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Abstract Ï Indoor deployment with low cost and high capacity has 
shown to be a cost-effective solution in 5G wireless networks. In 
indoor 5G networks, Radio Dot (RD) units handle the wireless 
interfacing between UE devices and the core network. Strategic 
placement of indoor 5G RD units to ensure higher coverage of the 
space with optimal performance is challenging, since various 
factors could affect signal penetration, including floor plan, 
building materials, wall construction, frequency band, 
interference, dynamic factors like user density, etc. Most static 
parameters are well considered during the deployment stage, with 
deployment tools and network planning strategy. However, the 
dynamic impact of user density and distribution on channel 
quality and performance is still an open research area. With the 
user equipment (UE) positioning and channel quality indicator 
(CQI), the areas with poor channel quality data could be detected 
and further analyzed to dynamically determine RD locations and 
adjust accordingly for better network performance, without extra 
radio hardware costs introduced. This paper adopted the K-means 
clustering algorithm to evaluate the scenario where all the RD unit 
locations can be adjusted. Further, a Node Adjustment algorithm 
for RD units was proposed to improve indoor 5G network 
performance for a cost-efficient solution. The number of UEs and 
their distribution were simulated, and a comparative evaluation 
was conducted for different algorithms and various scenarios. The 
experimental results showed that considering dynamic 
information to adjust RD unit placements in a building could 
provide a cost-efficient solution to optimize indoor 5G network 
performance. 

Keywords Ï Small Cell, Radion Dot, Indoor 5G Deployment, K-
Means Clustering 

I. INTRODUCTION 
In indoor 5G wireless communications, Radio Dot (RD) 

deployment is a promising and economical way to increase 
system capacity in a flexible manner with low cost. In indoor 
5G networks, RD units handle the wireless interfacing between 
UE devices and the core network [1]. RD units, as low-power 
radio transmitters, produce radio waves for indoor broadband 
coverage. Advantages of indoor placement technology include 
low cost, flexible deployment, and effective system capacity 
enhancement; this is required to meet the ever-growing 
capacity, traffic, and coverage requirements of mobile 
networks. Although indoor deployments have been 
demonstrated to be a cost-effective solution, the problem of best 

estimating the RD number and positioning for deployment 
remains a challenge [2]. Deploying indoor RDs for wireless 
communications involves careful planning and consideration of 
various factors that affect signal penetration; these include floor 
plans, wall types (concrete, drywall, glass), and conflicting 
signal interference. The objective of indoor deployment is to 
achieve higher network coverage with the benefit of lower cost. 

Strategic placement of RD units to ensure higher coverage 
of the space with optimal performance has always been a 
challenge for indoor wireless communications [3][4]. System 
performance heavily depends on the deployment location of RD 
units. Therefore, a mechanism is required to ensure that an 
RDÓs location is effective not only in the initial deployment, but 
also RDs location can be adjusted based on field situations over 
time. Indoor deployment with high coverage and lower cost has 
been a crucial topic [5] since those aforementioned factors need 
to be considered. Most of the static factors are considered 
during the deployment stage. However, dynamic coverage 
adjustment from user density and distribution is still an area that 
needs to be addressed. In addition, factors that affect user data 
and consumer trends can change over time. Areas that receive 
a high volume of traffic, such as popular hot spot locations, 
recognized branding stores, or high-demand food outlets, can 
change in the fields. The capacity requirements could be 
changed as well due to the number of User Equipment (UE) 
devices connected to the network in different areas. Hence, it is 
important to dynamically adjust RD locations to reflect the 
capacity and UE distribution changes and optimize the channel 
quality of the network. 

Indoor planning tools like Ericsson Indoor Planner (EIP) [6] 
and iBwave [7] are widely used in network planning and 
deployment stages to strategically place RD units for better 
coverage, which have taken much static information into 
account already. RD placement based on dynamic situations, 
where the environment or the positioning of devices is subject 
to change, poses additional challenges compared to scenarios 
with static parameters [8][9]. With user equipment (UE) 
positioning introduced, the location of UEs could be collected. 
Distribution of users and network traffic demands could be 
captured within an indoor space. Capacity might need to be 
adjusted based on real-time demands; combined with Channel 
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Quality Indicator (CQI) data, the areas with poor channel 
quality could be identified. By leveraging machine learning 
techniques, the data could be further analyzed to dynamically 
determine RD locations that can achieve better indoor channel 
quality and optimize network performance. This can be realized 
based on moving existing radio hardware without further 
introducing extra hardware costs. 

This paper proposes a step forward using unsupervised 
machine learning, i.e., the K-means clustering algorithm. The 
aim is to evaluate the performance impact from dynamic 
information, mainly user density and distribution, to 
quantitatively evaluate 5G RD adjustment algorithms that can 
better accommodate cost-effective performance enhancement.  

The main contributions include: 

• The introduction and simulation of UE distributions and 
evaluation of channel quality improvements by 
considering both static floorplan and dynamic UE factors 
based on an industrial network planning tool. 

• Design of the K-means clustering algorithm and an 
extension of it for Node Adjustments for a potentially 
balanced approach between cost-effectiveness and 
network performance improvements for RD unit 
placements. 
 

The rest of the paper is organized as follows. Section II 
describes the background of indoor wireless architecture and 
the high-level design principles. Section III describes the 
proposed design. Section IV presents evaluation results and 
analysis. Finally, Section V is the conclusion and some future 
directions. 

II. INDOOR ARCHITECTURE AND DEPLOYMENT STRATEGY 

A. Indoor Architecture 
Figure 1 presents the overarching structure of the indoor RD 

system. 

 
Fig. 1.  Indoor Radio Dot System Overview 

 The main difference conceptually and hardware-wise 
between the indoor RD system and the traditional 5G outdoor 
scenarios is the inclusion of the Indoor Radio Units (IRU) and 
RD units. Traditional deployments for 4G LTE (Long-Term 
Evolution) and 5G NR have UEÓs wirelessly connecting to base 
stations directly of various naming conventions, the most 
widely known being Next-Generation Node B (gNodeB) 
stations. Indoor RD system functions fundamentally differently 
from the role of base stations being replaced with the Baseband 
Unit (BB). These BB units then have further wired connections 
to multiple IRU devices, with each IRU unit further supporting 

wired connections with RD units. Each IRU can support up to 
a maximum of 8 or 16 RD units, depending on the hardware 
specifications of the IRU used, the size of the floor, coverage 
and performance requirements, etc., in the deployment [10]. 
The BB units have wired connections to multiple IRU devices, 
with each IRU unit further supporting wired connections with 
RD units. 

For indoor 5G networks, RD units handle the wireless 
interfacing between UE devices and the core network. An RD 
unit used as a low-power radio transmitter produces radio 
waves for indoor broadband coverage [10]. The functionality of 
IRU is primarily the aggregation of signals and power provision 
to the RD units. The IRU provides full radio functionality and 
is further connected to a Radio Access Network (RAN) to 
offload the baseband, and it aggregates signals to minimize 
signal interference.  

B. Design Proposal 

Ideally, all RD units have a balanced workload, or each RD 
is connected to the same number of UEs. Clustering algorithms 
can be applied based on the initial UE positioning data to group 
UEs into clusters. Clustering is a natural fit for the problem of 
grouping UEs into clusters. Various clustering algorithms exist, 
such as K-means, DBSCAN, Hierarchical Agglomerative 
Clustering (HAC), Gaussian Mixture model (GMM), etc. 
[11][12]. DBSCAN performance usually suffers with varying 
densities, which may occur in 5G indoor deployments if there 
are popular spots where UEs would cluster. HAC is more 
computationally intensive and there are various choices for the 
linkage method which can impact the results. GMM assumes 
that data follow a mixture of normal distributions., which may 
not be the case for indoor applications due to events or possible 
popular spots.  

The K-means algorithm was selected for this paper, because 
it is computationally efficient and scalable with dataset size. 
Though the number of clusters needs to be pre-determined for 
K-means in general, it is straightforward for this specific 
problem, as the number of RD units is known in the initial 
deployment and the number of clusters is identical to the 
number of RD units. K-means has a trait of minimizing global 
Euclidean distance values, which results in centroids having 
more balanced data points per cluster in deployments with a 
higher average distribution range [11] which is a trait highly 
beneficial to the target of load balancing in 5G networks 
[9][13]. Since K-means can reduce the average distances 
between UEs and RD units, it implies that small path loss would 
be introduced, therefore, transmission rates will be increased, 
and the overall system performance can be improved. 

In non-uniform UE distribution scenarios, dynamic location 
data would be evaluated first for an optimal RD placement 
solution. Further, after dynamic evaluation, we still need to 
consider static information. To balance static and dynamic data, 
we will only adjust the RD units that have the highest 
performance impact based on user positioning and traffic 
density in field deployment scenarios. This approach allows for 
improving channel quality with minimal cost and effort. 
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The main concept of the proposed approach for indoor RD 
deployment is described as follows: UE positioning of all the 
UEs in a network needs to be collected and analyzed. K-means 
algorithm is then applied to generate a UE distribution view. 
Then, the clusters having the highest density can be detected 
and the CQI data can be evaluated for each cluster. The closest 
RDs of UEs from the initial deployment can then be identified 
and may be replaced with high-performance clusters based on 
the quality calculation. The network-wide performance can 
then be evaluated, allowing for optimization in signal coverage 
with minimum cost. CQI is adopted as it is a measure of the 
quality of the communication channel between a mobile device 
and a base station [14]. In LTE and 5G networks, CQI is a 
feedback mechanism where the mobile device provides 
information to the base station regarding the quality of the radio 
channel. The CQI value indicates the signal quality, 
interference level, and other factors affecting the wireless 
communication link. A higher CQI typically corresponds to a 
better channel quality 

In summary, here are the steps: 
• Identify all UEsÓ positions. 
• Apply the K-means algorithm to obtain a UE distribution 

view. 
• Calculate network performance with CQI based on 

monitored data simulated from the indoor planning tool. 
• Adjust RDs based on the UE distribution view obtained. 
• Evaluate the performance improvement by comparing the 

channel quality conditions after the RD adjustment. 

III. EXPERIMENTAL DESIGN 

The goal of the experimental design process using the indoor 
planning tool EIP [6] was to improve network performance for 
UEÓs in a two-dimensional space in correlation with a provided 
floor plan image and how changes to RD placement affected 
overall performance. CQI is derived from Reference Signal 
Received Power (RSRP) obtained from EIP. RSRP is a key 
parameter used in mobile communication networks, including 
LTE and 5G. It represents the power level of the Primary 
Synchronization Signal (PSS) and the Secondary 
Synchronization Signal (SSS) in the downlink [15]. The 
following steps represent an abstraction of the experimental 
design pipeline: 

• UE positional datasets were synthesized such that nodes 
representing two-dimensional UE positions were 
generated pseudo-randomly based on traffic events and 
adjustable data parameters. 

• The K-means algorithm was used for data clustering based 
on centroid placement, as RD units could be represented 
as cluster centroids, with nodes assigned to the clusters 
representing UEs wirelessly connected to an RD.   

• RSRP was simulated with the EIP indoor planning tool, 
based on the RD placement from K-means results. 
Performance was evaluated based on UEÓs channel quality 
abstracted from the RSRP generated with the K-means 
based RD placement. 

• Performance evaluation metrics could then be obtained by 
performing rudimentary data analysis equations on CQI 
metrics in correlation with centroid groups, allowing for 
metrics, such as global CQI average, local cluster CQI 
average, and centroid density to be obtained. 

• A node adjustment algorithm was further investigated for 
a cost-efficient solution. 

The experiments were built using Python version 3.10.6 
utilizing various modules, such as sklearn (for machine 
learning methods like the K-means algorithm), NumPy (for 
array processing) PIL (Python Imaging Library for image 
processing or RGB pixel values), matplotlib (for cluster 
visualization), random (for random number generation), and 
randomcolor (for random color generation) libraries. EIP was 
used to generate the RSRP resulting from the movement of RD 
placements. 

A. Data Collection and Simulation 
The UE positioning data were simulated using the pseudo-

random generation method in a 2D space. In addition, 
simulation data can cover various kinds of scenarios in the 
fields for better reliability, since UE positioning data is unique 
for each different location, environment, and economic market. 
Before data generation, a floorplan image, initial heatmap 
image, and initial centroid coordinates are always provided. A 
heatmap is a graphical representation of data where values in a 
matrix are represented as colors. It is a way to visualize the 
intensity of data at different points. Figure 2 shows a base 
floorplan image from the fields. 

 
Fig. 2. A Sample Floorplan Image  

CQI is the main metric used for quality evaluation. EIP only 
provides a function to simulate RSRP based on the RD 
placement and generate RSRP heatmaps accordingly. The CQI 
metrics are then converted from the RSRP. An RSRP heatmap 
is a visualization of the received signal from a cell in a cellular 
network at various locations. RSRP values are typically 
measured at different geographical locations which are divided 
into a grid where each cell corresponds to a specific location. 
Each cell is assigned a color based on the RSRP value at that 
location. A color scale using the RGB code represents the signal 
strength. The color representation and interpretation for the 
RSRP heatmaps are evaluated in Decibel Milliwatts Units 
(dBm). Figure 3 shows the RGB to RSRP dBm mapping 
provided by EIP. This scale is the basis from which numeric 
metrics were extracted from the RGB pixels produced by EIP. 
Dark red indicates stronger RSRP signals. CQI mapping from 
RSRP was devised based on [16][17]. 
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Fig. 3. RGB to RSRP dBm Mapping 

The initial centroid coordinates in this paper were obtained 
from default RD coordinates generated from the EIP tool based 
on the floorplan design. These initial RD locations are 
generated from the toolÓs goal to maximize signal coverage 
using factors of balanced coverage, signal interference, and 
wall density metrics. CQI data was calculated from RSRP 
simulated with the EIP tool. When this is deployed in the fields, 
both UE positioning and CQI data will be obtained from the 
fields. 

B. Implementation of RD Deployment Algorithms 

Two algorithms were designed to support RD deployment 
decision-making:  K-means and Node Adjustment algorithms. 
The K-means algorithm is mainly used for the scenario when 
RD redistribution is feasible. The Node Adjustment Algorithm 
is designed for cost-efficient solutions. TABLE I depicts the 
input variables used for those two algorithms. 

TABLE I.  INPUT VARIABLES FOR PSEUDOCODE ALGORITHMS 

Notation Definition 

N Number of RD units 
V Number of Centroid Adjustments 
OA Array of Origin Centroids 
UEP 2D Array of all UE Positions 
KA Array of K-means Centroids 
CS Array of Cluster Sizes for KA 
oCQI Array of CQI Cluster Averages for OA 
kCQI Array of CQI Cluster Averages for KA 

 
The K-means algorithm for RD placement is presented 

below. There were multiple purposes for applying the K-means 
algorithm for indoor RD placement. The direct purpose was to 
determine the impact of optimizing the Euclidean distance 
between UEÓs and RD centroids versus the potential offset of 
negatively impacting static parameters, such as signal 
interference or signal penetration defined in the EIP indoor 
planning simulation tool. K-means has the potential for CQI 
performance increase, although it has the major drawback of 
requiring the re-adjustment of all RD placements to properly 
function, which can be time consuming and may have physical 
drawbacks regarding hardware placement viability. 

    Algorithm 1: K-Means Algorithm 

Input: N, V, OA, UEP   
Output: K-Means Labels and List of Centroids 

1. if OA is empty: 
2.  K-Model = Run K-Means(Cluster Number = N, random_state 

= 0).fit(UEP) 
3. else: 
4.  K-Model = Run K-Means(Cluster Number = N, random_state 

= 0).fit(OA) 
5. Labels = K-Model.predict(UEP) 
6. Cluster Centers = K-Model.cluster_centers_ 
7. return Labels, Cluster centers     

The number of RD units in the algorithm equals the number 
of clusters for this problem. UE positions in a 2D array need to 
be provided. Original centroids based on the indoor planning 
tool are optional. If no centroids are provided (OA is empty), 
the new centroids could be extracted based on optimized 
Euclidian distance and RSRP could be generated with EIP 
accordingly. This allows for CQI evaluation of the K-means 
distribution model. If centroids are provided (OA is not empty), 
it allows for a grouping of UEs based on the pre-existing RD 
locations. The output variable Labels represent UE 
classification corresponding to each cluster. Further, any 
changes made to the original set of centroid placements could 
show grouping adjustments. The corresponding RSRP can 
further be generated, allowing for comparative CQI evaluation 
between original and new RD placements. 

The Node Adjustment algorithm acts on adjusting the 
placement of the original centroids from initial deployment to 
the locations of the highest density centroids obtained from the 
K-means algorithm to readjust the workload of RD units. The 
number of centroids being adjusted is defined by a configurable 
parameter V as shown in TABLE 1. The algorithm sorts the input 
list of K-means centroids in descending order based on the 
cluster sizes. The algorithm then sequentially walks through the 
sorted K-means centroid list V steps and moves the closest 
available original centroid to the K-means centroid location 
defined by the iteration step. A centroid from the original 
placement that has already been moved cannot be moved again 
in the same algorithm data batch. This results in V number of 
centroids from an original EIP deployment to be moved to the 
theorical number of V Ðhighest densityÑ areas, with the nearest 
ones being moved as an attempt to not disrupt global signal 
coverage to an excessive degree. The Node Adjustment 
algorithm is presented as follows. 

Algorithm 2: Node Adjustment Algorithm 

Input: N, V, OA, KA, CS. 
Output: Set of N Post-Adjustment Centroids. 
Conditions: A Centroid that has been adjusted by the algorithm cannot 

be adjusted again within the same iteration of an algorithm call.    
1.  Sort KA by indexes of CS after being sorted by size in descending 

order    
2. Make a Copy of OA as OC 
3.  for step = 0 up to V   // the number of centroid adjustments 
4.  kNode = KA[step] 
5.        Initialize List of Distance Vectors as DV 
6.  for oNode in OA: 
7.    Append Absolute Value Distance Vector of |kNode Î 

oNode| to DV 
8.         end for 
9.        Extract the Minimum Vector as MV from DV 
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10.      Extract the Array Index of DV[MV] as Min Index 
11.       Replace the Centroid at OC[Min Index] with kNode 
12.  end for 
13.  return OC 
 

The Node Adjustment algorithm requires the cluster 
densities and centroid locations calculated from the K-means 
algorithm. The primary purpose of the Node Adjustment 
algorithm is to provide a middle ground between potential 
performance increases and cost requirements for real-time 
deployment scenarios. Since the algorithm performs only minor 
adjustments to the centroid locations by replacing some of the 
original centroids deployed with high-density centroids 
extracted from the K-means model, the target for this algorithm 
is to provide minor performance increases for high-density 
areas, while at the same time reducing the cost and efforts 
required to adjust many RD placements. Since the Node 
Adjustment deployments are similar in design to the original 
deployment, a strength of the Node Adjustment algorithm is 
that the signal strengths of the resulting RD placements are 
normally still strong for even signal distribution across a 
buildingÓs floorplan, making it the practical for maintaining 
high signal coverage of a building while also allowing for 
performance increase. 

IV. EVALUATION RESULTS AND ANALYSIS 
Different UE distributions have been simulated, pseudo-

random, highly condensed, and sparse events distributions. 
Events were assumed to draw UEs to closer to their locations. 
The K-means algorithm as well as the Node Adjustment 
algorithm were evaluated. The K-means algorithm was 
implemented using the sklearn library. Events were 
considered as UEs may gather around events. Three scenarios 
were tested for performance evaluation: 

• 3 RD EIP deployment with low CQI coverage: The 
experiment was to evaluate the performance of the RD 
placement algorithms for UE traffic density, size, and 
event radius in the environment of a low global CQI 
signal coverage area. 

• 6 RD field deployment with high CQI coverage: An 
initial 6-node deployment experiment was evaluated for 
different scenarios and algorithms. 

• 6 RD controlled events: The experiment was designed to 
simulate scenarios in a more controlled manner to test 
for edge case strengths and weaknesses of the 
algorithms. 

A. 3 RD Coverage Results 
Four datasets were generated to test the K-means and 

singular Node Adjustment algorithm to evaluate CQI 
performance: (i) two default state scenarios with an event 
number equal to the number of RD units, (ii) a highly condensed 
event scenario with a large amount of UE traffic, (iii) high event 
density per given event radius, and (iv) a low traffic scenario 
with less density per event scenario. 

 

TABLE II.  RESULTS FOR 3RD LOW CQI COVERAGE TEST CASE 

Batch # # of 
UEÓs 

# of 
Events 

Event Metrics Method CQI 
Average 
(Total) 

Size Radius 

1 100 3 25-30 5-15 EIP default 13.18 
K-means 14.04 
Singular 13.11 

2 200 2 37-45 2-10 EIP default 13.06 
K-means 14.285 
Singular 13.545 

3 50 4 20 15-20 EIP default 12.7 
K-means 13.78 
Singular 10.86 

4 100 3 25-30 5-15 EIP default 14.11 
K-means 14.4 
Singular 14.07 

EIP default: deployment without considering UE distribution  

TABLE II depicts the result for the 3 RD low CQI coverage 
test case used to evaluate the performance concerning variable 
UE traffic density, cluster size, and event radius in meters in a 
low CQI signal coverage area. Overall, the performance of K-
means was shown the best, while the performance of the 
singular node adjustment was even lower than that of the static 
EIP default plan without considering the UE distribution.   

The following figures illustrate an example from TABLE II. 
Fig. 4(a) is the original default EIP deployment for batch 1 and 
Fig. 4(b) shows the corresponding clustering results generated 
from matplotlib, where the dark triangle represents the RD 
centroids. Visualizing information is useful for improving 
understanding, decision-making, and management. Figures 5 
and 6 illustrate the results of K-means and Node Adjustment 
algorithms, respectively. 

Fig. 4. (a) Origin EIP Deployment                    (b) Clustering View 

Fig. 5.      (a) K-means Deployment                (b) K-means Clustering View 

Fig. 6. (a) Singular Node Adjust. Deployment (b) Singular Node Adjust.   
Clustering 
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B. 6 RD High CQI Coverage Results 
The same original floorplan as the previous experiment was 

used as the base truth for this result set. This experiment follows 
the same steps as the 3 RD deployment experiment with an 
addition of double node adjustment. Similar four datasets were 
generated: two original default states with normally distributed 
data, an event-condensed high-density dataset, and a low traffic 
wide distribution dataset.  

TABLE III.  RESULTS FOR 6 RD HIGH CQI COVERAGE 

Batch # # of 
UEÓs 

# of 
Events 

Event Metrics Method CQI Average 
(Total) Size Radius 

1 100 6 12-15 6 EIP default 13.48 
K-means 14.48 
Singular 12.89 
Double 14.47 

2 200 3 25-30 6 EIP default 14.75 
K-means 14.84 
Singular 14.815 
Double 14.835 

3 50 6 8-12 0 EIP default 14.14 
K-means 14.24 
Singular 14.3 
Double 14.66 

4 100 6 12-15 0 EIP default 14.29 
K-means 14.69 
Singular 14.25 
Double 14.31 

 
TABLE III shows the CQI results for various algorithms. 

Two RD movements showed performance improvement. Fig. 7 
depicts 6 RD field deployment with EIP default static 
parameters without considering UE distribution and the 
simulated RSRP heatmap. Fig. 8 shows the two RD node 
adjustments for four batches with different numbers of UEs and 
events: batch 1 (top left), batch 2 (top right), batch 3 (bottom 
left), and batch 4 (bottom right). 

 
Fig. 7. Default Static 6 RD Deployment and Simulated RSRP Heatmap 

 
Fig. 8. RD Adjustment based on K-means for 6 RD High CQI Coverage 

Fig. 9. Results for Singular RD Node Adjustment for 6 RD High CQI 
Coverage 

Fig. 10. Results for Double Node Adjustments for 6 RD High CQI Coverage 

C. Controlled Event Results 
UE distributions were simulated with 4 different scenarios. 

Batches 1 and 2 simulated a scenario where a number of UEs 
were congregated around areas of poor signal strength. The 
results showed positive outcomes for both the K-means method 
and node adjustment algorithms. Batches 3 and 4 were to test 
for scenarios with no event distribution, essentially in an 
attempt to replicate even distribution scenarios. The results of 
the K-means method and node adjustment algorithms were 
shown again to be successful for these edge cases. TABLE IV 
shows the results. 

TABLE IV.  RESULTS FOR CONTROLLED EVENTS 

Batch # # of 
UEÓs 

# of 
Events 

Event Metrics Method CQI Average 
(Total) Size Radius 

1 100 1 50 6 EIP default 12.43 
K-means 14.67 
Singular 14.5 
Double 14.33 

2 100 2 25 6 EIP default 12.35 
K-means 14.4 
Singular 13.48 
Double 13.63 

3 100 0 0 0 EIP default 14.21 
K-means 14.53 
Singular 14.25 
Double 14.35 

4 100 0 0 0 EIP default 14.08 
K-means 14.28 
Singular 14.36 
Double 14.41 
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D. Cross Analysis and summary 

The results showed that K-means had the best performance 
consistency compared to the original static based EIP designs. 
The Node Adjustment algorithm resulted in a performance 
increase consistency, for certain UE distribution scenarios. 

If UE distribution with strong event driven density, 
adjusting the RD nearby to the density areas provides consistent 
improvement for cost efficiency. The number of RDs to be 
adjusted depends on the UE distribution pattern. For UE 
distribution with single density area, the singular node 
adjustment algorithm performed better. For UE distribution 
with two density areas, double adjustment algorithm provided 
better performance. If the UE distribution doesn't have a clear 
pattern, K-means demonstrated consistent performance 
enhancement. TABLE V summarizes the comparison. 

TABLE V.  ALGORITHM TRAIT COMPARISON 

Algorithm Pros Cons 
K-means 1. Highest CQI performance 

improvement consistency. 
2. 2. Balanced distribution of UEs 

across RD placements (optimal 
for load balancing). 

3. High and Consistent 
performance for low RD, low 
CQI coverage scenarios. 

1. Complete RD 
redistribution (potential 
uneven global signal 
distribution). 

2. Highest potential for 
hardware limitations 
(wire length, location 
inaccessibility, etc.).  

3. Increased cost and effort 
for redistribution 

Node 
Adjustment 

1. Reasonably high CQI 
improvement consistency for 
high signal strength deployment 
scenarios 

2. Lower cost and effort for 
deployment. 

3. Lowest risk of hardware 
limitations. 

4. Best suited for the situation 
when UE distribution has clear 
number of high-density events. 

5. Lowest change to global signal 
consistency (can be very 
similar to original deployment 
scenarios) 

1. Suitable for certain UE 
distribution only, mainly 
pattern with clear 
density focused. 

2. Not suitable for the 
scenario when the 
number of events is 
drastically greater than 
the number of nodes 
adjusted.  

3. Not suitable for low RD 
deployment 
scenarios/weak global 
coverage.  

 

V. CONCLUSIONS AND FUTURE WORK  
The goal of this research was to provide performance 

improvement options for indoor 5G networks. Network 
planning tool EIP was used to generate UEs and RSRP for 
evaluation of various scenarios. UE positioning data was used 
with clustering algorithms to allow for dynamic RD 
repositioning based on the analysis of network traffic 
information. Using the K-means clustering algorithm improved 
the performance if movements of RDs are feasible. The 
proposed Node Adjustment algorithm based on the output of K-
means further demonstrated to be an effective approach for 
consistent CQI improvement. Further, the Node Adjustment 

algorithm showed a better option as a cost-efficient solution 
when UE distribution has a clear density pattern. 

Simulation of UE positioning and CQI data from practical 
field deployment scenarios should be further tested. Also, the 
model needs to be further evaluated in complex environments 
with variance floor plans, wall types and different materials, 
and signal interference levels. Scalability and the frequency of 
the algorithm execution could be investigated depending on 
performance requirements and specific events. Investigation 
with other planning tools could be considered for more 
advanced machine learning techniques. 
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