pp. 232–240, 2020.

[12] GSMA, “Generic network slice template, version 7.0, ng.116,june 2022.”
https://www.gsma.com/, 2020.

[13] L. D. Negka and G. P. Spathoulas, “Blockchain state channels: A state
of the art,” IEEE Access, vol. 9, pp. 160 277–160 298, 2021.

2024 20th International Conference on Network and Service Management (CNSM)


