
DTN-Core: Towards a Framework for Designing
and Operating Digital Twin Networks

Majd Latah
Informatics Department
University of Hamburg

Hamburg, Germany
majd.latah@uni-hamburg.de

Mathias Fischer
Informatics Department
University of Hamburg

Hamburg, Germany
mathias.fischer@uni-hamburg.de

Abstract—This work presents, DTN-Core, a flexible and ver-
ifiable approach to create a network of digital twin models.
The goal is to provide a generic design that supports location-
independency and heterogeneity of messaging protocols, data
formats, and data granularity. We also analyze data compatibility
issues that may arise when coupling digital twins. A combination
of data and behavioral coupling is used to represent each digital
twin. A Timed automata approach is used as a real-time model
that describes the behavior of the Digital Twin Network (DTN).
System properties are defined using Timed Computation Tree
Logic (TCTL) and the model is verified using an existing model-
checking tool UPPAAL.

Index Terms—Digital Twins, Digital Twin Networks

I. INTRODUCTION

A Digital Twin (DT) is a virtual representation of an existing
physical component [1]. A DT has to be updated by informa-
tion exchanged between the physical and virtual components
[2]. Digital twins can model complex systems and obtain
conceptual information through visualization and simulation,
where the difference between virtually generated and actual
physical information can be compared and consequently used
for better decision-making and operation enhancements [1].
DTs can transform simulations into digital replication that
reflects the actual state of the physical component [1]. For
example, a DT can be used to choose the optimal configuration
that reduces the energy consumption in manufacturing systems
through what-if simulations [3].

The Digital Twin Network (DTN) is a new concept intro-
duced in [4], where multiple physical objects and digital twins
can interact with each other using existing communication and
data processing technologies. DTN, for example, can be used
for modeling a complex system that requires collaboration
among different existing entities [4]. For instance, DTN can be
used to ensure resiliency and predict the future performance
of 6G networks [5].

For digital twins, modularity is required to support in-
teroperability and interchangeability [6]. In addition, DTs
may not exist on a single node and should not be fully
centralized [6]. Moreover, connected DTs are useful for cross-
domain interactions when DTs belong to different domains and
organizations [7]. For instance, when employed for optimizing
the management of smart city services [8].

The main contribution of this paper is that we propose a
generic and verifiable solution that allows DTs to be located
at distributed locations. The framework allows the utilization
of heterogeneous protocols with the ability to support different
data formats and granularities at different levels of data and
twin interactions (e.g., through functions and events).

II. PROBLEM STATEMENT

We consider the data coupling problem, which occurs when
two different twins with similar or different levels of data
granularity need to be connected. Due to the fact that digital
twins may have different levels of granularity, integration
issues may arise when these twins need to interact with each
other. Therefore, the data compatibility among DTs must be
verified beforehand.

Another problem is how we ensure that the proposed DTN
meets the requirements of the system, which implies that
the behavior of the DTN must be verified. To address this
problem, we consider a behavioral coupling at different levels
of twin interactions. We also focus on studying generic ways
for messaging between DTs, as well as the establishment of a
DTN based on existing standards.

The remainder of this paper is organized as follows. Section
3 discusses both requirements and related work. Section 4
presents our proposed framework (DTN-Core). Section 5
concludes the paper.

III. REQUIREMENTS AND RELATED WORK

A. Requirements

To design a framework to create DTNs, we need to define
the main requirements:

• Generic Design: The design should be applied to any DT
type (i.e., application-agnostic).

• Heterogeneous Protocols: The system should allow DTs
to utilize different messaging protocols and allow inter-
actions with both digital and physical twins.

• Heterogeneous Data Formats: The system should allow
DTs to utilize different data formats.

• Heterogeneous Granularity: the DTN should allow twins
with different granularities to communicate with each
other.

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP

• Location-independent: The system should allow local and
remote DTs to be part of the DTN.

• Verifiable: the DTN model should be verified to ensure
that it meets the requirements of the corresponding sys-
tem.

B. Related Work

Related work is divided between concepts and modeling [7],
[9], [10] and frameworks [11]–[15].

1) Concepts and Modeling: In [9], the authors introduced
a conceptual design for a network of DTs, which is called the
Digital Twin of a System (DTS). DTS represents a higher-level
entity responsible for managing digital twins. The connection
between DTS and digital twins is provided by a DTS2DT
interface. The suggested prototype relies on the Asset Admin-
istration Shell (AAS) [16] for the digital representation of the
digital twins and DTS.

A conceptual framework called Web of Digital Twins
(WoDT) was introduced in [7]. The WoDT framework mainly
targets cross-domain infrastructures and utilizes a semantic
model based on distributed knowledge graphs.

In [10], the authors propose to create a DTN of an SDN-
based network using knowledge graphs. The DTN manager
parses application templates and utilizes knowledge graphs to
create the DTN. The DTN application can request information
and return the results obtained from the corresponding DT.

2) Frameworks: In [11], the authors presented CoTwin, a
collaborative DT approach based on blockchain technology
for improving DT models. The use case is a complex Cyber-
Physical System (CPS) formed by highly connected cells of
5G and 6G networks. Smart contracts are used for storing
trained models.

In [12], the authors proposed CPS Twinning, a framework
for creating a virtualized network environment for testing and
simulating DTs, which are automatically created from spec-
ifications. This work supports emulated and simulated DTs,
where Mininet [17] is considered one of the core components
of this work. The framework provides two modes of operation
namely: replication and simulation. This work is designed
mainly for security use cases.

In [13], the authors suggested an Application-driven Digital
Twin Networking (ADTN) middleware for simplifying the
interaction among DTs using IP-based protocols. Network
resources are dynamically managed using Software-Defined
Networking (SDN). This work utilizes Sensor Measurement
Lists (SenML) as a unified data format.

In [14], the authors introduced OpenTwins, a framework
for developing compositional digital twins, which are created
from a combination of several digital twins. The system
consists of an integration of different open-source tools such
as Eclipse Ditto, Eclipse Hono, Grafana, InfluxDB, and Kafka-
ML. While these tools are well-known, this design may inherit
the limitations of the tools that are used to create the system.

Rail4Future [15] utilized FMI and SSP standards to create a
platform for digital twins of a digitalized railway system. The
authors used Jenkins pipelines along with a software repository

to run the simulation process. One limitation of this approach
is that it does not consider generic ways of supporting different
protocols and data formats.

Unlike the previous frameworks, our framework relies on a
generic approach that allows combining simulations and real
systems regardless of communication protocols, messaging
systems as well as data formats. We also ensure that the corre-
sponding twins are compatible. Furthermore, the behavior of
DTN is modeled and formally verified using model-checking
approaches. Table I shows a comparison between related work
and our proposed framework. From this table, it is clear that
many approaches do not consider the heterogeneity of data
formats and data granularity or the verifiability of the DTN.

TABLE I
A COMPARISON BETWEEN RELATED WORK

AND OUR PROPOSED FRAMEWORK

G
en

er
ic

D
es

ig
n

H
et

er
og

en
eo

us
Pr

ot
oc

ol
s

H
et

er
og

en
eo

us
Fo

rm
at

s

H
et

er
og

en
eo

us
G

ra
nu

la
ri

ty

L
oc

at
io

n-
in

de
pe

nd
en

t

V
er

ifi
ab

le

DTS [9] aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝
WoDT [7] aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝

DTN for SDN [10] aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝
CoTwin [11] aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝

CPS Twinning [12] aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝
ADTN [13] aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝

OpenTwins [14] aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝
Rail4Future [15] aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝

Our work aas⃝ aas⃝ aas⃝ aas⃝ aas⃝ aas⃝
aas⃝ Not Considered aas⃝ Partially aas⃝ Fully Considered

IV. PROPOSED FRAMEWORK

Our framework, DTN-Core, relies on a generic messaging
API along with a generic message parser/serializer. First, we
need to describe source and destination twins. The digital twin
that sends its outputs to another digital twin is called a source
digital twin. Whereas a digital twin that receives its inputs
from another digital twin is called a destination digital twin.
For each source DT in the network, each DT has to check
whether the corresponding destination DT is compatible or not.
The DT also utilizes granularity transformers for connecting
partially compatible twins. In DTN-Core, we propose a sep-
aration between execution and twin behaviors. A behavioral
function can be performed before or after twin execution, and
therefore such separation allows us to use the same execution
file even when the behavior of the DT is changed. We define
a behavioral model that describes the behavior of a given DT.
The main system components are shown in Fig. 1, where each
DT consists of the following components:

Generic Messaging API: We require a generic messaging
API to allow DTs to interact with other DTs using different
messaging systems. For example, a DT can receive messages
using MQTT and then send the results using Modbus.

2024 20th International Conference on Network and Service Management (CNSM)

Generic Messaging API

Digital Twin Architecture

Generic Parser/Serializer

Data Coupling

Description & Execution

Behavioral Coupling

Fig. 1. Main components in DTN-Core

Generic Parser/Serializer: For handling data with different
formats, we need a generic parser/serializer. The advantage
is that we do not require DTs to use a unified format. Each
message can be parsed and translated into different data types.

Description and Execution: A description file is used to
describe the main function provided by the DT, the corre-
sponding input/output variables, the behavioral model, and
the corresponding interface along with the main supported
protocols and data formats. In addition to the execution files
that are needed to run the corresponding DT. A combination of
Function Mockup Interface (FMI) [18] and System Structure
and Parameterization (SSP) [19] standards can be used for this
task, where SSP is used to provide the variable mapping.

Data Coupling: Each twin has a specific function that
requires input data from another DT. In our design, each twin
can interact with other DTs through functions and events.
A function-based interaction requires verifying the variable
mapping to ensure the data compatibility between the DTs.
Therefore, a data coupling algorithm is necessary for checking
the data compatibility of source and destination DTs. Creating
granularity transformations within an adapter twin is needed
for partially compatible twins (i.e., twins with different gran-
ularity levels) and also when interacting with other physical
components such as Physical Twins (PTs).

Behavioral Coupling: A behavioral model is required for
a representation of the behavior of a DT in DTN through
functions and events. This is critical for real-time execution
and representing the behavior of the DT. We choose the Timed
Automata (TA) method [20] for the modeling of the behavior
of DTs. To construct a DTN, we need to perform the following
steps:

Step 1: Create description and execution files.
Step 2: Verify that the twins are data compatible.
Step 3: Create granularity levels and the adapter twin.
Step 4: Create and verify the behavioral model.

Note that the granularity levels and the adapter twin are
not directly added to the DT since such information depends
on the use case and cannot be directly inferred by the DT.
The designer needs to add a file that contains a description of
granularity levels as well as the corresponding adapter twin if
the twins have different granularity levels.

Adapter TwinDT1

High
Granularity

Low
Granularity

Granularity Transformation

DT/PT

Fig. 2. Granularity transformation using the adapter twin

A. Data Coupling of Digital Twins

To achieve a successful twin coupling, we need to determine
whether the data of the corresponding twins are compatible
or not. Both source and destination twins have their inputs
and outputs described in the corresponding description and
execution file. For each variable, an additional attribute is
added to describe the granularity of different types of vari-
ables. Now we define two types of twin compatibility. Note
that when the digital twin provides two levels of granularity
of the same variable then it is considered a new variable in
the corresponding description and execution file.

Definition 1: Two twins are fully data compatible if and
only if the output variables of the source twin are from the
same type and granularity as the ones of the destination twin

Definition 2: Two twins are partially data compatible if and
only if the output variables of the source twin are from the
same type as the destination twin and the granularity level
of the source twin is higher than the granularity level of the
destination twin.

Based on the previous definitions, two twins are incom-
patible in two cases. The first case is when at least one
output variable of the source twin is from a different type
than the input variables of the destination twin or when the
granularity level of at least one output variable of the source
twin has a lower granularity level than all input variables of
the destination twin that are from the same type.

As an example of data coupling between two DTs, we
consider DT1 which performs network simulations and calcu-
lates future network utilization based on the current state, and
DT2 which aims to optimize the network utilization based on
the results of DT1. In this example, the output data of DT1

is used as an input for DT2, where DT1 is assumed to be
fully compatible with DT2. However, a DT can be partially
compatible with another DT/PT. In this case, an adapter-
twin is added as a granularity transformer that allows the
DT to interact with other DTs and their physical counterparts
(see Fig. 2). Algorithm 1 is used to determine whether
two twins are compatible or not. The algorithm verifies the
variable mapping by checking the type and granularity level
for each mapped variable pair. Fully compatible twins can be
coupled directly without additional effort. Whereas partially

2024 20th International Conference on Network and Service Management (CNSM)

compatible twins require additional (high-to-low) granularity
transformers. Algorithm 2 is used for coupling two DTs.

Algorithm 1: Verifying Variable Mapping (VVM)
Input: Mapped V ar Pairs, GM ;
/* GM is the granularity map */
/* T_Pairs is the set of transform

(partially compatible) pairs */
/* G_Match is the number of variables

with the same granularity level */
/* P_Compatible is the number of

partially compatible variables */
/* S_Out is the set of output

variables of the source twin */
1 T Pairs = {∅, ∅};
2 G Match = P Compatible = 0;
3 S Out = Out V ar(Mapped V ar Pairs);
4 foreach vi(src, dst) ∈ Mapped V ar Pairs do
5 if Type(vi(src)) == Type(vi(dst)) then
6 if Gran(GM, vi) == Gran(GM, vj) then
7 G Match++;
8 else if Gran(GM, vi) > Gran(GM, vj) then
9 T Pairs = T Pairs ∪ vi(src, dst);

P Compatible++;
10 else
11 continue;
12 end
13 end
14 if G Match == |S Out| then
15 return Fully Compatible;
16 else if G Match+ P Compatible == |S Out| then
17 return Parially Compatible, T Pairs;
18 else
19 return Not Compatible;

Algorithm 2: Data Coupling of Two DTs
Input: Mapped V ar Pairs, GM ;
/* GM is the granularity map */
/* D_In is the set of input variables

of the destination twin */
1 S Out = Out V ar(Mapped V ar Pairs);
2 D In = In V ar(Mapped V ar Pairs);
3 R, T Pairs = V VM(Mapped V ar Pairs,GM);
4 if R == Fully Compatible then
5 foreach V ariable vi ∈ S Out do
6 val = S Out(vi);
7 vj = Get Mapped V ar(vi);
8 D In(vj) = S In(vi);
9 end

10 else if R == Partially Compatible then
11 Adapter Twin(Mapped V ar Pairs,GM);
12 else
13 return Not Compatible;

Algorithm 2 is created on top of the Algorithm 1. First,
we need to ensure the data compatibility through the previous
algorithm. Then, we need to prepare the data for each mapped
variable pair. Depending on the granularity level, the data can
be transferred directly or it may need an additional granularity
transformation based on the adapter twin (see Algorithm 3).

Algorithm 3: Adapter Twin
Input: Mapped V ar Pairs, GM ;
/* GM is the granularity map */

1 S Out = Out V ar(Mapped V ar Pairs);
2 D In = In V ar(Mapped V ar Pairs);
3 R, T Pairs = V VM(Mapped V ar Pairs,GM);
4 if R ! = Not Compatible then
5 foreach V ariable vi ∈ S Out do
6 if vi ∈ T Pairs then
7 val = S Out(vi);
8 vj = Get Mapped V ar(vi);
9 G vi = Granularity(GM, vi);

10 G vj = Granularity(GM, vj);
11 D In(vj) = TF (val,G vi, G vj);
12 else
13 D In(vj) = S In(vi);
14 end
15 end
16 else
17 return Not Compatible;
18 end

B. Behavioral Coupling of the DTN
Modeling is useful for representing the behavior of DTN

and also for verifying the requirements of the system. To
model the DTN behavior, we consider Timed Automata (TA)
[20], which includes time-state transitions with time con-
straints based on finite automata combined with a finite set of
real-valued clocks [20]. This allows the system to be verified
based on real-time requirements [20]. Each DT is represented
using a separate TA, which is manually designed according to
the intended behavior of each DT (see Fig. 3).

TA Transitions: represent twin interactions using functions
and exchanged events. Each transition has a specific type.
The internal type represents an interaction with an internal
entity (e.g., a local DT or PT). The external type represents an
interaction with an external entity (e.g., an external DT or PT).
Additionally, each transition has a specific level (e.g., low-
level and high-level). Each external transition has a specific
entity which can be assigned as DT or PT. Each entity is
also associated with a specific identifier (ID). In addition,
each external transition is associated with a specific role. For
example, a DT that provides input data to another remote DT
can have a source (Src) role, whereas a DT that receives data
from another remote DT can have a destination (Dst) role. For
simplicity, when the twin has a destination role, we color the
transition that represents the corresponding external transition
with red color.

2024 20th International Conference on Network and Service Management (CNSM)

Start
Run

c1 < t1

Wait
c2 < t2

Stop

Type − Level
Internal − Low
Interaction1

c1 := 0

Internal − High
Interaction2

c1 == t1

Entity(ID) − Type − Level : Role
DT2 − Exteranl − Low : Src

Interaction3

c2 := 0

DT2 − Exteranl−
High : Dst

Interaction4

c2 == t2

Fig. 3. Representing a DT behavior using TA

TA Nodes: represent a state of the DT, where each node
has a specific type and level, which are determined based on
the type and level of the last transition leading to that node.

Definition 3: A node type is external (internal) if and only
if the type of the last transition leading to that node is external
(internal).

Definition 4: A node level is low (high) if and only if the
level of the last transition leading to that node is low (high).

Adding the colors to the TA nodes allows us to represent the
DT without explicitly indicating the type of transition. The red
ones are internal high-level nodes. The green ones are internal
low-level nodes. The blue ones are external high-level nodes.
The yellow ones are external low-level nodes.

Algorithm 4 shows our proposed behavioral coupling
model. The internal actions are applied directly to the local
DT, whereas the external transitions require interaction with
a remote DT based on a specific role. Therefore, the external
transitions need to be associated with a remote DT as well as
the corresponding role. As an example, we consider a simple
DTN that consists of two DTs, where DT1 and DT2 spend
5 and 10 seconds, respectively. DT2 depends on the output
of DT1. Fig. 4 shows how we can represent the DTN using

Algorithm 4: Behavioral Coupling of Two DTs
Input: LDT,RDT, TA, TTS
/* LDT: Local Digital Twin */
/* RDT: Remote Digital Twin */
/* TA: Timed Automata */
/* TTS: Total Time Steps */
/* The Clock is Simulated */

1 t = 0 ; /* Clock */
2 TA.Do Step(X, 0) ; /* Start TA */
3 while True do
4 t+ = 1, Res = X;
5 S = TA.Get Current Stage();
6 if S is NewTrans then
7 T = S.Get Trans Type();
8 L = S.Get Trans Level();
9 C = S.Get Trans Clock();

10 if S.Type == External then
11 R = S.Get Twin Role();
12 Res = Apply(RDT,R, T, L, S.Trans);
13 else
14 Res = Apply(LDT, T, L, S.Trans);
15 end
16 if C == 0 then t = 0;
17 end
18 if t == TTS then break;
19 TA.Do Step(Res, t);
20 end

TA in UPPAAL [21], which is a well-known model-checking
tool developed jointly by Uppsala University and Aalborg
University for analyzing real-time systems through modeling,
simulations as well as verification [21].

Fig. 4(a) represents the TA of DT1, which we assume that it
runs an anomaly detection model. The external high-level tran-
sition DT2 Src Start represents a new event sent to DT2,
where the role of DT1 in this transition is assigned as source.
On the other hand, the internal low-level transition run()
represents calling the anomaly detection function of DT1. DT1

returns to the Run state as long as no attack is detected. DT1

(a) TA of DT1 (b) TA of DT2

Fig. 4. Representing the DTN using TA in UPPAAL

2024 20th International Conference on Network and Service Management (CNSM)

needs to interact with DT2 for further attack mitigation when
a new attack is detected using DT2 Src Stop transition.

Fig. 4(b) represents the TA of DT2, which we assume
that it runs an attack mitigation model. DT2 remains in
the DT1 Wait state until receiving a new event from DT1

using DT1 Dst Stop transition, which indicates that a new
attack is detected. DT2 will send a new event to DT1

using DT1 Src Start transition. The next transition run()
represents calling the attack mitigation function of DT2. Then,
DT2 will be in the Run state for 10 seconds. Then, it will
inform DT1 about the results using DT1 Src Stop transition.

C. Defining System Properties

System properties φ are defined using Timed Computation
Tree Logic (TCTL) [22], an extension of CTL [23]. TCTL
allows quantitative temporal operators and therefore can be
used for analyzing real-time systems [22]. TCTL formulas
have the following grammar [24]:

Φ ::= p | ¬Φ | Φ1 ∧ Φ2 | E Φ | A Φ
where p is a proposition ∈ AP , a finite set of atomic

propositions. An atomic proposition is a minimal declarative
statement with a truth condition [25]. A path formula is defined
using the following grammar [24]:

φ ::= Φ1 ∪∼c Φ2

where c ∈ N and ∼ ∈ {<, ≤, =, ≥ , >}, U: until.

Common abbreviations [22]: E ∼c for E (true U∼c Φ),
A ∼c Φ for A (true U∼c Φ), E □∼c Φ for ¬A ∼c ¬Φ,
A □∼c Φ for ¬E ∼c ¬Φ. For instance, in our DTN when
DT2 is in the Run state, DT1 has to wait 10 seconds. This
property can be expressed in TCTL as follows [26]:

DT2.Run =⇒ A ≤10 DT1.Wait

D. Verifying the DTN Model

It is important to verify whether the designed DTN meets
the system’s requirements. Otherwise, we must provide a
counter-example to show that the DTN model is faulty or
unsafe. Model-checking [27] can be performed which allows
us to check whether the TA of a given DTN satisfies the system
properties defined using TCTL formulas [22]. This can be
performed using existing tools such as UPPAAL [21]. We use
UPPAAL query language to verify that DTN is deadlock-free
in addition to verifying: reachability (e.g., activation of DT1),
safety (e.g., DT1 and DT2 do not run at the same time), and
liveness (e.g., when DT1 is running, eventually it will stop.

In Table II, for each category of system properties, we write
a corresponding query (or a set of queries) that can be verified
by UPPAAL. For instance, the query Q1 is used to check
whether the DTN is deadlock-free. The query Q2 verifies
whether the state Run is reachable. This is useful for sanity
checks of the corresponding DT [28]. The query Q3 ensures
the safety of DTN by ensuring that only one DT is in the Run
state at the same time. The query Q4 verifies that whenever
DT1 is in the Run state, then DT2 will be in the DT1 Wait
state. Similarly, the query Q5 verifies that whenever DT2 is in
the Run state, then DT1 will be in the DT2 Wait state. The

query Q6 verifies that being in the Run state of DT2 implies
that DT1 is in the DT2 Wait state and DT1.t2 ≤10.

TABLE II
SYSTEM PROPERTIES AND CORRESPONDING QUERIES

Property Query
Q1 Deadlock-free A □ not deadlock
Q2 Reachability E DT1.Run
Q3 Safety A □ not (DT1.Run and DT2.Run)
Q4 Liveness DT1.Run =⇒ DT2.DT1 Wait
Q5 Liveness DT2.Run =⇒ DT1.DT2 Wait

Q6
Bounded
Liveness

A □ (DT2.Run imply DT1.DT2 Wait
and DT1.t2 ≤10)

V. CONCLUSION

This work focused on proposing a generic and verifiable
approach for creating digital twin networks. DTN-Core used
two levels to describe the data and the behavioral model of
each DT. The system allows local and remote digital twins
to run simultaneously provided that the twins are compatible.
Data compatibility is checked by verifying the variable map-
ping based on the type and granularity of the corresponding
mapped pairs. Granularity transformers are introduced to allow
partially compatible twins to interact with other DTs. TA
is used to describe the behavioral model of each DT. The
behavioral model of DTN is verified using UPPAAL according
to predefined system properties.

REFERENCES

[1] M. Grieves, “Digital twin: manufacturing excellence through virtual
factory replication,” White paper, vol. 1, no. 2014, pp. 1–7, 2014.

[2] E. VanDerHorn and S. Mahadevan, “Digital twin: Generalization, char-
acterization and implementation,” Decision support systems, vol. 145, p.
113524, 2021.

[3] F. Pires, B. Ahmad, A. P. Moreira, and P. Leitão, “Digital twin
based what-if simulation for energy management,” in 2021 4th IEEE
International Conference on Industrial Cyber-Physical Systems (ICPS).
IEEE, 2021, pp. 309–314.

[4] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021.

[5] X. Lin, L. Kundu, C. Dick, E. Obiodu, T. Mostak, and M. Flaxman, “6g
digital twin networks: From theory to practice,” IEEE Communications
Magazine, vol. 61, no. 11, pp. 72–78, 2023.

[6] H. Ahmadi, A. Nag, Z. Khar, K. Sayrafian, and S. Rahardja, “Networked
twins and twins of networks: An overview on the relationship between
digital twins and 6g,” IEEE Communications Standards Magazine,
vol. 5, no. 4, pp. 154–160, 2021.

[7] A. Ricci, A. Croatti, S. Mariani, S. Montagna, and M. Picone, “Web of
digital twins,” ACM Transactions on Internet Technology, vol. 22, no. 4,
pp. 1–30, 2022.

[8] G. del Campo, E. Saavedra, L. Piovano, F. Luque, and A. Santamaria,
“Virtual reality and internet of things based digital twin for smart city
cross-domain interoperability,” Applied Sciences, vol. 14, no. 7, p. 2747,
2024.

[9] L.-T. Reiche, C. S. Gundlach, G. F. Mewes, and A. Fay, “The digital twin
of a system: A structure for networks of digital twins,” in 2021 26th
IEEE international conference on emerging technologies and factory
automation (ETFA). IEEE, 2021, pp. 1–8.

[10] D. R. R. Raj, T. A. Shaik, A. Hirwe, P. Tammana, and K. Kataoka,
“Building a digital twin network of sdn using knowledge graphs,” IEEE
Access, vol. 11, pp. 63 092–63 106, 2023.

[11] M. Garcı́a-Valls and A. M. Chirivella-Ciruelos, “Cotwin: Collaborative
improvement of digital twins enabled by blockchain,” Future Generation
Computer Systems, vol. 157, pp. 408–421, 2024.

2024 20th International Conference on Network and Service Management (CNSM)

[12] M. Eckhart and A. Ekelhart, “Towards security-aware virtual environ-
ments for digital twins,” in Proceedings of the 4th ACM workshop on
cyber-physical system security, 2018, pp. 61–72.

[13] P. Bellavista, C. Giannelli, M. Mamei, M. Mendula, and M. Picone,
“Application-driven network-aware digital twin management in indus-
trial edge environments,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 11, pp. 7791–7801, 2021.

[14] J. Robles, C. Martı́n, and M. Dı́az, “Opentwins: An open-source
framework for the development of next-gen compositional digital twins,”
Computers in Industry, vol. 152, p. 104007, 2023.

[15] O. Kugu, S. Zhou, R. Nowak, G. Müller, S. H. Reiterer, A. Meierhofer,
S. Lachinger, L. Wurth, and M. Grafinger, “An fmi-and ssp-based model
integration methodology for a digital twin platform of a holistic railway
infrastructure system,” in Modelica Conferences, 2023, pp. 717–726.

[16] “Details of the Asset Administration Shell - Part 1,”
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/
Details of the Asset Administration Shell Part1 V2.html, [Online
accessed 03-July-2024].

[17] “Mininet,” https://mininet.org/, [Online accessed 31-May-2024].
[18] “FMPy,” https://fmpy.readthedocs.io/en/latest/, [Online accessed 31-

May-2024].
[19] “SSP,” https://ssp-standard.org/, [Online accessed 31-May-2024].
[20] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

computer science, vol. 126, no. 2, pp. 183–235, 1994.
[21] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Inter-

national journal on software tools for technology transfer, vol. 1, pp.
134–152, 1997.

[22] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense real-
time,” Information and computation, vol. 104, no. 1, pp. 2–34, 1993.

[23] E. A. Emerson and E. M. Clarke, “Using branching time temporal
logic to synthesize synchronization skeletons,” Science of Computer
programming, vol. 2, no. 3, pp. 241–266, 1982.

[24] E. Khamespanah, R. Khosravi, and M. Sirjani, “An efficient tctl model
checking algorithm and a reduction technique for verification of timed
actor models,” Science of Computer Programming, vol. 153, pp. 1–29,
2018.

[25] E. Akhmatova and D. Molla, “Recognizing textual entailment via atomic
propositions,” in Machine Learning Challenges Workshop. Springer,
2005, pp. 385–403.

[26] S. Yovine, “Kronos: A verification tool for real-time systems,” Int. J.
Softw. Tools Technol. Transf., vol. 1, no. 1-2, pp. 123–133, 1997.

[27] E. M. Clarke, “Model checking,” in Foundations of Software Technology
and Theoretical Computer Science: 17th Conference Kharagpur, India,
December 18–20, 1997 Proceedings 17. Springer, 1997, pp. 54–56.

[28] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,”
Formal methods for the design of real-time systems, pp. 200–236, 2004.

2024 20th International Conference on Network and Service Management (CNSM)

