
Link2Link: A Robust Probabilistic Routing
Algorithm via Edge-centric Graph Reinforcement

Learning
Jingli Zhou, Yuqian Song*, Xinyuan Li, Wenli Zhou, Jun Liu

School of Artificial Intelligence, Beijing University of Post and Telecommunications, Beijing, China
Emails: {wayzer, songyuqian, xinyuanli, zwl, liujun}@bupt.edu.cn

Abstract—As network services become more complex, efficient
routing has become crucial for ensuring end-user satisfaction.
To address this challenge, researchers are increasingly turning
to routing algorithms that integrate Graph Neural Networks
(GNNs) with Deep Reinforcement Learning (DRL), leveraging
the natural graph structure of network topologies. However, a
significant challenge with existing algorithms is their inability to
generalize across different topologies without requiring retrain-
ing, a constraint that is impractical in real-world applications.
To overcome this limitation, we propose a novel GNN-DRL-
based routing algorithm, Link2Link, designed to decouple DRL-
learned knowledge from specific network topologies by focusing
on link-level features. Extensive experiments demonstrate that
Link2Link achieves robust performance across diverse topologies,
consistently outperforming OSPF without requiring retraining,
making it a scalable and adaptable solution for modern network
routing challenges.

Index Terms—Network Routing Algorithm, Deep Reinforce-
ment Learning, Graph Neural Network, Robustness

I. INTRODUCTION

The increasing network service demands, driven by the rise
of applications like 5G, IoT, and cloud computing, has intro-
duced significant challenges for traditional routing algorithms.
Algorithms such as shortest-path routing, which rely on static
topologies and pre-configured rules, struggle to cope with the
dynamic and unpredictable nature of modern networks. These
limitations become even more pronounced in large-scale,
heterogeneous environments. As a result, there is a growing
need for more advanced routing algorithms that can adapt to
fluctuating traffic patterns, ensure efficient resource utilization,
and scale effectively across diverse network conditions.

In recent years, deep reinforcement Learning (DRL) [1]
has gained considerable attention in network routing optimiza-
tion [2]–[4]. Due to its experience-driven real-time decision-
making capabilities, it excels in dynamic real-world networks.
Furthermore, researchers have increasingly incorporated Graph
Neural Networks (GNNs) [5] into DRL-based routing al-
gorithms to better capture the complex relationships within
network topologies inherent in network topologies, as these
are naturally abstracted as graphs [6]–[8].

Despite these advancements, existing algorithms still face
unresolved issues and challenges. For instance, the work in [6]

This work is partially supported by the National Natural Science Foundation
of China under the Grant No. 62371057. (*Corresponding author: Yuqian
Song)

concatenated GAT-aggregated node features and feeds them
into the policy network, resulting in a fixed actor network
dimension that cannot be generalized across different network
scales. To relieve the dependence on the global graph infor-
mation, GAPPO [8] proposes concatenating two node features
as link features, and the actor calculates the weight of each
link separately. In this way, the dimensions of the actor can
remain unchanged with varying network scales. However, this
approach struggles with the extraction of relevant information
from node features, as multiple link details are embedded
within the same node feature in an uncertain order. Conse-
quently, the actor implicitly learns the relationships between
nodes and links, making it dependent on the specific topology.

To overcome the limitations of existing approaches, we pro-
pose a novel DRL-based routing algorithm called Link2Link,
which shifts the focus from network nodes to links, recog-
nizing that the core of routing lies in selecting links for
packet transmission based on their states. Unlike node-based
features, which depend on the number or order of adjacent
links, the feature dimension for link states remains constant
across different topologies as each link is associated only with
itself and its two endpoints. This homogeneity endows the
Link2Link algorithm with significant robustness. Furthermore,
the network topology is fed into Graph Neural Networks
(GNNs) in a specialized manner, allowing the agent to learn
topology-independent link features that guide link weight
decisions. This method fosters the development of a more
robust and generalizable routing strategy that can be trained
once and efficiently applied across diverse network topologies.

Building on this approach, our contributions in this work
include:
• We extend the probabilistic routing protocol to accommo-

date more realistic scenarios involving multi-source and
multi-destination traffic.

• We introduce the Link2Link algorithm, which shifts the
focus entirely to links. Our approach leverages a fully
edge-centric GNN aggregation mechanism, enabling the
computation of link weights directly from link features
rather than relying on node-based characteristics.

• We conducted extensive experiments to validate the per-
formance of Link2Link, across various network topolo-
gies. We investigated the impact of different GNN layer
depths on the algorithm’s effectiveness. Notably, experi-

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP

mental results show that Link2Link performs well even
on previously unseen, larger topologies without the need
for retraining, underscoring its robustness and generaliz-
ability.

II. METHODS

A. System Model

The network is conceptualized as a directed graph G =
(N,E), where N and E represent finite sets of nodes and
links respectively. Packets are allowed to enter the network
from any nodes, be forwarded to adjacent nodes, and proceed
to any designated destination.

Each link e = (Ni, Nj), represents a directed edge in
graph G from node Ni to node Nj , with link capacity B(e),
propagation delay K(e). And in the sender node, there is a
queue buffer for each link with the capacity ”QueueSize”,
using a first-in-first-out (FIFO) discipline.

A packet p starts its journey from the source node S(p)
at time t0(p) with size L(p), targeting the destination node
D(p). On the way, it needs to queue up and pass through
several links, which form the path P (p). The queuing delay
is denoted as T”queue”(e, p). So the delay for one packet is
defined as

T (p) =
∑

e∈P (p)

[
Tqueue(e, p) +K(e) +

L(p)

B(e)

]
. (1)

The processing delay of the switch is disregarded, as it’s
negligible small as compared to the queuing delay.

In addition, a packet is considered successfully delivered
when reaches the destination within the survival time ”Sur-
viveTime” and the maximum hop count ”TTL”, marked as
Success(p) = 1. Otherwise, it’s considered lost, where
Success(p) = 0.

For convenience, the statistical interval is set as ”StepTime”.
As a result, the average delay of a statistical interval is

delayavg =

∑
p∈Delivered T (p)

|Delivered|
, (2)

where ”Delivered” denotes the set of packets sent within the
interval and finally reach their destination node, and abs(dot.c)
denotes the cardinality of the packet set. Besides, the loss rate
is defined as

loss = 1− |Delivered|
|All|

, (3)

where ”All” denotes the set of all packets sent in the statistical
interval.

The optimization objective of the network routing problem
is to determine the paths of packets to enhance better QoS
metrics, typically measured by delay and packet loss rate.
While the TTL-based packet loss design from the IP protocol
is retained, the main cause of packet loss is link congestion,
which causes queue overflow or data packet transmission
timeouts. According to (1), the delay is mainly affected by the
number of hops and queuing time. Therefore, the agent should
avoid congestion in the network and choose the possible paths
with fewer hops for the data packets.

B. Key Element Design

1) State: The state is a set of link features that can reflect
the information of the destination, flow, and link. We employ
link utilization as the main feature, as it reflects traffic demand,
the congestion and residual capacity of the link, as well as
the quality of the routing policies. The link utilization for
destination d and link e is calculated by

u(d, e) =

∑
p∈P (d,e) Lp

B(e)× StepTime
, (4)

where P (d, e) represents the packets pass through link e and
target destination d inside the statistical interval. The total link
utilization for all destinations is

uG(e) =
∑
d∈D

u(d, e). (5)

In addition, we employ the distance difference between the
nodes at both ends of the link to indicate the destination, which
is defined as

∆D(d, e) = D(v, d)−D(u, d) ∈ {−1, 0, 1}, (6)

where u and v represent the nodes at both ends of the link e
and D(v, d) is the distance from node Nv to node Nd in the
directed graph.

To sum up, the state for destination Nd and link e con-
sists of three parts: link utilization, total link utilization, and
destination indication. It’s defined as

sd,e = [uG(e), u(d, e)]‖onehot[∆D(d, e)], (7)

where X‖Y represents the concatenation of X and Y , and
”onehot” means one-hot encoding. The complete state contains
the link features for each link for each destination, as

S = {sd,e}D×E . (8)

2) Actions: The action space comprises weights for the
destination-differentiated probabilistic routing protocol, de-
fined as

A = WD×E = {wd,e | d ∈ D, e ∈ E}, (9)

where wd,e is the weight for each directed link e per destina-
tion d. What follows is the detailed design of the action.

The probabilistic routing protocol, where nodes make for-
warding decisions based on probabilities derived from weights,
provides a flexible and adaptive approach to the Network
Routing Problem. The probabilistic decisions at each node
enhance exploratory capabilities, enabling the development of
more sophisticated routing strategies. Moreover, its simplicity
facilitates implementation within switches in both simulation
environments and SDN.

In previous work [4], each directed links are assigned one
weight value, and switching nodes normalized these weights
into probabilities to select an output link for packet forwarding.
But it’s not enough in general scenarios with multiple desti-
nations. As illustrated in Fig. 1, considering a simple single-
line topology, if there are flows only head towards a single

2024 20th International Conference on Network and Service Management (CNSM)

A B C D

1.0->C

1.0->A

0.5->C,0.5->A

1.0->D

1.0->B

0.5->D,0.5->B

Flow A->D:

Flow D->A:

Both Flows:

Fig. 1. Link Weight in a Single-Line Topology with Varied Flow Demands.

destination, switches could assign a link weight of 1.0 in that
direction. However, in typical network communications with
bidirectional flows, switches B and C encounter challenges in
assigning appropriate link weights. For instance, setting equal
weights of 0.5 for both directions can lead to looping traffic
between B and C, resulting in increased delays and potential
link congestion.

To address this, we propose an extension that considers the
destination of the packets, where each destination is associated
with a set of weight values. For the network G = (N,E),
the total amount of destination-specific probabilistic routing
parameters is D × E, with D (D <= N) representing the
number of destinations. The extended process is mathemati-
cally expressed as

P (e | p) =
w(D(p), e)∑

e′∈O(Ni)
w(D(p), e′)

,∀e ∈ O(Ni), (10)

where P (e | p) denotes the probability of forwarding the
packet p, and w(D(p), e) is the weight of link e for the
destination D(p).

3) Reward: According to the optimization goal, we prior-
itize loss rate over latency, but they sometimes conflict, e.g.,
more hops can reduce congestion but increase delay. Consid-
ering realistic needs, we assume that packets will retransmit
if not successfully received after time ”timeout”, the utility
delay satisfies

delayu = delayavg · (1− loss)+(timeout+delayu) · loss. (11)

Extract ”delay”u to the left side, the expression of utility delay
is obtained as:

delayu = delayavg + timeout · loss/(1− loss). (12)

The reward is set to negative utility delay, defined as

r = −(delayavg + timeout · loss/(1− loss)). (13)

C. Link2Link Algorithm

The kernel of our proposed algorithm, as previously out-
lined, is to use link state to independently infer link weights,
mapping the relationship between link states and link weights:

sd,e −→ wd,e. (14)

In this case, instead of nodes, edges are used as the
aggregation object of GNNs, and the connection relationship
between links is input into GNN as edge index. Therefore, the
topological connection relationship is only in the input, and

Conv1A

Conv1B

Conv2A Conv3A

Conv2B Conv3B

Concatenate

Linear
Link
Weights

Link State

Edge Index

GNN Input

State

Depth 1 Depth 2 Depth 3

Concatenated
Link State

Fig. 2. Overview of the Link2Link Algorithm.

it does not need to be spliced once at the actor like GAPPO.
Therefore, GNN is completely topologically decoupled and
can be widely used in multiple topologies.

The model structure is illustrated in Fig. 2. The inputs
include the edge index and the link state matrix, where each
row corresponds to the state of a link. The edge index,
representing the connectivity of the links, is utilized by the
GNN convolution layer. The input undergoes multiple GNN
convolution layers, for aggregated link states. Finally, all link
states are concatenated and fed into a linear layer, which
independently processes each link to derive link weight from
features. Despite the apparent complexity of the linear layer’s
input, it is essentially a singular layer evaluating a single link’s
state and the output is one link weight value, emphasizing that
the essence of the Link2Link algorithm resides in the links
aggregation.

The goal of the links aggregation is to aggregate the features
of adjacent links. To implement this, all links are treated as
graph nodes (vertices) within the GNN, equating the graph’s
vertex count to the network’s link count. The vertices features
are represented as

Vertices Features =

Link State1

Link State2

...
Link StateE

E

. (15)

To matching features, the links’ head-to-tail connectivity is
considered the graph’s edges. As depicted in Fig. 3, links
a, b, d are incoming to the switching node A, with c as the
outgoing link, forming three edges a, b, d −→ c in the graph.

a

b

c

d e
f

a

b

d

e

c

f

Network Graph

Map

A
B

C

Fig. 3. Mapping Network Topology to a Graph Representation of Links.

2024 20th International Conference on Network and Service Management (CNSM)

Similarly, for node B, edges c, f −→ e exist, and for node C,
edges c −→ d, f are present. This example maps a network
topology of five nodes and six unidirectional links to a graph
of six vertices and seven edges.

In addition, GNN aggregation is directed, so two sets of
GNNs with different directions are employed, to learn the
link information in each direction, as Conv1A, Conv1B, etc in
Fig. 2. For instance, aggregation along the link direction can
ascertain the total traffic volume moving toward the target,
while aggregation in the reverse can gather insights into the
link’s remaining capacity.

D. Learning Algorithm

To train the model, the state-of-the-art Proximal Policy
Optimization (PPO) [9] is utilized. To adapt PPO for our
policy network, we introduce two additional components: a
probabilistic policy and a critic network.

We adopt the Beta distribution as our probabilistic strategy
to output link weights. Specifically, the linear layer’s output
in Fig. 2 is transformed into two parameters, α and β, of the
Beta distribution with the mapping softplus(·) + 1 to make
it unimodal. Then, the weight values are sampled from the
distribution, as depicted in Fig. 4. The Beta distribution is
a continuous probability distribution defined on the interval
[0, 1], parameterized by two positive shape parameters, α (al-
pha) and β (beta), which control the shape of the distribution.
The probability density function (PDF) of the Beta distribution
is

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, (16)

where B(α, β) is the Beta function, ensuring the total proba-
bility integrates to 1. The distribution is unimodal when α > 1
and β > 1.

For the critic network, a Multi-Layer Perceptron (MLP) is
employed, taking the concatenated link state matrix as input.
As shown in Fig. 4, we initially process each link features
separately with a linear layer to reduce the dimensionality to
a smaller number (we chose 8). Then the reduced link state
matrix is input into another MLP to estimate the state value.
Because the critic network is only used in the training phase,
it does not affect the robustness of the algorithm.

Model parameters are updated at fixed intervals using batch
gradient updates, where each optimization epoch utilizes the
advantages A(s, a) to approximate rewards. In this work, we
forego the discount factor of action value (γ = 0), as the
network routing problem involves infinite steps and the reward
already encapsulates the QoS metrics. The advantages are
computed using value function estimates:

A(st) = rt − VΦ(st), (17)

where rt is the reward and VΦ(st) is derived from the value
network.

The target policy parameters θ are refined by minimizing
the PPO objective function, comprising a policy loss cal(L)p,
a value function loss cal(L)v , and an entropy regularization
loss cal(L)e.

Critic

Linear

MLP MLP

Beta

Concatenated
Link State

Link
Weights

State Value

Actor

Fig. 4. Data Flow Diagram for Actor and Critic.

Let rt(theta) denotes the probability ratio as

rt(θ) =
πθ(at | st)
πθold(at | st)

, (18)

where theta represents the current policy parameters and
theta”old” the parameters prior to the update. The surrogate
objective is

Lp = Et [min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] , (19)

where epsilon is a hyper-parameter, the second term
clip(rt(θ), 1−ε, 1+ε), involving the clipping of the probability
ratio, modifies the surrogate objective by restricting the range
of the probability ratio.

The value function loss is a squared-error loss defined as

Lv = (VΦ(st)− rt)2, (20)

The entropy regularization loss is defined as

Le = Sπθ (st), (21)

where S denotes an entropy bonus.
Combining these terms, the combined objective is

Lp+v+e = c1Lp + c2Lv + c3Le, (22)

with c1, c2, c3 as coefficients.
In addition, to increase the speed of training, multiple

worker threads interact with the environment in parallel,
pooling their experiences into a shared buffer. Once the buffer
reaches a predefined threshold, all workers are paused, and the
agent parameters are updated.

TABLE I
PARAMETERS IN EXPERIMENTS

Parameter Value Notes
B(e),K(e) 1Mbps, 2ms
L(p) 512Byte Specified for the UDP content size
Convolution
Block

(32, 8× 4) Transformer Convolution. Input 32,
output 8, and 4 heads

Actor MLP (197, 2) For the ”d3” variant. Input 5+32×
3× 2 = 197, output 2

Critic MLP1 (197, 8) Dimensionality reduction for each
link

Critic MLP2 (E × 8, 64, 1) E is the number of links
c1, c2, c3 −1, 0.5, 0.001 The coefficients in the PPO objec-

tive
lr 0.0001 Learning Rate
Topology NSFNet 14 nodes and 20 bidirectional links
Train Steps 120,000 10 days, 24 hours, 5×100 steps per

hour
Updates 12,000 10 updates per 100 steps

2024 20th International Conference on Network and Service Management (CNSM)

Fig. 5. Temporal Analysis of Delay and Loss Rate.

III. PERFORMANCE EVALUATION

In this section, we present and analyze the experiment
results, aiming to answer the following questions,
• How does the performance of Link2Link compare to

other algorithms and ablation variants?
• How robust is Link2Link across different network sce-

narios?

A. Experiment Setup
We constructed the simulation environment based on OM-

Net++ 5.6.3 [10] with the Inet library 4.2.1 [11], and im-
plemented packet-level destination-differentiated probabilistic
routing and a monitoring module to collect the traffic matrix
as the state and QoS metrics as the reward. The agent is
implemented using PyTorch, with ZeroMQ [12] facilitating
interaction between the agent and the OMNet++ environment,
enabling sequential reception of states and rewards.

The hyperparameters are listed in TABLE I. All link capaci-
ties are set to 1Mbps with a delay of 2ms. Each node randomly
selects another node and generates UDP flows lasting for
uniformly distributed periods. After one flow is finished, the
node will select a new destination and generate a new flow.
The traffic rate varies periodically over days, encompassing
both low and high flow periods (refer to the light-blue area in
Fig. 5).

The transformer convolution [13] is chosen as the GNN
convolution layer. Each layer has a feature size of 32, an output
size of 8, and 4 heads. Therefore, for a 3-layer convolution
(”d3” variant), the input size for the linear layer is 197 and
the output size is 2. The MLP parameters in the critic network
are 197×8 and (E×8)×64×1, where E is the number of links,
with E is 40 for the NSFNet topology (See Fig. 6).

B. Result and Analysis
To evaluate the performance of the Link2Link algorithm,

we conducted training and testing under the NSFNet topology,

Fig. 6. The NSFNet Topology.

comparing it with OSPF, a PPO algorithm using traffic matrix
as state, and various ablation variants. A total of seven
algorithms were compared, including:
• OSPF: the default implementation of the Inet library in

the simulation environment OMNet++.
• PPO: a multi-layer perceptron with Proximal Policy Opti-

mization, simply extended [4], with the input state being
the traffic matrix for a specific destination defined as (23)
and the one-hot encoding of the current destination.

Smatrix = {u(d, e) | d ∈ D, e ∈ (N ×N)}, (23)

where e represents the link between two nodes, and if no
such link in the network, u(d, e) = 0.

• Link2Link d0,d1,d3,d5: variants of Link2Link with dif-
ferent number of GNN convolution layers. Among them,
”d0” is also an ablation variant that excludes GNN
convolution layers entirely, directly forwarding the input
state to the Actor’s linear layer.

• MLP: one ablation variant uses the same input state as
Link2Link, that is, the link feature matrix, but utilizes
a multi-layer perceptron instead of GNN convolution to
process the link state.

Agents, excluding OSPF, are first trained in NSFNet topol-
ogy, spanning a 10-day traffic cycle, totaling 120,000 steps
(500×24×5) and 1,200 parameter updates. The evaluation
lasts a 3-day traffic cycle with 7,200 steps (100×24×3).
The results are presented in Fig. 5, where the light-blue
area indicates network traffic levels and the flow rate refers

Fig. 7. Delay and Loss Rate Across Different Flow Rates.

2024 20th International Conference on Network and Service Management (CNSM)

(a) Random(seed=5) (b) Random(seed=9) (c) HarNet

Fig. 8. Evaluating the Robustness of Performance Across Various Topologies

to the total flow demand. Only three algorithms are shown
because some results are too close and will cause confusion.
As illustrated, our proposed Link2Link generally matched
OSPF in low traffic conditions and outperformed OSPF during
peak traffic periods both in delay and loss rate. At low flow
rates, both OSPF and Link2Link have delays under 20ms with
low flow rates, while the PPO algorithm works with no loss
but underperforms with a 30ms delay. At higher flow rates,
Link2Link’s average delay is only 100ms while OSPF’s is
300ms and PPO’s is around 700ms.

To better compare the performance of the algorithms in
different flow rates, we tested them under varying flow rates,
running 100 steps at each flow rate and repeating tests five
times. The results are shown in Fig. 7, where the shaded
area denotes the standard deviation from repeated experiments.
When the flow rate is less than 2Mbps, all loss rates are 0,
and the delay is around 20ms, while Link2Link maintains a
0.1s delay and 5% loss rate compared to OSPF’s 0.3s delay
and 10% loss at 5Mbps. This comparison more clearly shows
that our algorithm surpasses OSPF, while OSPF outperforms
PPO.

Moreover, comparing MLP with Link2Link (d1/d3/d5)
proved that GNNs can process link features better than us-
ing multi-layer perceptron, while comparing MLP with PPO
reveals that utilizing the link state design is more effective
than directly employing the traffic matrix and destination one-
hot encoding. Furthermore, the comparison of variants of
different layers (d0/d1/d3/d5) indicates that using local link
features alone (d0) is insufficient for solving routing problems,
introducing only one GNN convolutional layer (d1) signif-
icantly enhances performance, and deeper GNN convolution
layers (d3/d5) further improves performance, although the cost
of slightly increased computational overhead. Interestingly,
the variant with only one layer also performs well, which
implies that each node merely requires the exchange of status

information with its neighboring nodes, thereby fulfilling the
prerequisites for the algorithm’s distributed execution and
consequently augmenting deployment adaptability.

To assess the robustness of the Link2Link algorithm, we
utilized models trained under the NSFNet topology and
tested them across different topologies to simulate changes
in network topology, comparing the results with OSPF. Three
topologies were employed in total: two were randomly gen-
erated 14-node, 20-link topologies akin to NSFNet, and the
third was a larger topology, HarNet, with 20 nodes and
25 bidirectional links. For the random topologies, we used
the ”gnm random graph(14, 20, seed=seed)” function from
NetworkX [14], testing seeds from 0 to 9. After eliminating
disconnected graphs and those with hanging nodes, only seeds
5 and 9 met the criteria, hence their selection for use. In
this experiment, MLP and PPO agents were excluded due
to their fully connected layers, which process the entire
network’s features, requiring training specific to each topology
to optimize performance.

As presented in Fig. 8, the experimental results demonstrate
that the Link2Link algorithm is highly robust to topology
changes, and maintains superior performance over OSPF in all
topologies, whether of similar scale or larger. And Fig. 8(a,b)
shows that OSPF may perform badly in some flow rates with
random topology. In addition, Fig. 8(c) reveals that the 1-layer
(d1) GNN convolutional layer underperforms on larger topolo-
gies, whereas the 5-layer (d5) variant exhibits marginally better
performance than the 3-layer (d3) variant, indicating that the
number of layers need be increased when topology scale is
large. Besides, this indicates that a model trained on a smaller
topology can be seamlessly applied to a larger one without
the need for retraining, a significant advantage considering
the higher costs associated with simulating larger network
topologies.

2024 20th International Conference on Network and Service Management (CNSM)

IV. DISCUSSION

In this section, we delve into the scalability of the Link2Link
algorithm. Benefiting from link-level processing, Link2Link
has very strong scalability, including state representation,
different routing polices, and the inherent ability to extend
to multiple agents.

First, various network states can be readily modeled as
link states. For instance, the distance between nodes is more
straightforwardly represented as a link feature rather than a
node state, and an additional feature dimension could represent
the ratio to maximum link capacity if link capacities differ.
Device attributes like remaining battery power can also be
transformed into two link features, representing the remaining
power of the source node and the destination node. Flow
characteristics, such as QoS requirements that are indepen-
dent of nodes and links, can be incorporated as additional
features, processed by an MLP layer, and integrated into the
concatenated link state.

Moreover, the output actions can be repurposed for various
applications. For instance, link weights can serve as weight
parameters for OSPF or ECMP. In flow path selection routing
algorithms, the weights can function as parameters within a
weighted link graph, facilitating the generation of viable paths
through the random sampling of directed edge subsets, which
are then designated as routing paths for the current flow.

Furthermore, the agent in this study is conceptualized as a
single agent, which aggregates the entire network’s link states
in a central controller node and disseminates routing policies to
each switch node. However, according to the model structure,
each link is processed in parallel, which means that it can be
interpreted as a distributed-execution multi-agent system with
neighbor information exchange. In deployment, each agent
can be deployed locally at a switch node, requiring only the
associated link states to compute the weights of outgoing links,
where link states can be obtained through additional link state
exchanges. Besides, according to the robustness experiment,
we can train the agent in networks with smaller topologies
and deploy it to larger networks not need retaining.

V. CONCLUSION

In this paper, we extended the probabilistic routing model
to handle general scenarios involving multi-source and multi-
destination traffic. in addition, We presented Link2Link, a
novel DRL-based routing algorithm that focuses on link-
level decision-making to address the robustness and adapt-
ability challenges in modern dynamic networks. Extensive
experiments validate the algorithm’s superior performance and
robustness. Notably, Link2Link maintains strong performance
even on larger, unseen topologies without the need for re-
training. These results highlight the potential of Link2Link as
a highly effective and adaptable solution for next-generation
network routing challenges.

In Future work, we will focus on experimentally verifying
the algorithm’s scalability like flow-level routing, experiment-
ing with more topologies and traffic patterns, and optimizing

network routing with different QoS requirements and differ-
entiated links.

REFERENCES

[1] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau
et al., “An introduction to deep reinforcement learning,” Foundations
and Trends® in Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018.

[2] S. Kaviani, B. Ryu, E. Ahmed, K. Larson, A. Le, A. Yahja, and J. H.
Kim, “DeepCQ+: Robust and Scalable Routing with Multi-Agent Deep
Reinforcement Learning for Highly Dynamic Networks,” in MILCOM
2021 - 2021 IEEE Military Communications Conference (MILCOM),
Nov. 2021, pp. 31–36.

[3] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. S. da Fonseca, “DR-
SIR: A deep reinforcement learning approach for routing in software-
defined networking,” IEEE Transactions on Network and Service Man-
agement, vol. 19, no. 4, pp. 4807–4820, Dec. 2022.

[4] Y. Wang, Y. Xiao, Y. Song, J. Zhou, and J. Liu, “Deep reinforcement
learning based probabilistic cognitive routing: An empirical study with
OMNeT++ and P4,” in 2023 19th International Conference on Network
and Service Management (CNSM), Oct. 2023, pp. 1–7.

[5] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[6] X. Mai, Q. Fu, and Y. Chen, “Packet routing with graph attention multi-
agent reinforcement learning,” in 2021 IEEE Global Communications
Conference (GLOBECOM), Dec. 2021, pp. 1–6.

[7] C. Liu, P. Wu, M. Xu, Y. Yang, and N. Geng, “Scalable deep reinforce-
ment learning-based online routing for multi-type service requirements,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 8,
pp. 2337–2351, Aug. 2023.

[8] X. Li, Y. Xiao, S. Liu, X. Lu, F. Liu, W. Zhou, and J. Liu, “Gappo - a
graph attention reinforcement learning based robust routing algorithm,”
in 2023 IEEE 34th Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), 2023, pp. 1–7.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[10] A. Varga, “Omnet++,” in Modeling and tools for network simulation.
Springer, 2010, pp. 35–59.

[11] L. Mészáros, A. Varga, and M. Kirsche, “Inet framework,” Recent
Advances in Network Simulation: The OMNeT++ Environment and its
Ecosystem, pp. 55–106, 2019.

[12] P. Hintjens, ZeroMQ: messaging for many applications. ” O’Reilly
Media, Inc.”, 2013.

[13] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked
label prediction: Unified message passing model for semi-supervised
classification,” 2021.

[14] A. Hagberg, P. J. Swart, and D. A. Schult, “Exploring network structure,
dynamics, and function using networkx,” Los Alamos National Labora-
tory (LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

2024 20th International Conference on Network and Service Management (CNSM)

